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Multimorbidity, the co-occurrence of multiple chronic conditions in an individual, has be-1

come a global health challenge affecting populations in high-income and low- to middle-2

income countries. Despite its increasing prevalence, critical gaps remain in understand-3

ing its progression, burden, and determinants to better guide prevention and treatment.4

Here, by leveraging linked primary care, hospitalisation, and mortality records from 3.35

million individuals with multimorbidity in England, we conducted a longitudinal cohort6

study to characterise multimorbidity across multiple dimensions, including condition pro-7

filing, progression trajectories, healthcare burden, and associated social and biological8

factors. Specifically, we identified 21 distinct multimorbidity profiles in males and 18 in9

females, uncovering life-course progression pathways. We assessed the differential bur-10

den of these profiles on mortality and hospitalisation. The study also highlights how social11

inequalities shape distinct patterns of multimorbidity. Furthermore, by developing an in-12

terpretable machine learning framework, we identified key biological markers associated13

with specific multimorbidity profiles. Together, these results offer valuable insights to in-14

form prevention strategies, public health initiatives and potential interventions aimed at15

mitigating the growing burden of multimorbidity.16
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Introduction17

Multimorbidity, the co-occurrence of two or more chronic conditions in an individual, threat-18

ens individual health and overwhelms healthcare systems1,2. Globally, more than one-third of19

adults are affected3,4, and in England alone, annual healthcare costs per patient increase from20

£3,000 for those with a single condition to £8,000 for those with three or more conditions5. De-21

spite the growing burden, most clinical guidelines remain focused on single conditions, making22

them inadequate for people with multiple mental and physical health conditions, who are gener-23

ally associated with poorer quality of life, shorter life expectancy, greater functional difficulties,24

and increased use of healthcare1. In addition, the complexity of multimorbidity extends beyond25

the simple accumulation of conditions, as its mechanisms vary quantitatively and qualitatively26

across sexes, stages of life, and a spectrum of social and biological factors1,6–10, highlighting27

the urgent need to better understand multimorbidity to enable more effective prevention, earlier28

detection, and improved clinical management.29

As the accumulation of conditions is a well-recognised characteristic of multimorbid-30

ity, several studies have measured it by counting the number of conditions per individual11–13.31

However, these studies lack information on the composition and interplay of conditions within32

multimorbidity. Motivated by the observation that individuals with common conditions tend33

to cluster in clinical practice and epidemiological studies14, various methods have been used34

to identify multimorbidity profiles in cross-sectional studies15,16, with latent class analysis35

(LCA)17 emerging as the most widely used approach7,18. Several clinically meaningful profiles36

have been identified, such as cardiovascular and cardiometabolic profiles19,20. Although these37

studies have improved our understanding of generic patterns in multimorbidity, their cross-38

sectional design fails to capture the longitudinal progression.39

Taking advantage of the digitalisation of healthcare systems and the accumulation of sub-40

stantial longitudinal data from electronic health records (EHRs), some studies have investigated41

multimorbidity trajectories21–24. Evidence indicates substantial transitions from profiles char-42

acterised by cardiovascular risk factors such as diabetes and hypertension, to those dominated43

by explicit cardiovascular conditions such as heart attack and stroke, reflecting the dynamic na-44

ture of multimorbidity25. However, most studies followed individuals for less than 15 years26.45

Such time frames capture only partial life stages, such as early adulthood (e.g., 25–45 years),46

middle adulthood (e.g., 45–65 years) or late adulthood (e.g., 65–85 years)27. Therefore, lon-47

gitudinal studies that span the full life course are essential to fully characterise multimorbidity48

trajectories, and understand their cumulative burden on individual quality of life over time.49

In parallel, the role of social and biological factors in shaping multimorbidity has been50
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increasingly recognised1,6–8. Socioeconomic inequalities, for example, have been shown to51

significantly influence multimorbidity, with disadvantaged groups experiencing earlier onset52

and faster accumulation of chronic conditions28–30. Despite these insights, the specific contri-53

butions of social factors to the emergence and persistence of different multimorbidity profiles54

remain poorly understood20. From a biological perspective, while clinical markers such as high55

body mass index (BMI) have been linked to multimorbidity development31, few studies have56

systematically examined multiple routinely collected clinical measures10,32, hindering a deeper57

understanding of the underlying biological factors.58

Taken together, despite growing recognition of multimorbidity’s complexity, no study has59

systematically characterised its composition, progression, and impact, alongside underlying60

social and biological factors, within a large population-based cohort to inform more effective61

preventive strategies and targeted interventions8,33. Motivated by this gap, we examined key62

aspects of multimorbidity throughout the life course of 3.3 million individuals in England using63

the Clinical Practice Research Datalink (CPRD) data34, a representative sample of the English64

primary care population35,36. The study was structured around five objectives: (1) We identified65

multimorbidity profiles using LCA and hierarchical clustering, stratified by age and sex; (2) We66

characterised life-course multimorbidity trajectories throughout the study population; (3) We67

assessed the burden of multimorbidity in terms of both mortality and hospitalisation; (4) We68

analysed the association between multimorbidity and social factors, including socioeconomic69

deprivation, ethnicity and geography; (5) We investigated the biological factors underlying70

multimorbidity, developing an interpretable machine learning framework to identify clinically71

relevant markers for specific multimorbidity profiles.72

Results73

Data overview and study design74

Using routinely collected EHR data from CPRD34, we derived the longitudinal diagnoses of75

18 chronic conditions in 6,671,245 individuals. These conditions represent the commonly re-76

ported chronic conditions in the general population37–40, across mental, respiratory, metabolic,77

cardiovascular, neurological, and other systems (Methods). Individuals entered the study at78

birth and were followed until death or study exit, with follow-up period ended no later than79

31 December 2019. Among the study cohort, 3,314,652 individuals developed multimorbidity80

(i.e. two or more of the investigated chronic conditions) at the time of death or exit, with an81

overall prevalence of 49.69% (95% confidence interval [CI]: 49.65–49.72%). These individu-82

als made up the primary study cohort, with a median duration of 68 years (interquartile range83
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[IQR]: 50–81 years) from birth to death or exit, and a median year of birth of 1950 (IQR: 1936–84

1968; Supplementary Fig. S1). Table 1 summarises the basic characteristics of this group. For85

comparison, we identified 1,226,245 individuals from the study cohort who remained free of86

all 18 conditions throughout the study period, referred to as the healthy cohort. The remaining87

2,130,348 individuals developed one of the 18 conditions during the study period. For clarity,88

we refer to some of selected conditions using abbreviations: coronary heart disease (CHD),89

chronic obstructive pulmonary disease (COPD), and serious mental illnesses (SMI).90

The overall framework of our analysis is described in Fig. 1. To capture multimorbid-91

ity progression over time, we divided each individual’s clinical history into nine age bands92

(<18, 18–24, 25–34, 35–44, 45–54, 55–64, 65–74, 75–84, ≥85) and stratified analyses by sex.93

Within each age band, LCA17 was applied to identify clusters of individuals with similar di-94

agnostic profiles (Fig. 1a). To identify generic multimorbidity profiles across the life course,95

clusters from different age bands were merged using hierarchical clustering based on condi-96

tion prevalence and exclusivity patterns (Fig. 1b and Supplementary Fig. S2–S4). Life-course97

multimorbidity trajectories were reconstructed by linking individuals’ profiles across succes-98

sive age bands (Fig. 1c). Using 847,048 death records and 33,950,515 hospitalisation records99

from the Office for National Statistics (ONS)41 and Hospital Episode Statistics (HES)42, we100

assessed the burden of multimorbidity in terms of mortality and hospitalisation across profiles101

and age bands (Fig. 1d). We then analysed the association between multimorbidity profiles and102

various social factors (Fig. 1e and Supplementary Table S1). For socioeconomic deprivation,103

individuals were linked to quintiles of the 2019 English Index of Multiple Deprivation (IMD)104

as a measure of relative deprivation28. For ethnicity, individuals were grouped by White, Black,105

South Asian, Mixed, and Other12. For geography, each individual was assigned to one of nine106

regions in England. Using 1,064,737,538 records covering 45 clinical markers from CPRD,107

we developed an interpretable machine learning framework that combines XGBoost43 with a108

novel reference-adjusted Shapley additive explanation (SHAP) method44,45 to identify clini-109

cally meaningful markers associated with each multimorbidity profile (Fig.1f and Methods).110

The complete marker list appears in Supplementary Table S2.111

Multimorbidity profiles112

Throughout the life course, 21 multimorbidity profiles for males and 18 for females were iden-113

tified in the primary study cohort (Fig. 2). Detailed numerical results are provided in Sup-114

plementary Fig. S5 and Table S3–S4, and the naming convention for profiles is provided in115

Supplementary Note S1.2.116
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The multimorbidity profiles showed clear age-related trends that became increasingly117

more prevalent and complex with ageing, in terms of both composition and accumulation of118

conditions. In early life (<35 years), profiles were predominantly characterised by mental119

health conditions, often co-occurring with asthma (M1–M5 in males and F1–F6 in females).120

In midlife (35–64 years), physical conditions such as hypertension, diabetes, and cancer be-121

came more prominent (M6–M12, F7–F13). In later life (≥65 years), newly emerging profiles122

reflected increased complexity and multisystem involvement, especially in the cardiovascular,123

cardiometabolic, renal, and mental health domains (M13–M21, F14–F18).124

Complex multimorbidity profiles, defined as those with more than four conditions on av-125

erage6, were identified in older adults. In the ≥85 age band, males in M14 (Cardiovascular126

+ Cardiometabolic + Renal, Complex) and M15 (Mental + Cardiovascular + Cardiometabolic127

+ Renal + Respiratory, Complex) had average condition counts of 5.86 (SD: 1.34) and 7.03128

(SD: 1.30), respectively, while females in F16 (Cardiovascular + Cardiometabolic + Renal,129

Complex) and F15 (Mental + Cardiovascular + Cardiometabolic + Renal + Respiratory + Mus-130

culoskeletal, Complex) had averages of 4.53 (SD: 1.48) and 7.02 (SD: 1.33). Mental health131

conditions were over-represented in M15 and F15, with depression affecting more than 85% of132

the individuals in both profiles, compared to less than 20% in M14 and F16. In contrast, M14133

and F16, while also complex, showed a higher prevalence of heart failure and atrial fibrillation.134

The prevalence of heart failure was 87.11% (95% CI: 86.90–87.31%) in M14 and 50.22% (95%135

CI: 50.01–50.43%) in F16, compared to 46.04% (95% CI: 45.54–46.54%) in M15 and 33.42%136

(95% CI: 33.08–33.76%) in F15.137

Several multimorbidity profiles exhibited long persistence—appearing repeatedly across138

successive age bands. The mental health-only profiles (M1 and F1: Anxiety + Depression)139

were observed across six age bands under age 65, highlighting their widespread impact across140

a broad population. Among profiles dominated by physical conditions, F10 (Cardiometabolic141

+ Renal) in females and M11 (CHD-predominant Cardiovascular + Diabetes) in males were142

the most persistent, each spanning five consecutive age bands from age 45 and above.143

Sex differences in multimorbidity patterns were evident, with males being more fre-144

quently included in cardiovascular, respiratory, and cancer-related profiles. Six cardiovascular-145

related profiles were identified in males (M11, M14, M15, M19–M21) compared to four in146

females (F11, F14, F15, F18). Although both sexes had a CHD-predominant profile (M11,147

F11), M11 was more prevalent and persisted throughout a broader age range, while F11 was148

observed only in two age bands (45–64 years). Although asthma-predominant respiratory pro-149

files were common in both sexes (M9, F9, F12), severe respiratory conditions such as COPD150
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were predominantly observed in males: M19 (COPD-predominant Respiratory + Cardiovas-151

cular) showed a COPD prevalence of 81.37% (95% CI: 81.09–81.70%). Similarly, cancer152

appeared more prominently in male profiles, with a prevalence of 51.70% (95% CI: 51.13–153

52.27%) in M16 (Cancer + COPD + Cardiovascular) and 100% in M18 (Cancer + Physical154

Long-term Conditions). Unlike males, females had a higher prevalence of mental, neuro-155

logical, and musculoskeletal profiles. For example, F14 (Mental + Physical Long-term Con-156

ditions) had a prevalence of 15.54% (95% CI: 15.46–15.62%) in ages 75–84, compared to157

9.91% (95% CI: 9.83–9.99%) of the comparable male profile M13 (Mental + Physical Long-158

term Conditions). Dementia-predominant neurological profiles were also more prevalent in159

females (F18: 15.76%, 95% CI: 15.65–15.88% in ≥85 years) than males (M20: 8.07%, 95%160

CI: 7.95–8.18%), and often involved musculoskeletal conditions. A female-specific profile,161

F13 (Osteoporosis-predominant Musculoskeletal + Hypertension + Cancer), spanned four age162

bands from age 55 and had an osteoporosis prevalence of 94.87% (95% CI: 94.76–94.97%).163

Multimorbidity trajectories164

Longitudinal transitions between multimorbidity profiles across age bands were observed (Fig. 3165

and Supplementary Fig. S6). The Sankey diagrams illustrate that the population with multimor-166

bidity increased with age, peaking in the 65–74 age band as individuals accumulated conditions.167

This was followed by a decline in the older age bands due to mortality and exit from the study.168

Several distinct progression pathways were identified.169

In both sexes, mental health–predominant profiles often represented early multimorbidity,170

and individuals within these profiles progressed to more complex profiles incorporating age-171

related physical conditions. The mental health-only profiles (M1 and F1: Anxiety + Depres-172

sion) frequently transitioned into profiles that added hypertension and diabetes. For example,173

between ages 45–64, a subset of individuals from M1/F1 moved to M6/F7 (both Hypertension174

+ Depression + Anxiety). In the 65–74 age band, M13 and F14 (both Mental + Physical Long-175

term Conditions) emerged, with 41.29% of males and 57.93% of females originating from M1176

and F1, an additional 35.62% of males and 29.37% of females from M6 and F7, and the remain-177

ing individuals contributed from M8 (Mental + Diabetes + Cancer) and F8 (Mental + Cancer +178

Diabetes), respectively.179

For cardiovascular-predominant trajectories, direct transitions from healthy or single-180

condition states into M11 (CHD-predominant Cardiovascular + Diabetes) were common. 72.32%181

and 64.68% of individuals entered M11 from these groups in the 45–54 and 55–64 age bands,182

respectively. Subsequently, M11 served as a key precursor to more complex profiles such as183
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M14 (Cardiovascular + Cardiometabolic + Renal, Complex), contributing 42.25% and 31.22%184

of its population in the 65–74 and 75–84 age bands, respectively. A similar pattern was ob-185

served in females, with transitions from F11 (CHD-predominant Cardiovascular + Diabetes +186

Mental) to F16 (Cardiovascular + Cardiometabolic + Renal, Complex).187

For cardiometabolic- and renal-predominant trajectories, notable sex-specific patterns188

were observed. In males, a considerable proportion of individuals transitioned from healthy189

or single-condition states to M10 (Hypertension + Diabetes), which persisted across three age190

bands (45–74 years), and M12 (Hypertension + Cancer + Renal), present at ages 55–74. These191

two profiles served as key intermediates in the development of M17 (Cardiometabolic + Renal)192

in the 75–84 age band, together accounting for 70.95% of its population. They also preceded193

M18 (Cancer + Physical Long-term Conditions), contributing 79.70% of its population. In194

females, a similar pathway was observed involving F10 (Cardiometabolic + Renal) and F17195

(Hypertension + Cancer + Renal), both of which included a substantial number of individuals196

transitioning from healthy or single-condition states, and 45.50% of individuals transitioned197

from F17 to F10 in the 75–84 age band. Both contributed to the formation of F16 (Cardiovas-198

cular + Cardiometabolic + Renal, Complex).199

Distinct sex differences were evident in respiratory-predominant trajectories. In males,200

M9 (Asthma-predominant Respiratory + Hypertension), observed across four age bands (35–74201

years), often served as a precursor to M19 (COPD-predominant Respiratory + Cardiovascular)202

in the 75–84 age band, with 43.53% of individuals making this transition. In females, respira-203

tory progression was more closely intertwined with mental health conditions. F5 (Depression204

+ Asthma), present at ages 18–34, transitioned almost entirely (96.14%) into F2 (Asthma +205

Depression + Anxiety) in the 35–44 age band due to the accumulation of mental health condi-206

tions. Between ages 45–64, F2 contributed over 45% of individuals to F9 (Asthma-predominant207

Respiratory + Mental). Subsequently, 41.71% of the individuals in F9 transitioned to F12208

(Asthma-predominant Respiratory + Hypertension), in which hypertension was highly preva-209

lent (65.31%, 95% CI: 65.12–65.51%).210

In addition, we examined the number of unique multimorbidity profiles each individual211

experienced (Supplementary Fig. S7). Among the 3.3 million individuals in the primary study212

cohort, 58.53% of males and 58.43% of females stayed in a single profile across all age bands,213

while 35.40% of males and 34.74% of females experienced two distinct profiles. The remaining214

6.07% of males and 6.83% of females transitioned through three or more profiles. On average,215

males experienced 1.48 (SD: 0.62) profiles, and females experienced 1.49 (SD: 0.64) profiles216

during the study period.217
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Burden of multimorbidity218

The burden associated with multimorbidity was assessed using three indicators: mortality219

(Fig. 4a,b), hospitalisation rate (mean annual hospitalisations per individual; Fig. 4c,d), and220

hospitalisation prevalence (proportion of individuals experiencing at least one hospitalisation;221

Supplementary Fig. S8), stratified by multimorbidity profile, sex, and age. Results from the222

healthy cohort were included as a reference. Across all indicators, the burden of multimorbid-223

ity increased progressively with age. Profiles dominated by physical conditions were generally224

associated with greater burden than those primarily driven by mental health conditions, with225

complex multimorbidity profiles imposing the highest burden overall.226

Mortality remained low across profiles before age 65, as compared to the levels observed227

in the healthy cohort. Notable exceptions were M8 (Mental + Diabetes + Cancer) and F8 (Men-228

tal + Cancer + Diabetes), with mortality respectively reaching 9.36% (95% CI: 9.15–9.57%)229

and 6.85% (95% CI: 6.64–7.06%) in the 55–64 age band. After age 65, mortality rose sharply,230

and stratified into three tiers in the ≥85 age band. The highest mortality (∼70%) was observed231

in neurological-predominant profiles (M20: Dementia-predominant Neurological + Cardio-232

vascular, F18: Dementia-predominant Neurological + Cardiovascular + Musculoskeletal) and233

complex profiles (M14 and F16: Cardiovascular + Cardiometabolic + Renal, Complex). In234

contrast, mortality was lower (∼55%) in mental health profiles among older individuals (M13235

and F14: Mental + Physical Long-term Conditions) and cardiometabolic profiles (M17 and236

F10: Cardiometabolic + Renal), with remaining profiles falling between 60–65%. Mortality237

in the healthy cohort in the same age band was 38.54% (95% CI: 37.50–39.60%) for males238

and 44.95% (95% CI: 44.06–45.84%) for females. Although mortality across multimorbid-239

ity profiles was similar between the sexes, this gap relative to the healthy cohort suggests a240

disproportionate mortality burden on older males.241

Interestingly, although M15 (Mental + Cardiovascular + Cardiometabolic + Renal + Res-242

piratory, Complex) and F15 (Mental + Cardiovascular + Cardiometabolic + Renal + Respi-243

ratory + Musculoskeletal, Complex) had the highest average number of conditions (7.03 and244

7.02, respectively), their mortality was lower than M14 and F16, which had fewer conditions on245

average (5.86 and 4.53, respectively) but were heavily burdened by cardiovascular conditions246

such as heart failure and atrial fibrillation. For example, in the ≥85 age band, mortality was247

65.75% (95% CI: 64.60–66.88%) in M15, versus 69.60% (95% CI: 68.96–70.23%) in M14.248

Hospitalisation rates followed a similar age-related trend as mortality, but varied by sex249

and profile. In the 18–24 age band, profiles involving hypertension, cancer, and SMI (M4,250

M5, F5, F6) were associated with elevated hospitalisation rates. Females exhibited higher hos-251
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pitalisation rates between ages 25–44 due to pregnancy-related care, whereas males showed252

consistently higher rates in older age bands. Between ages 45–64, cardiovascular-predominant253

profiles imposed a higher burden on females. For example, F11 (CHD-predominant Cardiovas-254

cular + Diabetes + Mental) had a hospitalisation rate of 0.85 (95% CI: 0.78–0.92) in the 45–54255

age band, substantially higher than its male counterpart M11 (0.50, 95% CI: 0.47–0.53). In later256

life, unlike mortality trends, the complex profiles M15 and F15 exhibited the highest hospitali-257

sation rates. M15 and F15 peaked at 1.57 (95% CI: 1.48–1.67) and 1.25 (95% CI: 1.21–1.30),258

respectively, in the 75–84 age band, while M14 and F16 showed lower rates of 1.31 (95%259

CI: 1.26–1.35) and 0.92 (95% CI: 0.89–0.94), respectively. Notably, neurological-predominant260

profiles (M20, F18) exhibited relatively low hospitalisation rates despite high mortality. Sim-261

ilar trends were observed for hospitalisation prevalence (Supplementary Fig. S8), supporting262

the consistency of the results across different healthcare burden indicators.263

Social factors with multimorbidity264

We also examined the multimorbidity profiles in relation to socioeconomic deprivation, ethnic-265

ity, and geographic region in England (Fig. 5).266

Socioeconomic deprivation, as measured by quintiles of the IMD, was associated with267

distinct prevalence patterns across profiles (Fig. 5a,b). Profiles that largely occurred before age268

65 (M1–M8, F1–F9, F11) were significantly more prevalent in the most deprived quintile (IMD269

5) compared to the least deprived (IMD 1). In contrast, profiles that arose or peaked later in life270

(M11–M14, M17–M21, F12–F14, F16–F18) were more common among the least deprived.271

Pronounced ethnic differences in profile prevalence were also observed (Fig. 5c,d). Among272

White individuals, mental health-predominant profiles were consistently more prevalent than273

in other ethnic groups, particularly M1 and F1 (both Anxiety + Depression), and M13 and F14274

(both Mental + Physical Long-term Conditions), with prevalence exceeding that of other groups275

by more than 5%. COPD-related profiles, including M19 (COPD-predominant Respiratory +276

Cardiovascular) and M16 (Cancer + COPD + Cardiovascular) were also more prevalent among277

White males. In females, F17 (Hypertension + Cancer + Renal) had a prevalence of 14.58%278

(95% CI: 14.52–14.64%) among White individuals, more than 5% higher than in other eth-279

nic groups. In comparison, profiles characterised by physical conditions were more prevalent280

among Black and South Asian populations than in White individuals. Among Black individ-281

uals, cardiometabolic profiles such as M10 (Hypertension + Diabetes) and M7 (Hypertension282

+ Diabetes + Mental), along with M17 and F10 (both Cardiometabolic + Renal) showed the283

highest prevalence, followed by South Asian individuals, with a considerably lower prevalence284
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in White individuals. Among South Asian individuals, profiles characterised by CHD (M11,285

F11) and those combining asthma and hypertension (M5, M9, F9, F12) were more prevalent286

than in other ethnic groups. Notably, South Asian males had the highest prevalence of M11 at287

24.11% (95% CI: 23.75–24.48%), exceeding all other groups by more than 5%.288

Several regional trends were evident (Fig. 5e,f). London was the most ethnically diverse289

region, with more than 45% of residents identified as non-White, including 14.5% South Asian290

and 13.5% Black individuals46. It had the highest prevalence of profiles (M4, M5, M7, M10,291

F4, F6, F10) commonly observed in Black and South Asian populations (Fig. 5c,d), reflect-292

ing an overlap between ethnic and regional distributions. M10 and F10, the most prevalent293

profiles among Black and South Asian individuals, showed the highest regional prevalence in294

the West Midlands, the second most ethnically diverse region in England (11.3% Asian and295

4.5% Black)46. The regional variation in socioeconomic deprivation was also reflected in the296

profile distributions. Except for London mainly driven by ethnic diversity, the profiles most297

prevalent in the least deprived regions of the East of England and the South East (M9, M12,298

M18–M21, F12, F17, F18) were also the most common in the least deprived IMD quintile299

(IMD 1; Fig. 5a,b). In contrast, in the North East, the most deprived region in England47, seven300

of the 10 profiles with the highest regional prevalence mirrored those most prevalent in the most301

deprived IMD quintile (IMD 5).302

Biological factors with multimorbidity303

We next examined the multimorbidity profiles in association with 45 routinely measured clin-304

ical markers (Fig. 6). Relevance was defined as the extent to which abnormal marker values305

(elevated or reduced) contributed to the correct classification of each profile (Methods).306

Across nearly all profiles, elevated BMI and systolic blood pressure (SBP) showed high307

relevance. In contrast, diastolic blood pressure (DBP) followed an age-dependent pattern: ele-308

vated DBP characterised profiles occurring under age 65, whereas reduced DBP predominated309

in cardiovascular profiles among those aged 65 years and older.310

Respiratory-related profiles (M2, M3, M5, M9, M15, M16, M19, F2–F5, F9, F12, F15)311

were distinguished by reduced peak expiratory flow percentage (PEF %) (Fig. S9a). Neuro-312

logical profiles (M20, F18) exhibited the strongest relevance for reduced albumin, and F18313

also showed a strong relevance for reduced BMI (Fig. S9b). Cancer-related profiles (M5,314

M8, M12, M16, M18, F8, F13, F17) were associated with elevated inflammatory markers315

including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and plasma viscos-316

ity (Fig. S9c). The musculoskeletal profile F13 was marked by elevated calcium and reduced317
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vitamin D. Early-life mental health profiles were associated with reduced urea and elevated318

hepatic markers including alanine aminotransferase (ALT), total protein and albumin. Within319

the cardiometabolic-related profiles, those with high diabetes prevalence (M7, M8, M10, M11,320

M14, M15, M17, F8, F10, F11, F15, F16) demonstrated strong associations with markers321

of glucose metabolism, particularly HbA1c and fasting glucose (Fig. S10a). Cardiovascular322

profiles characterised by heart-failure prevalence (M14, M21, F16) showed relevance for ele-323

vated bilirubin. Renal-related profiles (M12, M14, M15, M17, F10, F15–F17) were defined by324

markers of renal dysfunction, including reduced estimated glomerular filtration rate (eGFR),325

along with elevated urea and reduced sodium. Finally, the four complex profiles (M14, M15,326

F15, F16) demonstrated multisystem involvement through associations with diverse markers,327

including eGFR, PEF%, HbA1c and fasting glucose.328

Discussion329

Multimorbidity presents a critical challenge to both individual health and healthcare systems. In330

this large, population-based longitudinal study of 3.3 million individuals in England, we present331

the most comprehensive characterisation of multimorbidity to date. Using EHRs that span the332

life course, this study is, to our knowledge, the first to identify distinct multimorbidity profiles,333

their life-course trajectories, associated health burdens, and underlying social and biological334

factors at a national level. Our findings reveal clinically plausible profiles that evolve with335

age, assess the differential burden of multimorbidity on mortality and hospitalisation, highlight336

inequalities shaped by social factors, and suggest patterns in clinical markers associated with337

specific profiles. This new way of characterising multimorbidity can provide valuable insights338

for clinical practice and public health policy.339

Several findings stand out. First, our analysis reveals the long persistence of specific340

multimorbidity profiles throughout the life course, particularly the mental health-only profile341

during early and middle adulthood, and cardiometabolic and cardiovascular profiles emerging342

in middle adulthood and persisting into older age. These patterns highlight the long-lasting bur-343

den of mental health conditions and the cumulative impact of metabolic and vascular diseases.344

Clear sex-specific patterns were also evident in our study. Males were more frequently345

represented in cardiovascular, respiratory, and cancer-related profiles, while females were more346

commonly represented in mental, neurological, and musculoskeletal profiles. These differences347

reflect a combination of behavioural and biological factors: higher rates of smoking and alcohol348

consumption among males may contribute to COPD and cancer risk, while oestrogen confers349

cardiovascular protection for females until menopause. Differences in stress exposure, help-350
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seeking and health service variation may also play a role. For example, females are more likely351

to seek care for depression and present with symptoms that align more closely with clinical352

diagnostic criteria, while males with comparable scores on standardised mental health assess-353

ments are less frequently diagnosed. Our findings highlight the need for prevention strategies354

tailored to sex-specific risks, including reducing cardiovascular risk in males and improving355

mental health support for females.356

In addition, our study makes an important novel contribution to the literature by mapping357

multimorbidity trajectories to show how different progression pathways evolve throughout the358

life course. For example, we identified transitions from a healthy state to cardiometabolic con-359

ditions (e.g., hypertension and diabetes) and subsequently to profiles combining cardiometabolic360

and renal disorders. We also observed transitions from asthma-predominant profiles to COPD-361

predominant profiles, likely driven by chronic inflammation of the airways and environmental362

exposures such as smoking and air pollution. Similarly, progression from cardiometabolic-363

predominant profiles to more complex profiles incorporating cardiovascular conditions may364

reflect cumulative endothelial dysfunction, atherosclerotic burden, and lifestyle factors such as365

physical inactivity. These life-course pathways expand previous longitudinal observations, and366

reveal clearly defined critical transition points and age windows, which could serve as valuable367

opportunities for preventive interventions.368

Interestingly, approximately half of individuals with multimorbidity remained within a369

single profile over the life course, while the remainder transitioned between multiple dis-370

tinct profiles. These observations suggest that tailored preventive strategies may be needed:371

those with stable multimorbidity may benefit from targeted management of specific conditions,372

whereas those following dynamic trajectories may require broader strategies to interrupt pro-373

gression to more complex multimorbidity.374

Our findings also shed light on how specific conditions shape the burden of multimor-375

bidity. Profiles exhibiting high-risk physical conditions, particularly cardiovascular and renal376

conditions, were associated with the highest mortality, in line with previous studies18,48. In377

contrast, highly complex profiles encompassing multiple systems associated with elevated hos-378

pitalisation rates, despite relatively lower mortality, reflect the resource-intensive demands of379

complex multimorbidity management. Neurological profiles exhibited particularly high mor-380

tality but only moderate hospitalisation, possibly due to management in long-term care facilities381

or community settings, limited therapeutic options, or transitions to palliative care in advanced382

stages of the disease. These findings emphasise the importance of moving beyond simple con-383

dition counts in the multimorbidity assessment and considering disease interactions and clinical384
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severity for outcome management and healthcare resource allocation.385

The study further highlights pronounced disparities in multimorbidity, shaped by socioe-386

conomic deprivation, ethnicity, and geography. Individuals from deprived backgrounds expe-387

rienced earlier onset and greater burden of multimorbidity before age 65, whereas later-life388

multimorbidity was more prevalent among less deprived groups. This probably reflects the389

interplay of survival bias, differential access to healthcare, and the protective effects of so-390

cioeconomic advantage: deprived populations experience earlier disease onset and premature391

mortality, whereas more affluent individuals are more likely to survive into older age, where392

the cumulative nature of ageing leads to higher prevalence of complex multimorbidity profiles.393

In addition to socioeconomic deprivation, ethnicity played a significant role. White pop-394

ulations showed a higher prevalence of mental health-predominant profiles, potentially reflect-395

ing cultural and systemic determinants in awareness, help-seeking, and diagnosis. At the same396

time, minority ethnic populations may face reduced access to mental health services. In addi-397

tion, White populations were more represented in cancer-related profiles, likely due to greater398

participation in screening programmes, which in turn increases the incidence rates of certain399

cancers. This is also associated with a higher prevalence of risk factors, such as smoking400

and obesity, compared to other ethnic groups. In contrast, South Asian and Black populations401

showed a higher prevalence in cardiovascular and cardiometabolic profiles, which is consis-402

tent with differences in insulin resistance and dietary patterns, including significantly higher403

salt and carbohydrate consumption49. These findings confirm the role of social factors, in-404

cluding structural healthcare inequalities, in shaping multimorbidity, highlighting the need for405

targeted interventions, including optimised cardiometabolic management, equitable screening406

programmes, and enhanced mental health outreach for at-risk populations.407

Regional variations further reflected the interplay of ethnicity and socioeconomic depri-408

vation in multimorbidity. Ethnic diversity emerged as the dominant factor in London, while409

socioeconomic deprivation had a stronger influence in the North East. Elsewhere, the rela-410

tionship between these factors and multimorbidity was more heterogeneous, highlighting the411

importance of examining social factors on granular geographical scales where population char-412

acteristics are more homogeneous. We acknowledge, however, that these disparities arise not413

only from the investigated social factors but also from systemic biases in diagnosis, unequal414

environmental exposures, historical mistrust of healthcare systems and other structural deter-415

minants, necessitating interventions that address both clinical management and the broader416

contextual forces shaping health.417

An important novelty of our study lies in the systematic integration of clinical markers418
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with multimorbidity profiles through an interpretable machine learning framework. Several419

observed associations, such as elevated BMI and SBP across all profiles, are consistent with420

established roles of obesity and hypertension in multimorbidity development50, while the asso-421

ciations of calcium and vitamin D with the musculoskeletal profile align with known metabolic422

imbalances underlying osteoporosis51. The consistency of these associations across a large,423

representative population supports the external validity of the framework and highlights its424

utility in identifying clinically relevant patterns. Importantly, this study extends beyond prior425

studies in several key aspects. First, unlike most efforts that focus on single conditions, our426

framework enables fine-grained, profile-specific marker association analysis across multimor-427

bidity profiles. Second, the model is trained on a uniquely large and diverse primary care428

dataset, providing greater power and population generalisability compared to earlier studies429

typically based on smaller or more selective cohorts.430

Importantly, we identified several underexplored or novel marker associations with mul-431

timorbidity profiles. For example, the age-dependent pattern with DBP reflects the progression432

toward isolated systolic hypertension in ageing populations, mediated by progressive arterial433

stiffening and loss of vascular compliance52. The elevation of hepatic markers in mental health-434

predominant profiles may reflect unmeasured confounding, such as alcohol use, psychotropic435

medication effects, or systemic inflammation, and suggest biological pathways not previously436

recognised in this context. Similarly, the prominence of albumin in neurological profiles and437

bilirubin in heart failure profiles provides interpretable markers, plausibly linked to cognitive438

decline and hepatic congestion, respectively. Together, these findings underscore the transla-439

tional potential of our approach. By linking clinical markers to multimorbidity profiles, our440

framework enables more precise risk stratification, earlier detection of individuals at elevated441

multimorbidity risk, and the development of tailored screening and management protocols. Its442

adaptability supports further applications across diverse populations and broader marker panels443

to enhance diagnostic decision-making and inform therapeutic strategies.444

Our study design should be interpreted in light of several limitations. First, we assume445

that all 18 conditions persist after diagnosis, potentially overlooking recovery, undiagnosed446

or unrecorded underlying conditions, and misrepresenting acute events such as stroke, which447

have a transient onset but lasting impact. Second, the use of CPRD data introduces inherent448

biases, particularly related to access to primary care, influenced by factors such as the inverse449

care law, where individuals with higher needs may receive inadequate care. In addition, the450

quality of general practitioner coding, which is heavily influenced by the Quality and Outcomes451

Framework (QOF)53, could affect the accuracy of diagnoses and clinical marker measurements,452
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although the large sample size and advanced analytical methods help mitigate these concerns.453

Third, the design of this observational study inherently restricts causal inferences, especially454

in analyses involving social factors and associations of clinical markers. Furthermore, while455

we examined the influence of social factors on multimorbidity, we did not account for their456

potential interactions or confounding effects, which may overlook the complex interplay among457

these factors in shaping multimorbidity. Lastly, we were unable to fully adjust for the effects458

of medications that may influence clinical marker levels, affecting the clinical interpretation of459

the identified markers. These limitations highlight important avenues for future research while460

not diminishing the value of our population-level findings.461

In conclusion, our work provides a comprehensive characterisation of multimorbidity462

throughout the life course in a nationally representative population, revealing the complex and463

dynamic nature of multimorbidity, shaped by disease interactions, distinct progression path-464

ways, differential burden patterns, and social and biological factors. Collectively, these findings465

highlight the need for adaptive and risk-stratified public health frameworks to inform targeted466

prevention strategies, optimise healthcare resource allocation, and guide evidence-based poli-467

cies to address the growing challenge of multimorbidity.468
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Figure 1: Study overview. a, Clinical diagnosis trajectories were extracted for participants over the life course, stratified by sex
and age band. The example shown is for males. Trajectories were encoded as health state vectors representing the presence of
specific conditions at each age band. Latent class analysis was applied within each stratum to identify multimorbidity clusters
(e.g., Ci,M

j denotes the j-th cluster within the i-th age band for males). b, To capture consistent multimorbidity patterns across
age bands, hierarchical clustering was performed based on condition prevalence and exclusivity within the cluster. Condition
prevalence was defined as the proportion of individuals within a cluster who had a given condition, whereas condition exclusivity
was defined as the proportion of individuals with a specific condition in a given age band who belonged to that particular cluster.
This yielded generic multimorbidity profiles (e.g., M1, M5, M9). c, Individual multimorbidity trajectories were reconstructed by
mapping transitions across profiles over the life course. d, The burden associated with each profile was quantified using mortal-
ity, hospitalisation rate (mean annual hospitalisations per individual), and hospitalisation prevalence (proportion of individuals
experiencing at least one hospitalisation). e, Descriptive analyses examined associations between multimorbidity and social
factors, including socioeconomic deprivation, ethnicity, and geographic regions. f, An interpretable machine learning frame-
work was developed to examine the association between multimorbidity and biological factors. Clinical marker trajectories over
the life course were extracted and encoded into clinical marker vectors, stratified by sex and age band. A tree-based classifier
XGBoost was trained to predict individual multimorbidity profiles from these vectors. A Shapley value–based explainer with
novel reference-based adjustment was applied to identify clinically relevant markers for each profile.
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Figure 2: Characteristics of the identified multimorbidity profiles for a, Males and b, Females. In each panel, the left part
presents a heatmap of condition prevalence within each profile, with darker blue shades indicating higher prevalence (numerical
results are provided in Supplementary Fig. S5). The middle part presents a bubble plot, where the size of circles corresponds
to the prevalence for a profile across an age band (numerical results are provided in Supplementary Table S3–S4). The colour
intensity reflects the mean number of conditions per individual, with darker red shades indicating a higher number of conditions.
Profile labels are positioned between the two plots, and the right part lists the name of each profile, determined using the
convention outlined in Supplementary Note S1.2. Conditions listed in the profile names are ordered by prevalence, and those with
a mean number of conditions exceeding four are annotated as “Complex”. Condition abbreviations: anxiety (Anx), depression
(Dep), serious mental illness (SMI), asthma (Ast), chronic obstructive pulmonary disease (COPD), diabetes (Diab), hypertension
(Hyp), coronary heart disease (CHD), stroke or transient ischaemic attack (Stroke), atrial fibrillation (AF), heart failure (HF),
peripheral arterial disease (PAD), chronic kidney disease (CKD), osteoporosis (Ost), rheumatoid arthritis (RA), cancer excluding
non-melanoma skin cancers (Can).
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Figure 3: Multimorbidity trajectories over the life course for a, Males and b, Females. The Sankey diagrams illustrate
transitions of the 3.3 million individuals in the primary study cohort between multimorbidity profiles across different age bands.
For each panel, the height of each bin is proportional to the number of individuals within the corresponding profile. Each coloured
flow represents the transition of individuals from one profile to another, where the thickness of the flow is proportional to the
number of individuals in the transition. Transitions from the same source profile are shown in the same colour. The common
profiles across sexes are represented using the same colour, and profiles with similar condition compositions use similar hues.
For clarity, transitions from individuals with no or single conditions into multimorbidity profiles are omitted, and the complete
trajectories for the whole population are presented in Supplementary Fig. S6. An interactive demo of this figure is available for
males and females.
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Figure 4: Multimorbidity burden over the life course. a, b, Mortality across multimorbidity profiles and age bands in males
and females, respectively. Insets show a magnified view of the age bands below 65 years. c, d, Hospitalisation rate across
multimorbidity profiles and age bands in males and females, respectively. For each panel, each line represents a multimorbidity
profile, with values calculated within profile-specific cohorts for each age band. Mortality was defined as the proportion of
individuals who died within each profile and age band. Hospitalisation rate was defined as the average number of hospitalisations
per person-year within each profile for an age band. The healthy cohort is shown in grey for comparison. The colour coding
follows the same scheme as in Fig. 3. More results on hospitalisation prevalence are provided in Supplementary Fig. S8.
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Figure 5: Association between multimorbidity and social factors. a, b, Prevalence of multimorbidity profiles across IMD
quintiles, from least deprived (IMD 1) to most deprived (IMD 5), for males and females, respectively. For each profile, the
prevalence across IMD quintiles is shown. Profiles (i.e., sets of five bars) are sorted according to the IMD quintile with the
highest prevalence within each profile. If multiple profiles share the same leading IMD quintile, they are further ordered by
descending prevalence within that quintile. Vertical dashed lines separate profiles by the leading IMD quintile. c, d, Prevalence
of multimorbidity profiles across ethnic groups (White, Black, and South Asian), for males and females, respectively. For each
profile, the prevalence across ethnic groups is shown. Profiles (i.e., sets of three bars) are sorted according to the ethnic group
with the highest prevalence within each profile. If multiple profiles share the same leading ethnic group, they are further ordered
by descending prevalence within that group. Vertical dashed lines separate profiles by the leading ethnic group. e, f, Prevalence
of multimorbidity profiles across nine regions of England, for males and females, respectively. For each profile, the prevalence
across regions is shown. Profiles (i.e., sets of nine bars) are sorted according to the region with the highest prevalence within
each profile. If multiple profiles share the same leading region, they are further ordered by descending prevalence within that
region. Vertical dashed lines separate profiles by the leading region. A map of the regions is provided for reference. In all
panels, each bar represents the prevalence of a profile within a specific group. For each bar, statistical significance was assessed
using pairwise Z-tests with Bonferroni correction, comparing it to the other groups within the same profile. The largest (i.e., least
significant) p-value among the comparisons is shown. Asterisks indicate significance levels (*p-value < 0.05, **p-value < 0.01,
***p-value < 0.001). Error bars for 95% confidence intervals are not shown, as the large sample size yields very narrow intervals
with minimal impact on interpretability. IMD: Index of Multiple Deprivation.
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Figure 6: Relevance of clinical markers across multimorbidity profiles for a, Males and b, Females. The heatmaps show
the clinical relevance of each marker (columns) to each multimorbidity profile (rows), as determined by an interpretable machine
learning framework (Methods). The hue (red/purple) indicates whether the marker value is abnormally high or low relative to
a reference range, and the intensity (gradient) reflects the strength of its association. Markers are grouped by clinical system or
physiological process (Supplementary Table S2). Beeswarm plots with SHAP values for each profile are provided in Supple-
mentary Fig. S11–S12.
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Table 1: Characteristics of each stratum in the primary study cohort

Characteristic Sex <18 18–24 25–34 35–44 45–54
Overall
populationa

Male 1,426,703 (43.04) 1,426,703 (43.04) 1,399,648 (43.26) 1,306,032 (43.78) 1,187,782 (44.10)
Female 1,887,949 (56.96) 1,887,949 (56.96) 1,836,008 (56.74) 1,677,469 (56.22) 1,505,683 (55.90)

Multimorbid
populationb

Male 19758 (1.38) 116167 (8.14) 238997 (17.08) 321,591 (24.62) 443,941 (37.38)
Female 34561 (1.83) 206475 (10.94) 390536 (21.27) 473,430 (28.22) 580,369 (38.55)

Mean conditions
(overall)c

Male 0.12 (0.38) 0.28 (0.65) 0.50 (0.87) 0.74 (1.01) 1.14 (1.20)
Female 0.13 (0.39) 0.34 (0.73) 0.60 (0.93) 0.82 (1.04) 1.15 (1.21)

Mean conditions
(multimorbid)c

Male 2.09 (0.30) 2.19 (0.41) 2.23 (0.46) 2.30 (0.59) 2.48 (0.79)
Female 2.11 (0.32) 2.19 (0.41) 2.23 (0.46) 2.30 (0.57) 2.48 (0.78)

Top 10 most
prevalent
conditions,
(prevalence, %)

Male

Asthma, (9.26)
Anxiety, (1.35)
Depression, (1.10)
Cancer, (0.17)
SMI, (0.13)
Hypertension, (0.10)
COPD, (0.08)
Diabetes, (0.04)
Stroke, (0.03)
CHD, (0.02)

Asthma, (11.01)
Depression, (7.38)
Anxiety, (7.15)
SMI, (0.99)
Hypertension, (0.37)
Cancer, (0.35)
Diabetes, (0.12)
COPD, (0.11)
Stroke, (0.05)
AF, (0.05)

Depression, (15.69)
Anxiety, (14.73)
Asthma, (13.03)
Hypertension, (2.08)
SMI, (1.99)
Diabetes, (0.81)
Cancer, (0.79)
CHD, (0.25)
COPD, (0.20)
AF, (0.17))

Depression, (20.69)
Anxiety, (18.49)
Asthma, (13.26)
Hypertension, (8.59)
Diabetes, (3.59)
SMI, (2.50)
CHD, (1.95)
Cancer, (1.45)
COPD, (0.72)
Stroke, (0.59)

Hypertension, (23.30)
Depression, (23.10)
Anxiety, (20.04)
Asthma, (13.70)
Diabetes, (9.80)
CHD, (7.65)
Cancer, (2.96)
COPD, (2.58)
SMI, (2.54)
Stroke, (2.14)

Female

Asthma, (8.17)
Depression, (2.07)
Anxiety, (1.92)
Cancer, (0.14)
SMI, (0.10)
Hypertension, (0.09)
Diabetes, (0.04)
RA, (0.04)
COPD, (0.04)
Stroke, (0.02)

Depression, (11.67)
Asthma, (10.84)
Anxiety, (9.85)
SMI, (0.56)
Hypertension, (0.41)
Cancer, (0.29)
Diabetes, (0.13)
RA, (0.11)
COPD, (0.06)
Stroke, (0.05)

Depression, (22.41)
Anxiety, (18.77)
Asthma, (13.48)
Hypertension, (1.85)
SMI, (1.31)
Cancer, (0.82)
Diabetes, (0.62)
RA, (0.34)
Stroke, (0.15)
Osteoporosis, (0.12)

Depression, (28.38)
Anxiety, (23.05)
Asthma, (14.22)
Hypertension, (6.57)
Diabetes, (2.22)
Cancer, (2.08)
SMI, (1.85)
RA, (0.78)
COPD, (0.52)
CHD, (0.48)

Depression, (31.60)
Anxiety, (25.65)
Hypertension, (18.73)
Asthma, (15.33)
Diabetes, (5.74)
Cancer, (4.98)
CHD, (2.33)
SMI, (2.16)
COPD, (2.03)
RA, (1.52)

Characteristic Sex 55–64 65–74 75–84 ≥85
Overall
populationa

Male 1,025,303 (44.23) 804,781 (43.80) 520,119 (41.53) 212,069 (35.86)
Female 1,293,001 (55.77) 1,032,510 (56.20) 732,134 (58.47) 379,308 (64.14)

Multimorbid
populationb

Male 569,714 (55.57%) 610,217 (75.82%) 480,029 (92.29%) 212,069 (100.00%)
Female 667,294 (51.61%) 708,136 (68.58%) 642,057 (87.70%) 379,308 (100.00%)

Mean conditions
(overall)c

Male 1.73 (1.40) 2.49 (1.55) 3.33 (1.63) 3.86 (1.57)
Female 1.61 (1.39) 2.26 (1.57) 3.14 (1.67) 3.85 (1.58)

Mean conditions
(multimorbid)c

Male 2.73 (1.02) 3.08 (1.28) 3.55 (1.51) 3.86 (1.57)
Female 2.72 (1.00) 3.03 (1.24) 3.48 (1.49) 3.85 (1.58)

Top 10 most
prevalent
conditions,
(prevalence, %)

Male

Hypertension, (42.48)
Depression, (22.26)
Anxiety, (19.22)
Diabetes, (18.14)
CHD, (17.35)
Asthma, (14.31)
Cancer, (7.43)
COPD, (6.64)
Stroke, (5.66)
AF, (4.69)

Hypertension, (59.57)
CHD, (27.58)
Diabetes, (25.57)
Depression, (18.62)
Anxiety, (16.84)
Cancer, (16.84)
Asthma, (14.49)
CKD, (13.17)
COPD, (12.24)
AF, (11.72)

Hypertension, (68.77)
CHD, (35.56)
CKD, (30.51)
Diabetes, (28.62)
Cancer, (27.16)
AF, (22.82)
Stroke, (19.43)
COPD, (16.58)
Depression, (15.36)
Anxiety, (14.87)

Hypertension, (69.88)
CKD, (46.06)
CHD, (39.08)
AF, (32.80)
Cancer, (31.23)
Stroke, (26.24)
Diabetes, (25.61)
HF, (19.61)
Dementia, (18.28)
COPD, (16.14)

Female

Hypertension, (35.67)
Depression, (30.80)
Anxiety, (25.63)
Asthma, (16.45)
Diabetes, (10.93)
Cancer, (9.32)
CHD, (6.47)
COPD, (4.95)
Osteoporosis, (4.40)
CKD, (4.12)

Hypertension, (55.22)
Depression, (27.24)
Anxiety, (23.94)
Asthma, (16.94)
Diabetes, (16.54)
Cancer, (14.62)
CHD, (13.05)
CKD, (12.91)
Osteoporosis, (10.26)
COPD, (8.61)

Hypertension, (70.72)
CKD, (30.33)
Depression, (24.39)
Anxiety, (23.28)
Diabetes, (20.35)
CHD, (20.26)
Cancer, (19.28)
Osteoporosis, (18.43)
Asthma, (16.24)
AF, (15.37)

Hypertension, (75.88)
CKD, (47.63)
AF, (26.30)
CHD, (25.55)
Dementia, (25.02)
Osteoporosis, (24.53)
Stroke, (23.83)
Anxiety, (22.41)
Depression, (21.91)
Cancer, (21.02)

The rows labelled with “(overall)” report statistics for all individuals who ultimately developed multimorbidity by the end of the study. In contrast,
the rows labelled with “(multimorbid)” report statistics for individuals who already had multimorbidity within the corresponding age band. Condition
abbreviations: serious mental illness (SMI), chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), stroke or transient
ischaemic attack (Stroke), atrial fibrillation (AF), heart failure (HF), chronic kidney disease (CKD), rheumatoid arthritis (RA), cancer excluding
non-melanoma skin cancers (Cancer).

a n (proportion within age band, %).
b n (multimorbidity prevalence within sex and age band, %).
c Mean number of conditions per individual (SD).
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31. Kivimäki, M. et al. Overweight, obesity, and risk of cardiometabolic multimorbidity:544

pooled analysis of individual-level data for 120 813 adults from 16 cohort studies from the545

USA and Europe. The Lancet Public Health 2, e277–e285 (2017).546

32. Ferreira, G. D. et al. Physiological markers and multimorbidity: a systematic review.547

Journal of Comorbidity 8, 2235042X18806986 (2018).548

33. Jørgensen, I. F., Haue, A. D., Placido, D., Hjaltelin, J. X. & Brunak, S. Disease trajectories549

from healthcare data: methodologies, key results, and future perspectives. Annual Review550

of Biomedical Data Science 7, 251–276 (2024).551

34. Wolf, A. et al. Data resource profile: Clinical Practice Research Datalink (CPRD) Aurum.552

International Journal of Epidemiology 48, 1740–1740g (2019).553

35. Head, A. et al. Inequalities in incident and prevalent multimorbidity in England, 2004–19:554

a population-based, descriptive study. The Lancet Healthy Longevity 2, e489–e497 (2021).555

36. Gregg, E. W. et al. The burden of diabetes-associated multiple long-term conditions on556

years of life spent and lost. Nature Medicine 30, 2830–2837 (2024).557

37. Ho, I. S. et al. Measuring multimorbidity in research: Delphi consensus study. BMJ558

Medicine 1, e000247 (2022).559

38. MacRae, C. et al. The impact of varying the number and selection of conditions on es-560

timated multimorbidity prevalence: a cross-sectional study using a large, primary care561

population dataset. PLoS Medicine 20, e1004208 (2023).562

39. Diederichs, C., Berger, K. & Bartels, D. B. The measurement of multiple chronic dis-563

eases—a systematic review on existing multimorbidity indices. Journals of Gerontology564

Series A: Biomedical Sciences and Medical Sciences 66, 301–311 (2011).565

40. Salive, M. E. Multimorbidity in older adults. Epidemiologic Reviews 35, 75–83 (2013).566

41. Office for National Statistics. Death (2024). Accessed: 14 March 2025.567

42. NHS Digital. Hospital episode statistics (2024). Accessed: 14 March 2025.568

43. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proceedings of the569

22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,570

785–794 (2016).571

44. Covert, I., Lundberg, S. M. & Lee, S.-I. Understanding global feature contributions with572

additive importance measures. Advances in Neural Information Processing Systems 33,573

17212–17223 (2020).574

45. Lundberg, S. M. et al. From local explanations to global understanding with explainable575

ai for trees. Nature Machine Intelligence 2, 56–67 (2020).576

46. Office for National Statistics. Ethnic group, Census 2021 estimates for England and Wales577

(2022). Accessed: 11 March 2025.578

47. Office for National Statistics. Regional economic activity by gross domestic product, UK:579

1998 to 2020 (2024). Accessed: 11 March 2025.580

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2025. ; https://doi.org/10.1101/2025.05.24.25326850doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.24.25326850
http://creativecommons.org/licenses/by-nc-nd/4.0/


48. Jani, B. D. et al. Relationship between multimorbidity, demographic factors and mortality:581

findings from the UK Biobank cohort. BMC Medicine 17, 1–13 (2019).582

49. Agbonlahor, O. et al. Racial/ethnic discrimination and cardiometabolic diseases: a sys-583

tematic review. Journal of Racial and Ethnic Health Disparities 11, 783–807 (2024).584

50. Booth, H. P., Prevost, A. T. & Gulliford, M. C. Impact of body mass index on prevalence585

of multimorbidity in primary care: cohort study. Family Practice 31, 38–43 (2014).586

51. Sunyecz, J. A. The use of calcium and vitamin d in the management of osteoporosis.587

Therapeutics and Clinical Risk Management 4, 827–836 (2008).588

52. Triposkiadis, F. et al. Aortic stiffness: a major risk factor for multimorbidity in the elderly.589

Journal of Clinical Medicine 12, 2321 (2023).590

53. NHS England. Quality and outcomes framework guidance for 2024-25 (2024).591

54. Morin, S. et al. StepMix: a python package for pseudo-likelihood estimation of generalized592

mixture models with external variables. arXiv preprint arXiv:2304.03853 (2023).593

55. Virtanen, P. et al. Scipy 1.0: fundamental algorithms for scientific computing in python.594

Nature Methods 17, 261–272 (2020).595

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 25, 2025. ; https://doi.org/10.1101/2025.05.24.25326850doi: medRxiv preprint 

https://doi.org/10.1101/2025.05.24.25326850
http://creativecommons.org/licenses/by-nc-nd/4.0/


Methods596

Study population. This work was conducted as part of CoMPuTE project (Complex Multiple597

Long Term Conditions—Phenotypes, Trends, and Endpoints). We conducted a longitudinal co-598

hort study using anonymised EHRs from CPRD34, which received ethical approval (CPRD ref-599

erence: 22 001771). Our cohort consisted of 6,671,245 individuals, including 3,314,652 who600

developed multimorbidity (≥2 of 18 selected chronic conditions), 1,226,245 who remained601

condition-free, and 2,130,348 with a single condition at the end of study. Participants were602

followed from birth until the first occurrence of death or study exit no later than 31 December603

2019. Study exit was defined as the earliest transfer out or the last practice download date.604

Chronic conditions. We studied 18 chronic conditions selected based on prevalence and clin-605

ical significance across major disease categories: mental health (anxiety, depression, serious606

mental illnesses), respiratory (asthma, chronic obstructive pulmonary disease), metabolic (di-607

abetes), cardiovascular (hypertension, coronary heart disease, stroke or transient ischaemic608

attack, atrial fibrillation, heart failure, peripheral arterial disease), renal (chronic kidney dis-609

ease), neurological (dementia, Parkinson’s disease), musculoskeletal (osteoporosis, rheumatoid610

arthritis), and oncological (cancers excluding non-melanoma skin cancers). Of these, 16 condi-611

tions were selected from the QOF indicators, with anxiety and Parkinson’s disease additionally612

included due to their increasing prevalence and clinical relevance with age. SNOMED CT code613

lists (https://github.com/ndpchs-cprd/CPRD-22-001771-CoMPuTe/tree/main/Codelists) were614

used to ensure a consistent identification of conditions. The first recorded diagnosis of each615

condition was assumed to reflect its presence thereafter. The selected conditions collectively616

represent the majority of the multimorbidity impact, enabling examination of both physical-617

mental health interactions and cross-system disease clustering patterns.618

Other measures and variables. We included CPRD data on sex, date of birth, dates of di-619

agnosis for each condition, IMD quintiles (as a measure of socioeconomic deprivation), eth-620

nicity, and geographic region based on the location of the registered general practitioner. The621

characteristics of the primary study cohort by social factors are summarised in Supplemen-622

tary Table S1. Hospitalisation data were obtained through linkage with HES42, and mortality623

data were linked from ONS41. In addition, we retrieved 45 conventional clinical markers from624

CPRD records (Supplementary Table S2).625

Multimorbidity profile identification. For each individual, we map the diagnosis of each626

condition to nine age bands spanning the life course (from <18 to ≥85 years), creating 18-627

dimensional binary health state vectors indicating which specific conditions had been diag-628
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nosed by the end of each age band. Within each age-sex stratum, we applied LCA17 to in-629

dividuals with multimorbidity (≥2 conditions) to identify distinct clusters. Following previ-630

ous studies7,18, the optimal number of clusters was determined on the basis of model parsi-631

mony using the Bayesian information criterion (BIC), Akaike information criterion (AIC) and632

consistent AIC (cAIC), which balance goodness of fit against model complexity to minimise633

overfitting. Final selection further incorporated clinical relevance and interpretability, as es-634

tablished through successive rounds of expert-panel review and consensus meetings within the635

CoMPuTE consortium. For each identified cluster, we computed two key metrics: condition636

prevalence, defined as the proportion of individuals within a cluster having each condition; and637

condition exclusivity, defined as the proportion of individuals with a specific condition in a638

given age band who belonged to that particular cluster (Supplementary Fig. S2–S3). Subse-639

quently we applied agglomerative hierarchical clustering using Ward’s method to the vectors640

of condition prevalence and exclusivity, thereby quantifying cluster similarity across age bands641

(Supplementary Fig. S4). Clusters within each sex group were merged based on thresholds642

informed by clinical interpretability and hierarchical clustering results (Supplementary Note643

S1.1), thus forming multimorbidity profiles. Each multimorbidity profile was characterised by644

its distinct composition of chronic conditions (Supplementary Fig. S5) and named according645

to a convention detailed in Supplementary Note S1.2. This approach ensured accurate identi-646

fication of sex- and age-specific profiles while capturing multimorbidity patterns consistently647

across different strata. LCA was implemented using the StepMix package54, and hierarchical648

clustering was performed using the SciPy package55 in Python v3.8.649

Multimorbidity trajectory reconstruction. Using the multimorbidity profiles identified for650

each individual across the age bands, we identified the longitudinal trajectories of multimor-651

bidity. We also identified states in which individuals were free of all 18 chronic conditions652

(denoted “H”), had a single condition (“S”), had died (“D”), or had exited the study (“E”).653

Multimorbidity burden assessment. We assessed the burden of multimorbidity using three654

metrics: mortality, hospitalisation rate, and hospitalisation prevalence. Mortality for each mul-655

timorbidity profile was calculated within each age band as the proportion of individuals who656

died while in that profile relative to the total number of individuals who experienced the profile657

in that age band. The hospitalisation rate was defined as the mean number of hospitalisations658

per year among individuals within a specific profile and age band. The prevalence of hospital-659

isation represented the proportion of individuals hospitalised at least once during the age band660

relative to the total number of people who experienced the profile in that age band.661
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Statistical analysis with social factors. We analysed the association between the multimorbid-662

ity profiles and key social factors: socioeconomic deprivation, ethnicity, and geographic region.663

For each profile, we calculated its prevalence across subgroups within each social factor and664

performed statistical significance tests using pairwise Z-tests with Bonferroni correction. For665

each subgroup-profile combination, we compared prevalence with all other subgroups within666

the same profile and reported the least significant p-value from these comparisons.667

Interpretable machine learning framework with biological factors. Although clinical mark-668

ers are well-established indicators for individual conditions, their role in multimorbidity re-669

mains poorly characterised6,10. The synergistic effects of coexisting conditions can substan-670

tially alter clinical marker patterns, rendering condition-level associations insufficient for iden-671

tifying profile-level markers. To address this, we developed an interpretable machine learning672

framework using XGBoost43 combined with a novel reference-adjusted SHAP44,45 to quan-673

tify the relevance of clinical markers to specific multimorbidity profiles in a data-driven man-674

ner. This framework offers several advantages: XGBoost inherently handles missing values675

and maintains scale invariance across heterogeneous marker distributions, while the reference-676

adjusted SHAP quantifies individual marker contributions relative to clinical reference ranges,677

thereby improving clinical interpretability.678

For each individual in each age band, we extracted the most recent measurement of the 45679

clinical markers, aligning with the latest diagnosis information used for profile identification.680

This resulted in clinical marker vectors that represented individuals’ biological states in spe-681

cific age bands. Missing marker values were explicitly indicated in vectors, and each clinical682

marker vector was labelled according to the individual’s multimorbidity profile in the corre-683

sponding age band. We then sampled 10,000 clinical marker vectors per profile for each sex,684

creating two datasets comprising 210,000 male and 180,000 female samples. These datasets685

were divided into training subsets (80%) and testing subsets (20%). An XGBoost classifier686

was trained to predict multimorbidity profiles based on clinical markers, formulated as a multi-687

class classification task. Owing to XGBoost’s inherent ability to handle missing values and688

scale invariance, we did not perform additional preprocessing or normalisation. The key hyper-689

parameters included a learning rate of 0.1, a maximum tree depth of 12, and 500 boosting iter-690

ations. The performance metrics of the model demonstrated robust discrimination, with males691

achieving an area under the receiver operating characteristic curve (AUROC) of 0.894, area692

under the precision-recall curve (AUPRC) of 0.384, and top-k accuracy of 0.383 (k=1), 0.677693

(k=3), and 0.814 (k=5). Female models showed comparable performance (AUROC=0.891,694

AUPRC=0.413) with top-1 (0.402), top-3 (0.703) and top-5 (0.841) accuracy. In practice, a695
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top-k prediction of the most probable profiles could enable clinicians to prioritise preventive696

and monitoring strategies tailored to the likeliest progression pathways. To improve clinical697

interpretability, we implemented a reference-adjusted SHAP methodology. Traditional SHAP698

analysis can highlight markers that are valuable for classification but clinically irrelevant, such699

as markers of the normal range incorrectly identified as important indicators. Our approach700

focused specifically on markers whose abnormal values (outside the clinically defined refer-701

ence ranges) positively contributed to the correct identification of multimorbidity profiles. We702

defined clinical relevance as the mean SHAP value among samples with positive SHAP values703

and clinical marker values beyond their normal reference ranges (Fig. S11–S12). This refined704

analysis identified clinical markers that are associated with multimorbidity profiles, potentially705

serving as early clinical indicators for these profiles. We conducted these analyses using the706

xgboost package43 and the SHAP package45 in Python v3.8.707

Ethical approval. The CPRD database is approved by the East Midlands–Derby Research708

Ethics Committee, reference 05/MRE04/87 for public health research according to approved709

research protocols, and the research protocol for this study received specific approval from the710
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