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1 Multimorbidity, the co-occurrence of multiple chronic conditions in an individual, has be-
» come a global health challenge affecting populations in high-income and low- to middle-
s income countries. Despite its increasing prevalence, critical gaps remain in understand-
4+ ing its progression, burden, and determinants to better guide prevention and treatment.
s Here, by leveraging linked primary care, hospitalisation, and mortality records from 3.3
s million individuals with multimorbidity in England, we conducted a longitudinal cohort
7 study to characterise multimorbidity across multiple dimensions, including condition pro-
s filing, progression trajectories, healthcare burden, and associated social and biological
o factors. Specifically, we identified 21 distinct multimorbidity profiles in males and 18 in
10 females, uncovering life-course progression pathways. We assessed the differential bur-
11 den of these profiles on mortality and hospitalisation. The study also highlights how social
12 inequalities shape distinct patterns of multimorbidity. Furthermore, by developing an in-
13 terpretable machine learning framework, we identified key biological markers associated
12 with specific multimorbidity profiles. Together, these results offer valuable insights to in-
15 form prevention strategies, public health initiatives and potential interventions aimed at
1s mitigating the growing burden of multimorbidity.

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
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» Introduction

1s Multimorbidity, the co-occurrence of two or more chronic conditions in an individual, threat-
19 ens individual health and overwhelms healthcare systems'>. Globally, more than one-third of
20 adults are affected®*, and in England alone, annual healthcare costs per patient increase from
2r £3,000 for those with a single condition to £8,000 for those with three or more conditions’. De-
22 spite the growing burden, most clinical guidelines remain focused on single conditions, making
23 them inadequate for people with multiple mental and physical health conditions, who are gener-
2+ ally associated with poorer quality of life, shorter life expectancy, greater functional difficulties,
25 and increased use of healthcare . In addition, the complexity of multimorbidity extends beyond
26 the simple accumulation of conditions, as its mechanisms vary quantitatively and qualitatively
27 across sexes, stages of life, and a spectrum of social and biological factors*-1°, highlighting
2s the urgent need to better understand multimorbidity to enable more effective prevention, earlier
29 detection, and improved clinical management.

30 As the accumulation of conditions is a well-recognised characteristic of multimorbid-
a1 ity, several studies have measured it by counting the number of conditions per individual ''=!3.
:2 However, these studies lack information on the composition and interplay of conditions within
;s multimorbidity. Motivated by the observation that individuals with common conditions tend
a4 to cluster in clinical practice and epidemiological studies'*, various methods have been used

s to identify multimorbidity profiles in cross-sectional studies'>!®

, with latent class analysis
ss (LCA)!” emerging as the most widely used approach’-!®. Several clinically meaningful profiles
7 have been identified, such as cardiovascular and cardiometabolic profiles'®?°. Although these
ss studies have improved our understanding of generic patterns in multimorbidity, their cross-
30 sectional design fails to capture the longitudinal progression.

40 Taking advantage of the digitalisation of healthcare systems and the accumulation of sub-
41 stantial longitudinal data from electronic health records (EHRs), some studies have investigated
«2 multimorbidity trajectories?'~>*. Evidence indicates substantial transitions from profiles char-
43 acterised by cardiovascular risk factors such as diabetes and hypertension, to those dominated
s by explicit cardiovascular conditions such as heart attack and stroke, reflecting the dynamic na-
s ture of multimorbidity>>. However, most studies followed individuals for less than 15 years?.
46 Such time frames capture only partial life stages, such as early adulthood (e.g., 2545 years),
« middle adulthood (e.g., 45-65 years) or late adulthood (e.g., 65-85 years)?’. Therefore, lon-
45 gitudinal studies that span the full life course are essential to fully characterise multimorbidity
49 trajectories, and understand their cumulative burden on individual quality of life over time.

50 In parallel, the role of social and biological factors in shaping multimorbidity has been
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s increasingly recognised*®. Socioeconomic inequalities, for example, have been shown to
s2  significantly influence multimorbidity, with disadvantaged groups experiencing earlier onset
s and faster accumulation of chronic conditions?*-*°. Despite these insights, the specific contri-
s« butions of social factors to the emergence and persistence of different multimorbidity profiles
s remain poorly understood?’. From a biological perspective, while clinical markers such as high
ss  body mass index (BMI) have been linked to multimorbidity development?!, few studies have
s7  systematically examined multiple routinely collected clinical measures %%, hindering a deeper
ss understanding of the underlying biological factors.

59 Taken together, despite growing recognition of multimorbidity’s complexity, no study has
s systematically characterised its composition, progression, and impact, alongside underlying
st social and biological factors, within a large population-based cohort to inform more effective

s2 preventive strategies and targeted interventions 33

. Motivated by this gap, we examined key
s aspects of multimorbidity throughout the life course of 3.3 million individuals in England using
e+ the Clinical Practice Research Datalink (CPRD) data**, a representative sample of the English
es primary care population>*°. The study was structured around five objectives: (1) We identified
es multimorbidity profiles using LCA and hierarchical clustering, stratified by age and sex; (2) We
7 characterised life-course multimorbidity trajectories throughout the study population; (3) We
es assessed the burden of multimorbidity in terms of both mortality and hospitalisation; (4) We
so analysed the association between multimorbidity and social factors, including socioeconomic
70 deprivation, ethnicity and geography; (5) We investigated the biological factors underlying

71 multimorbidity, developing an interpretable machine learning framework to identify clinically

72 relevant markers for specific multimorbidity profiles.

» Results
7« Data overview and study design

75 Using routinely collected EHR data from CPRD**, we derived the longitudinal diagnoses of
76 18 chronic conditions in 6,671,245 individuals. These conditions represent the commonly re-

77 ported chronic conditions in the general population?’—

, across mental, respiratory, metabolic,
78 cardiovascular, neurological, and other systems (Methods). Individuals entered the study at
79 birth and were followed until death or study exit, with follow-up period ended no later than
so 31 December 2019. Among the study cohort, 3,314,652 individuals developed multimorbidity
st (1.e. two or more of the investigated chronic conditions) at the time of death or exit, with an
s2 overall prevalence of 49.69% (95% confidence interval [CI]: 49.65-49.72%). These individu-

s als made up the primary study cohort, with a median duration of 68 years (interquartile range
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s« [IQR]: 50-81 years) from birth to death or exit, and a median year of birth of 1950 (IQR: 1936—
&5 1968; Supplementary Fig. S1). Table 1 summarises the basic characteristics of this group. For
ss comparison, we identified 1,226,245 individuals from the study cohort who remained free of
s7 all 18 conditions throughout the study period, referred to as the healthy cohort. The remaining
ss 2,130,348 individuals developed one of the 18 conditions during the study period. For clarity,
ss we refer to some of selected conditions using abbreviations: coronary heart disease (CHD),
90 chronic obstructive pulmonary disease (COPD), and serious mental illnesses (SMI).

of The overall framework of our analysis is described in Fig. 1. To capture multimorbid-
e2 1ty progression over time, we divided each individual’s clinical history into nine age bands
s (<18, 18-24,25-34, 3544, 45-54, 55-64, 6574, 75-84, >85) and stratified analyses by sex.
o« Within each age band, LCA!” was applied to identify clusters of individuals with similar di-
o5 agnostic profiles (Fig. 1a). To identify generic multimorbidity profiles across the life course,
o clusters from different age bands were merged using hierarchical clustering based on condi-
o7 tion prevalence and exclusivity patterns (Fig. Ib and Supplementary Fig. S2-S4). Life-course
s multimorbidity trajectories were reconstructed by linking individuals’ profiles across succes-
% sive age bands (Fig. 1c). Using 847,048 death records and 33,950,515 hospitalisation records
10 from the Office for National Statistics (ONS)*! and Hospital Episode Statistics (HES)**, we
101 assessed the burden of multimorbidity in terms of mortality and hospitalisation across profiles
102 and age bands (Fig. 1d). We then analysed the association between multimorbidity profiles and
103 various social factors (Fig. le and Supplementary Table S1). For socioeconomic deprivation,
10+ 1ndividuals were linked to quintiles of the 2019 English Index of Multiple Deprivation (IMD)
105 as a measure of relative deprivation®®. For ethnicity, individuals were grouped by White, Black,
16 South Asian, Mixed, and Other'?. For geography, each individual was assigned to one of nine
17 regions in England. Using 1,064,737,538 records covering 45 clinical markers from CPRD,
18 we developed an interpretable machine learning framework that combines XGBoost*® with a
1o novel reference-adjusted Shapley additive explanation (SHAP) method** to identify clini-
1o cally meaningful markers associated with each multimorbidity profile (Fig.1f and Methods).

11 The complete marker list appears in Supplementary Table S2.

2 Multimorbidity profiles

113 Throughout the life course, 21 multimorbidity profiles for males and 18 for females were iden-
ns tified in the primary study cohort (Fig. 2). Detailed numerical results are provided in Sup-
1s plementary Fig. S5 and Table S3-S4, and the naming convention for profiles is provided in

11e  Supplementary Note S1.2.
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117 The multimorbidity profiles showed clear age-related trends that became increasingly
1ns  more prevalent and complex with ageing, in terms of both composition and accumulation of
119 conditions. In early life (<35 years), profiles were predominantly characterised by mental
120 health conditions, often co-occurring with asthma (M1-M5 in males and F1-F6 in females).
121 In midlife (35-64 years), physical conditions such as hypertension, diabetes, and cancer be-
122 came more prominent (M6-M12, F7-F13). In later life (>65 years), newly emerging profiles
123 reflected increased complexity and multisystem involvement, especially in the cardiovascular,
124 cardiometabolic, renal, and mental health domains (M13-M21, F14-F18).

125 Complex multimorbidity profiles, defined as those with more than four conditions on av-
126 erage®, were identified in older adults. In the >85 age band, males in M14 (Cardiovascular
127+ Cardiometabolic + Renal, Complex) and M15 (Mental + Cardiovascular + Cardiometabolic
128+ Renal + Respiratory, Complex) had average condition counts of 5.86 (SD: 1.34) and 7.03
129 (SD: 1.30), respectively, while females in F16 (Cardiovascular + Cardiometabolic + Renal,
130 Complex) and F15 (Mental + Cardiovascular + Cardiometabolic + Renal + Respiratory + Mus-
131 culoskeletal, Complex) had averages of 4.53 (SD: 1.48) and 7.02 (SD: 1.33). Mental health
122 conditions were over-represented in M 15 and F15, with depression affecting more than 85% of
133 the individuals in both profiles, compared to less than 20% in M14 and F16. In contrast, M14
13« and F16, while also complex, showed a higher prevalence of heart failure and atrial fibrillation.
135 The prevalence of heart failure was 87.11% (95% CI: 86.90-87.31%) in M 14 and 50.22% (95%
136 CI: 50.01-50.43%) in F16, compared to 46.04% (95% CI: 45.54—46.54%) in M 15 and 33.42%
137 (95% CI: 33.08-33.76%) in F15.

138 Several multimorbidity profiles exhibited long persistence—appearing repeatedly across
130 successive age bands. The mental health-only profiles (M1 and F1: Anxiety + Depression)
140 were observed across six age bands under age 65, highlighting their widespread impact across
141 a broad population. Among profiles dominated by physical conditions, F10 (Cardiometabolic
12+ Renal) in females and M11 (CHD-predominant Cardiovascular + Diabetes) in males were
143 the most persistent, each spanning five consecutive age bands from age 45 and above.

144 Sex differences in multimorbidity patterns were evident, with males being more fre-
15 quently included in cardiovascular, respiratory, and cancer-related profiles. Six cardiovascular-
1as related profiles were identified in males (M11, M14, M15, M19-M21) compared to four in
17 females (F11, F14, F15, F18). Although both sexes had a CHD-predominant profile (M11,
1us F11), M11 was more prevalent and persisted throughout a broader age range, while F11 was
149 observed only in two age bands (45-64 years). Although asthma-predominant respiratory pro-

150 files were common in both sexes (M9, F9, F12), severe respiratory conditions such as COPD
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151 were predominantly observed in males: M19 (COPD-predominant Respiratory + Cardiovas-
152 cular) showed a COPD prevalence of 81.37% (95% CI: 81.09-81.70%). Similarly, cancer
153 appeared more prominently in male profiles, with a prevalence of 51.70% (95% CI: 51.13-
15 52.27%) in M16 (Cancer + COPD + Cardiovascular) and 100% in M18 (Cancer + Physical
155 Long-term Conditions). Unlike males, females had a higher prevalence of mental, neuro-
156 logical, and musculoskeletal profiles. For example, F14 (Mental + Physical Long-term Con-
157 ditions) had a prevalence of 15.54% (95% CI: 15.46—-15.62%) in ages 75-84, compared to
158 9.91% (95% CI: 9.83-9.99%) of the comparable male profile M13 (Mental + Physical Long-
5o term Conditions). Dementia-predominant neurological profiles were also more prevalent in
10 females (F18: 15.76%, 95% CI: 15.65-15.88% in >85 years) than males (M20: 8.07%, 95%
161 CI: 7.95-8.18%), and often involved musculoskeletal conditions. A female-specific profile,
12 F13 (Osteoporosis-predominant Musculoskeletal + Hypertension + Cancer), spanned four age

163 bands from age 55 and had an osteoporosis prevalence of 94.87% (95% CI: 94.76-94.97%).

e« Multimorbidity trajectories

15 Longitudinal transitions between multimorbidity profiles across age bands were observed (Fig. 3
166 and Supplementary Fig. S6). The Sankey diagrams illustrate that the population with multimor-
167 bidity increased with age, peaking in the 65-74 age band as individuals accumulated conditions.
s This was followed by a decline in the older age bands due to mortality and exit from the study.
160 Several distinct progression pathways were identified.

170 In both sexes, mental health—predominant profiles often represented early multimorbidity,
171 and individuals within these profiles progressed to more complex profiles incorporating age-
172 related physical conditions. The mental health-only profiles (M1 and F1: Anxiety + Depres-
173 sion) frequently transitioned into profiles that added hypertension and diabetes. For example,
174 between ages 45-64, a subset of individuals from M1/F1 moved to M6/F7 (both Hypertension
175+ Depression + Anxiety). In the 65-74 age band, M13 and F14 (both Mental + Physical Long-
176 term Conditions) emerged, with 41.29% of males and 57.93% of females originating from M1
17z and F1, an additional 35.62% of males and 29.37% of females from M6 and F7, and the remain-
178 ing individuals contributed from M8 (Mental + Diabetes + Cancer) and F8 (Mental + Cancer +
179 Diabetes), respectively.

180 For cardiovascular-predominant trajectories, direct transitions from healthy or single-
181 condition states into M11 (CHD-predominant Cardiovascular + Diabetes) were common. 72.32%
1.2 and 64.68% of individuals entered M11 from these groups in the 45-54 and 55-64 age bands,

183 respectively. Subsequently, M11 served as a key precursor to more complex profiles such as
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12  M14 (Cardiovascular + Cardiometabolic + Renal, Complex), contributing 42.25% and 31.22%
g5 of its population in the 65-74 and 75-84 age bands, respectively. A similar pattern was ob-
186 served in females, with transitions from F11 (CHD-predominant Cardiovascular + Diabetes +
157 Mental) to F16 (Cardiovascular + Cardiometabolic + Renal, Complex).

188 For cardiometabolic- and renal-predominant trajectories, notable sex-specific patterns
189 were observed. In males, a considerable proportion of individuals transitioned from healthy
190 or single-condition states to M10 (Hypertension + Diabetes), which persisted across three age
191 bands (45-74 years), and M 12 (Hypertension + Cancer + Renal), present at ages 55—74. These
1.2 two profiles served as key intermediates in the development of M17 (Cardiometabolic + Renal)
193 in the 75-84 age band, together accounting for 70.95% of its population. They also preceded
1¢4 M18 (Cancer + Physical Long-term Conditions), contributing 79.70% of its population. In
195 females, a similar pathway was observed involving F10 (Cardiometabolic + Renal) and F17
196 (Hypertension + Cancer + Renal), both of which included a substantial number of individuals
197 transitioning from healthy or single-condition states, and 45.50% of individuals transitioned
198 from F17 to F10 in the 75-84 age band. Both contributed to the formation of F16 (Cardiovas-
190 cular + Cardiometabolic + Renal, Complex).

200 Distinct sex differences were evident in respiratory-predominant trajectories. In males,
200 M9 (Asthma-predominant Respiratory + Hypertension), observed across four age bands (35-74
202 years), often served as a precursor to M19 (COPD-predominant Respiratory + Cardiovascular)
203 1n the 75-84 age band, with 43.53% of individuals making this transition. In females, respira-
204 tory progression was more closely intertwined with mental health conditions. F5 (Depression
205 + Asthma), present at ages 18-34, transitioned almost entirely (96.14%) into F2 (Asthma +
206 Depression + Anxiety) in the 35-44 age band due to the accumulation of mental health condi-
207 tions. Between ages 45-64, F2 contributed over 45% of individuals to F9 (Asthma-predominant
208 Respiratory + Mental). Subsequently, 41.71% of the individuals in F9 transitioned to F12
200 (Asthma-predominant Respiratory + Hypertension), in which hypertension was highly preva-
210 lent (65.31%, 95% CI: 65.12-65.51%).

211 In addition, we examined the number of unique multimorbidity profiles each individual
212 experienced (Supplementary Fig. S7). Among the 3.3 million individuals in the primary study
213 cohort, 58.53% of males and 58.43% of females stayed in a single profile across all age bands,
214 while 35.40% of males and 34.74% of females experienced two distinct profiles. The remaining
215 6.07% of males and 6.83% of females transitioned through three or more profiles. On average,
216 males experienced 1.48 (SD: 0.62) profiles, and females experienced 1.49 (SD: 0.64) profiles
217 during the study period.
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»s  Burden of multimorbidity

219 The burden associated with multimorbidity was assessed using three indicators: mortality
220 (Fig. 4a,b), hospitalisation rate (mean annual hospitalisations per individual; Fig. 4c,d), and
221 hospitalisation prevalence (proportion of individuals experiencing at least one hospitalisation;
222 Supplementary Fig. S8), stratified by multimorbidity profile, sex, and age. Results from the
223 healthy cohort were included as a reference. Across all indicators, the burden of multimorbid-
224 ity increased progressively with age. Profiles dominated by physical conditions were generally
225 associated with greater burden than those primarily driven by mental health conditions, with
226 complex multimorbidity profiles imposing the highest burden overall.

227 Mortality remained low across profiles before age 65, as compared to the levels observed
228 in the healthy cohort. Notable exceptions were M8 (Mental + Diabetes + Cancer) and F8 (Men-
220 tal + Cancer + Diabetes), with mortality respectively reaching 9.36% (95% CI: 9.15-9.57%)
230 and 6.85% (95% CI: 6.64-7.06%) in the 55-64 age band. After age 65, mortality rose sharply,
231 and stratified into three tiers in the >85 age band. The highest mortality (~70%) was observed
232 in neurological-predominant profiles (M20: Dementia-predominant Neurological + Cardio-
233 vascular, F18: Dementia-predominant Neurological + Cardiovascular + Musculoskeletal) and
23 complex profiles (M14 and F16: Cardiovascular + Cardiometabolic + Renal, Complex). In
235 contrast, mortality was lower (~55%) in mental health profiles among older individuals (M13
236 and F14: Mental + Physical Long-term Conditions) and cardiometabolic profiles (M17 and
237 F10: Cardiometabolic + Renal), with remaining profiles falling between 60-65%. Mortality
238 1n the healthy cohort in the same age band was 38.54% (95% CI: 37.50-39.60%) for males
239 and 44.95% (95% CI: 44.06-45.84%) for females. Although mortality across multimorbid-
200 ity profiles was similar between the sexes, this gap relative to the healthy cohort suggests a
241 disproportionate mortality burden on older males.

242 Interestingly, although M15 (Mental + Cardiovascular + Cardiometabolic + Renal + Res-
2e3  piratory, Complex) and F15 (Mental + Cardiovascular + Cardiometabolic + Renal + Respi-
224 tatory + Musculoskeletal, Complex) had the highest average number of conditions (7.03 and
25 1.02, respectively), their mortality was lower than M 14 and F16, which had fewer conditions on
2e6  average (5.86 and 4.53, respectively) but were heavily burdened by cardiovascular conditions
2¢7 such as heart failure and atrial fibrillation. For example, in the >85 age band, mortality was
28 65.75% (95% CI: 64.60-66.88%) in M15, versus 69.60% (95% CI: 68.96-70.23%) in M 14.
249 Hospitalisation rates followed a similar age-related trend as mortality, but varied by sex
250 and profile. In the 18-24 age band, profiles involving hypertension, cancer, and SMI (M4,

251 M3, F5, F6) were associated with elevated hospitalisation rates. Females exhibited higher hos-
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252 pitalisation rates between ages 25-44 due to pregnancy-related care, whereas males showed
253 consistently higher rates in older age bands. Between ages 45—64, cardiovascular-predominant
254 profiles imposed a higher burden on females. For example, F11 (CHD-predominant Cardiovas-
255 cular + Diabetes + Mental) had a hospitalisation rate of 0.85 (95% CI: 0.78-0.92) in the 45-54
256 age band, substantially higher than its male counterpart M11 (0.50, 95% CI: 0.47-0.53). In later
257 life, unlike mortality trends, the complex profiles M15 and F15 exhibited the highest hospitali-
258 sation rates. M15 and F15 peaked at 1.57 (95% CI: 1.48-1.67) and 1.25 (95% CI: 1.21-1.30),
250 respectively, in the 75-84 age band, while M14 and F16 showed lower rates of 1.31 (95%
260 CI: 1.26-1.35) and 0.92 (95% CI: 0.89-0.94), respectively. Notably, neurological-predominant
261 profiles (M20, F18) exhibited relatively low hospitalisation rates despite high mortality. Sim-
262 ilar trends were observed for hospitalisation prevalence (Supplementary Fig. S8), supporting

263 the consistency of the results across different healthcare burden indicators.

2« Social factors with multimorbidity

265 We also examined the multimorbidity profiles in relation to socioeconomic deprivation, ethnic-
266 ity, and geographic region in England (Fig. 5).

267 Socioeconomic deprivation, as measured by quintiles of the IMD, was associated with
268 distinct prevalence patterns across profiles (Fig. 5a,b). Profiles that largely occurred before age
260 65 (M1-M8, F1-F9, F11) were significantly more prevalent in the most deprived quintile (IMD
270 5) compared to the least deprived (IMD 1). In contrast, profiles that arose or peaked later in life
o (M11-M14, M17-M21, F12-F14, F16-F18) were more common among the least deprived.

272 Pronounced ethnic differences in profile prevalence were also observed (Fig. 5¢,d). Among
273 White individuals, mental health-predominant profiles were consistently more prevalent than
274 1n other ethnic groups, particularly M1 and F1 (both Anxiety + Depression), and M13 and F14
275 (both Mental + Physical Long-term Conditions), with prevalence exceeding that of other groups
276 by more than 5%. COPD-related profiles, including M19 (COPD-predominant Respiratory +
277 Cardiovascular) and M 16 (Cancer + COPD + Cardiovascular) were also more prevalent among
27s - White males. In females, F17 (Hypertension + Cancer + Renal) had a prevalence of 14.58%
279 (95% CI: 14.52-14.64%) among White individuals, more than 5% higher than in other eth-
280 nic groups. In comparison, profiles characterised by physical conditions were more prevalent
231 among Black and South Asian populations than in White individuals. Among Black individ-
2s2 uals, cardiometabolic profiles such as M10 (Hypertension + Diabetes) and M7 (Hypertension
283+ Diabetes + Mental), along with M17 and F10 (both Cardiometabolic + Renal) showed the

284 highest prevalence, followed by South Asian individuals, with a considerably lower prevalence
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255 1n White individuals. Among South Asian individuals, profiles characterised by CHD (M11,
286 F11) and those combining asthma and hypertension (M5, M9, F9, F12) were more prevalent
267 than in other ethnic groups. Notably, South Asian males had the highest prevalence of M11 at
288 24.11% (95% CI: 23.75-24.48%), exceeding all other groups by more than 5%.

289 Several regional trends were evident (Fig. 5e,f). London was the most ethnically diverse
200 region, with more than 45% of residents identified as non-White, including 14.5% South Asian
201 and 13.5% Black individuals*®. It had the highest prevalence of profiles (M4, M5, M7, M10,
202 F4, F6, F10) commonly observed in Black and South Asian populations (Fig. 5c,d), reflect-
203 1Ing an overlap between ethnic and regional distributions. M10 and F10, the most prevalent
20« profiles among Black and South Asian individuals, showed the highest regional prevalence in
205 the West Midlands, the second most ethnically diverse region in England (11.3% Asian and
206 4.5% Black)*®. The regional variation in socioeconomic deprivation was also reflected in the
207 profile distributions. Except for London mainly driven by ethnic diversity, the profiles most
208 prevalent in the least deprived regions of the East of England and the South East (M9, M12,
2090 M18-M21, F12, F17, F18) were also the most common in the least deprived IMD quintile
s0 (IMD 1; Fig. 5a,b). In contrast, in the North East, the most deprived region in England*’, seven
st of the 10 profiles with the highest regional prevalence mirrored those most prevalent in the most

a2 deprived IMD quintile (IMD 5).

ws Biological factors with multimorbidity

s+ We next examined the multimorbidity profiles in association with 45 routinely measured clin-
ss 1ical markers (Fig. 6). Relevance was defined as the extent to which abnormal marker values
as (elevated or reduced) contributed to the correct classification of each profile (Methods).

307 Across nearly all profiles, elevated BMI and systolic blood pressure (SBP) showed high
ss relevance. In contrast, diastolic blood pressure (DBP) followed an age-dependent pattern: ele-
a9 vated DBP characterised profiles occurring under age 65, whereas reduced DBP predominated
a0 in cardiovascular profiles among those aged 65 years and older.

311 Respiratory-related profiles (M2, M3, M5, M9, M15, M16, M19, F2-F5, F9, F12, F15)
sz were distinguished by reduced peak expiratory flow percentage (PEF %) (Fig. S9a). Neuro-
a1z logical profiles (M20, F18) exhibited the strongest relevance for reduced albumin, and F18
a1e also showed a strong relevance for reduced BMI (Fig. S9b). Cancer-related profiles (M5,
a5 M8, M12, M16, M18, F8, F13, F17) were associated with elevated inflammatory markers
ate  including erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and plasma viscos-

ai7 ity (Fig. S9c¢). The musculoskeletal profile F13 was marked by elevated calcium and reduced
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a1 vitamin D. Early-life mental health profiles were associated with reduced urea and elevated
a9 hepatic markers including alanine aminotransferase (ALT), total protein and albumin. Within
a0 the cardiometabolic-related profiles, those with high diabetes prevalence (M7, M8, M10, M11,
21 Ml14, M15, M17, F8, F10, F11, F15, F16) demonstrated strong associations with markers
a2 of glucose metabolism, particularly HbAlc and fasting glucose (Fig. S10a). Cardiovascular
a3 profiles characterised by heart-failure prevalence (M14, M21, F16) showed relevance for ele-
a4 vated bilirubin. Renal-related profiles (M12, M14, M15, M17, F10, F15-F17) were defined by
s markers of renal dysfunction, including reduced estimated glomerular filtration rate (eGFR),
a6 along with elevated urea and reduced sodium. Finally, the four complex profiles (M14, M15,
a7 F15, F16) demonstrated multisystem involvement through associations with diverse markers,

a2 including eGFR, PEF%, HbA1c and fasting glucose.

= Discussion

a0 Multimorbidity presents a critical challenge to both individual health and healthcare systems. In
as1  this large, population-based longitudinal study of 3.3 million individuals in England, we present
a2 the most comprehensive characterisation of multimorbidity to date. Using EHRs that span the
ass  life course, this study is, to our knowledge, the first to identify distinct multimorbidity profiles,
ass¢ their life-course trajectories, associated health burdens, and underlying social and biological
a5 factors at a national level. Our findings reveal clinically plausible profiles that evolve with
ass  age, assess the differential burden of multimorbidity on mortality and hospitalisation, highlight
s7  1nequalities shaped by social factors, and suggest patterns in clinical markers associated with
ass  specific profiles. This new way of characterising multimorbidity can provide valuable insights
ass9  for clinical practice and public health policy.

340 Several findings stand out. First, our analysis reveals the long persistence of specific
st multimorbidity profiles throughout the life course, particularly the mental health-only profile
a2 during early and middle adulthood, and cardiometabolic and cardiovascular profiles emerging
a3 1n middle adulthood and persisting into older age. These patterns highlight the long-lasting bur-
s« den of mental health conditions and the cumulative impact of metabolic and vascular diseases.
345 Clear sex-specific patterns were also evident in our study. Males were more frequently
us represented in cardiovascular, respiratory, and cancer-related profiles, while females were more
a7 commonly represented in mental, neurological, and musculoskeletal profiles. These differences
as  reflect a combination of behavioural and biological factors: higher rates of smoking and alcohol
a9 consumption among males may contribute to COPD and cancer risk, while oestrogen confers

ss0 - cardiovascular protection for females until menopause. Differences in stress exposure, help-
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351 seeking and health service variation may also play a role. For example, females are more likely
352 to seek care for depression and present with symptoms that align more closely with clinical
a3 diagnostic criteria, while males with comparable scores on standardised mental health assess-
a4 ments are less frequently diagnosed. Our findings highlight the need for prevention strategies
355 tailored to sex-specific risks, including reducing cardiovascular risk in males and improving
sse  mental health support for females.

357 In addition, our study makes an important novel contribution to the literature by mapping
sss  multimorbidity trajectories to show how different progression pathways evolve throughout the
sse  life course. For example, we identified transitions from a healthy state to cardiometabolic con-
a0 ditions (e.g., hypertension and diabetes) and subsequently to profiles combining cardiometabolic
st and renal disorders. We also observed transitions from asthma-predominant profiles to COPD-
s2 predominant profiles, likely driven by chronic inflammation of the airways and environmental
33 exposures such as smoking and air pollution. Similarly, progression from cardiometabolic-
s« predominant profiles to more complex profiles incorporating cardiovascular conditions may
ses reflect cumulative endothelial dysfunction, atherosclerotic burden, and lifestyle factors such as
sss physical inactivity. These life-course pathways expand previous longitudinal observations, and
s7 reveal clearly defined critical transition points and age windows, which could serve as valuable
ss  opportunities for preventive interventions.

369 Interestingly, approximately half of individuals with multimorbidity remained within a
a0 single profile over the life course, while the remainder transitioned between multiple dis-
a1 tinct profiles. These observations suggest that tailored preventive strategies may be needed:
a2 those with stable multimorbidity may benefit from targeted management of specific conditions,
a3 whereas those following dynamic trajectories may require broader strategies to interrupt pro-
a7+ gression to more complex multimorbidity.

375 Our findings also shed light on how specific conditions shape the burden of multimor-
a7e  bidity. Profiles exhibiting high-risk physical conditions, particularly cardiovascular and renal

18,48 In

a7 conditions, were associated with the highest mortality, in line with previous studies
ars  contrast, highly complex profiles encompassing multiple systems associated with elevated hos-
a7e  pitalisation rates, despite relatively lower mortality, reflect the resource-intensive demands of
a0 complex multimorbidity management. Neurological profiles exhibited particularly high mor-
ss1 tality but only moderate hospitalisation, possibly due to management in long-term care facilities
382 Or community settings, limited therapeutic options, or transitions to palliative care in advanced

ass  stages of the disease. These findings emphasise the importance of moving beyond simple con-

ss4 dition counts in the multimorbidity assessment and considering disease interactions and clinical

12


https://doi.org/10.1101/2025.05.24.25326850
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.05.24.25326850; this version posted May 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

sss  severity for outcome management and healthcare resource allocation.

386 The study further highlights pronounced disparities in multimorbidity, shaped by socioe-
a7 conomic deprivation, ethnicity, and geography. Individuals from deprived backgrounds expe-
sss rienced earlier onset and greater burden of multimorbidity before age 65, whereas later-life
sss  multimorbidity was more prevalent among less deprived groups. This probably reflects the
a0 interplay of survival bias, differential access to healthcare, and the protective effects of so-
a1 cioeconomic advantage: deprived populations experience earlier disease onset and premature
se2 mortality, whereas more affluent individuals are more likely to survive into older age, where
ses the cumulative nature of ageing leads to higher prevalence of complex multimorbidity profiles.
394 In addition to socioeconomic deprivation, ethnicity played a significant role. White pop-
aes ulations showed a higher prevalence of mental health-predominant profiles, potentially reflect-
a6 1ng cultural and systemic determinants in awareness, help-seeking, and diagnosis. At the same
37 time, minority ethnic populations may face reduced access to mental health services. In addi-
aes  tion, White populations were more represented in cancer-related profiles, likely due to greater
se9 participation in screening programmes, which in turn increases the incidence rates of certain
a0 cancers. This is also associated with a higher prevalence of risk factors, such as smoking
st and obesity, compared to other ethnic groups. In contrast, South Asian and Black populations
a2 showed a higher prevalence in cardiovascular and cardiometabolic profiles, which is consis-
s03 tent with differences in insulin resistance and dietary patterns, including significantly higher

w4 salt and carbohydrate consumption®.

These findings confirm the role of social factors, in-
a5 cluding structural healthcare inequalities, in shaping multimorbidity, highlighting the need for
a6 targeted interventions, including optimised cardiometabolic management, equitable screening
a7 programmes, and enhanced mental health outreach for at-risk populations.

408 Regional variations further reflected the interplay of ethnicity and socioeconomic depri-
09 vation in multimorbidity. Ethnic diversity emerged as the dominant factor in London, while
a0 socioeconomic deprivation had a stronger influence in the North East. Elsewhere, the rela-
s11 - tionship between these factors and multimorbidity was more heterogeneous, highlighting the
a1z importance of examining social factors on granular geographical scales where population char-
a3 acteristics are more homogeneous. We acknowledge, however, that these disparities arise not
s14 only from the investigated social factors but also from systemic biases in diagnosis, unequal
s15 environmental exposures, historical mistrust of healthcare systems and other structural deter-
s16  minants, necessitating interventions that address both clinical management and the broader

s17 - contextual forces shaping health.

418 An important novelty of our study lies in the systematic integration of clinical markers
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a9 with multimorbidity profiles through an interpretable machine learning framework. Several
20 observed associations, such as elevated BMI and SBP across all profiles, are consistent with
421 established roles of obesity and hypertension in multimorbidity development®, while the asso-
s22  ciations of calcium and vitamin D with the musculoskeletal profile align with known metabolic
23 imbalances underlying osteoporosis®'. The consistency of these associations across a large,
24 representative population supports the external validity of the framework and highlights its
25 utility in identifying clinically relevant patterns. Importantly, this study extends beyond prior
226 studies in several key aspects. First, unlike most efforts that focus on single conditions, our
227 framework enables fine-grained, profile-specific marker association analysis across multimor-
228 bidity profiles. Second, the model is trained on a uniquely large and diverse primary care
229 dataset, providing greater power and population generalisability compared to earlier studies
s30 typically based on smaller or more selective cohorts.

431 Importantly, we identified several underexplored or novel marker associations with mul-
sz timorbidity profiles. For example, the age-dependent pattern with DBP reflects the progression
s33 toward isolated systolic hypertension in ageing populations, mediated by progressive arterial
w4 stiffening and loss of vascular compliance>?. The elevation of hepatic markers in mental health-
s35  predominant profiles may reflect unmeasured confounding, such as alcohol use, psychotropic
s3s  medication effects, or systemic inflammation, and suggest biological pathways not previously
s37 recognised in this context. Similarly, the prominence of albumin in neurological profiles and
s3s  bilirubin in heart failure profiles provides interpretable markers, plausibly linked to cognitive
a9 decline and hepatic congestion, respectively. Together, these findings underscore the transla-
a0 tional potential of our approach. By linking clinical markers to multimorbidity profiles, our
a1 framework enables more precise risk stratification, earlier detection of individuals at elevated
a2 multimorbidity risk, and the development of tailored screening and management protocols. Its
a3 adaptability supports further applications across diverse populations and broader marker panels
a4 to enhance diagnostic decision-making and inform therapeutic strategies.

445 Our study design should be interpreted in light of several limitations. First, we assume
se that all 18 conditions persist after diagnosis, potentially overlooking recovery, undiagnosed
a7 or unrecorded underlying conditions, and misrepresenting acute events such as stroke, which
a8 have a transient onset but lasting impact. Second, the use of CPRD data introduces inherent
a9 biases, particularly related to access to primary care, influenced by factors such as the inverse
ss0 care law, where individuals with higher needs may receive inadequate care. In addition, the
s51 - quality of general practitioner coding, which is heavily influenced by the Quality and Outcomes

ss2  Framework (QOF)>3, could affect the accuracy of diagnoses and clinical marker measurements,
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ss3  although the large sample size and advanced analytical methods help mitigate these concerns.
ss4  Third, the design of this observational study inherently restricts causal inferences, especially
55 in analyses involving social factors and associations of clinical markers. Furthermore, while
a6 we examined the influence of social factors on multimorbidity, we did not account for their
s57 - potential interactions or confounding effects, which may overlook the complex interplay among
sss  these factors in shaping multimorbidity. Lastly, we were unable to fully adjust for the effects
sse  of medications that may influence clinical marker levels, affecting the clinical interpretation of
s0 the identified markers. These limitations highlight important avenues for future research while
ss1  not diminishing the value of our population-level findings.

462 In conclusion, our work provides a comprehensive characterisation of multimorbidity
w3 throughout the life course in a nationally representative population, revealing the complex and
se4 dynamic nature of multimorbidity, shaped by disease interactions, distinct progression path-
a5 ways, differential burden patterns, and social and biological factors. Collectively, these findings
w6 highlight the need for adaptive and risk-stratified public health frameworks to inform targeted
a7 prevention strategies, optimise healthcare resource allocation, and guide evidence-based poli-

a8 cies to address the growing challenge of multimorbidity.
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Figure 1: Study overview. a, Clinical diagnosis trajectories were extracted for participants over the life course, stratified by sex
and age band. The example shown is for males. Trajectories were encoded as health state vectors representing the presence of
specific conditions at each age band. Latent class analysis was applied within each stratum to identify multimorbidity clusters
(e.g., C;’M denotes the j-th cluster within the i-th age band for males). b, To capture consistent multimorbidity patterns across
age bands, hierarchical clustering was performed based on condition prevalence and exclusivity within the cluster. Condition
prevalence was defined as the proportion of individuals within a cluster who had a given condition, whereas condition exclusivity
was defined as the proportion of individuals with a specific condition in a given age band who belonged to that particular cluster.
This yielded generic multimorbidity profiles (e.g., M1, M5, M9). ¢, Individual multimorbidity trajectories were reconstructed by
mapping transitions across profiles over the life course. d, The burden associated with each profile was quantified using mortal-
ity, hospitalisation rate (mean annual hospitalisations per individual), and hospitalisation prevalence (proportion of individuals
experiencing at least one hospitalisation). e, Descriptive analyses examined associations between multimorbidity and social
factors, including socioeconomic deprivation, ethnicity, and geographic regions. f, An interpretable machine learning frame-
work was developed to examine the association between multimorbidity and biological factors. Clinical marker trajectories over
the life course were extracted and encoded into clinical marker vectors, stratified by sex and age band. A tree-based classifier
XGBoost was trained to predict individual multimorbidity profiles from these vectors. A Shapley value-based explainer with
novel reference-based adjustment was applied to identify clinically relevant markers for each profile.
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Figure 2: Characteristics of the identified multimorbidity profiles for a, Males and b, Females. In each panel, the left part
presents a heatmap of condition prevalence within each profile, with darker blue shades indicating higher prevalence (numerical
results are provided in Supplementary Fig. S5). The middle part presents a bubble plot, where the size of circles corresponds
to the prevalence for a profile across an age band (numerical results are provided in Supplementary Table S3—-S4). The colour
intensity reflects the mean number of conditions per individual, with darker red shades indicating a higher number of conditions.
Profile labels are positioned between the two plots, and the right part lists the name of each profile, determined using the
convention outlined in Supplementary Note S1.2. Conditions listed in the profile names are ordered by prevalence, and those with
a mean number of conditions exceeding four are annotated as “Complex”. Condition abbreviations: anxiety (Anx), depression
(Dep), serious mental illness (SMI), asthma (Ast), chronic obstructive pulmonary disease (COPD), diabetes (Diab), hypertension
(Hyp), coronary heart disease (CHD), stroke or transient ischaemic attack (Stroke), atrial fibrillation (AF), heart failure (HF),
peripheral arterial disease (PAD), chronic kidney disease (CKD), osteoporosis (Ost), rheumatoid arthritis (RA), cancer excluding
non-melanoma skin cancers (Can).
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Figure 3: Multimorbidity trajectories over the life course for a, Males and b, Females. The Sankey diagrams illustrate
transitions of the 3.3 million individuals in the primary study cohort between multimorbidity profiles across different age bands.
For each panel, the height of each bin is proportional to the number of individuals within the corresponding profile. Each coloured
flow represents the transition of individuals from one profile to another, where the thickness of the flow is proportional to the
number of individuals in the transition. Transitions from the same source profile are shown in the same colour. The common
profiles across sexes are represented using the same colour, and profiles with similar condition compositions use similar hues.
For clarity, transitions from individuals with no or single conditions into multimorbidity profiles are omitted, and the complete
trajectories for the whole population are presented in Supplementary Fig. S6. An interactive demo of this figure is available for
males and females.
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Figure 4: Multimorbidity burden over the life course. a, b, Mortality across multimorbidity profiles and age bands in males
and females, respectively. Insets show a magnified view of the age bands below 65 years. ¢, d, Hospitalisation rate across
multimorbidity profiles and age bands in males and females, respectively. For each panel, each line represents a multimorbidity
profile, with values calculated within profile-specific cohorts for each age band. Mortality was defined as the proportion of
individuals who died within each profile and age band. Hospitalisation rate was defined as the average number of hospitalisations
per person-year within each profile for an age band. The healthy cohort is shown in grey for comparison. The colour coding
follows the same scheme as in Fig. 3. More results on hospitalisation prevalence are provided in Supplementary Fig. S8.
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Figure 5: Association between multimorbidity and social factors. a, b, Prevalence of multimorbidity profiles across IMD
quintiles, from least deprived (IMD 1) to most deprived (IMD 5), for males and females, respectively. For each profile, the
prevalence across IMD quintiles is shown. Profiles (i.e., sets of five bars) are sorted according to the IMD quintile with the
highest prevalence within each profile. If multiple profiles share the same leading IMD quintile, they are further ordered by
descending prevalence within that quintile. Vertical dashed lines separate profiles by the leading IMD quintile. ¢, d, Prevalence
of multimorbidity profiles across ethnic groups (White, Black, and South Asian), for males and females, respectively. For each
profile, the prevalence across ethnic groups is shown. Profiles (i.e., sets of three bars) are sorted according to the ethnic group
with the highest prevalence within each profile. If multiple profiles share the same leading ethnic group, they are further ordered
by descending prevalence within that group. Vertical dashed lines separate profiles by the leading ethnic group. e, f, Prevalence
of multimorbidity profiles across nine regions of England, for males and females, respectively. For each profile, the prevalence
across regions is shown. Profiles (i.e., sets of nine bars) are sorted according to the region with the highest prevalence within
each profile. If multiple profiles share the same leading region, they are further ordered by descending prevalence within that
region. Vertical dashed lines separate profiles by the leading region. A map of the regions is provided for reference. In all
panels, each bar represents the prevalence of a profile within a specific group. For each bar, statistical significance was assessed
using pairwise Z-tests with Bonferroni correction, comparing it to the other groups within the same profile. The largest (i.e., least
significant) p-value among the comparisons is shown. Asterisks indicate significance levels (*p-value < 0.05, **p-value < 0.01,
**%p-value < 0.001). Error bars for 95% confidence intervals are not shown, as the large sample size yields very narrow intervals
with minimal impact on interpretability. IMD: Index of Multiple Deprivation.
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Figure 6:

Relevance of clinical markers across multimorbidity profiles for a, Males and b, Females. The heatmaps show

the clinical relevance of each marker (columns) to each multimorbidity profile (rows), as determined by an interpretable machine
learning framework (Methods). The hue (red/purple) indicates whether the marker value is abnormally high or low relative to
a reference range, and the intensity (gradient) reflects the strength of its association. Markers are grouped by clinical system or
physiological process (Supplementary Table S2). Beeswarm plots with SHAP values for each profile are provided in Supple-
mentary Fig. S11-S12.
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Table 1: Characteristics of each stratum in the primary study cohort

Characteristic | Sex <18 18-24 25-34 35-44 45-54
Overall Male 1,426,703 (43.04) 1,426,703 (43.04) 1,399,648 (43.26) 1,306,032 (43.78) 1,187,782 (44.10)
population® Female | 1,887,949 (56.96) 1,887,949 (56.96) 1,836,008 (56.74) 1,677,469 (56.22) 1,505,683 (55.90)
Multimorbid Male 19758 (1.38) 116167 (8.14) 238997 (17.08) 321,591 (24.62) 443,941 (37.38)
population® Female | 34561 (1.83) 206475 (10.94) 390536 (21.27) 473,430 (28.22) 580,369 (38.55)
Mean conditions | Male 0.12 (0.38) 0.28 (0.65) 0.50 (0.87) 0.74 (1.01) 1.14 (1.20)
(overall)® Female | 0.13 (0.39) 0.34 (0.73) 0.60 (0.93) 0.82 (1.04) 1.15 (1.21)
Mean conditions | Male 2.09 (0.30) 2.19 (0.41) 2.23 (0.46) 2.30 (0.59) 2.48 (0.79)
(multimorbid)® | Female | 2.11 (0.32) 2.19 (0.41) 2.23(0.46) 2.30 (0.57) 2.48 (0.78)
Asthma, (9.26) Asthma, (11.01) Depression, (15.69) Depression, (20.69) Hypertension, (23.30)
Anxiety, (1.35) Depression, (7.38) Anxiety, (14.73) Anxiety, (18.49) Depression, (23.10)
Depression, (1.10) Anxiety, (7.15) Asthma, (13.03) Asthma, (13.26) Anxiety, (20.04)
Cancer, (0.17) SMI, (0.99) Hypertension, (2.08) | Hypertension, (8.59) | Asthma, (13.70)
SMI, (0.13) Hypertension, (0.37) | SMI, (1.99) Diabetes, (3.59) Diabetes, (9.80)
Top 10 most Male . .
lent Hypertension, (0.10) | Cancer, (0.35) Diabetes, (0.81) SMI, (2.50) CHD, (7.65)
S:;Vdanmns COPD, (0.08) Diabetes, (0.12) Cancer, (0.79) CHD, (1.95) Cancer, (2.96)
i Diabetes, (0.04) COPD, (0.11) CHD, (0.25) Cancer, (1.45) COPD, (2.58)
(prevalence, %)
Stroke, (0.03) Stroke, (0.05) COPD, (0.20) COPD, (0.72) SMLI, (2.54)
CHD, (0.02) AF, (0.05) AF, (0.17)) Stroke, (0.59) Stroke, (2.14)
Asthma, (8.17) Depression, (11.67) Depression, (22.41) Depression, (28.38) Depression, (31.60)
Depression, (2.07) Asthma, (10.84) Anxiety, (18.77) Anxiety, (23.05) Anxiety, (25.65)
Anxiety, (1.92) Anxiety, (9.85) Asthma, (13.48) Asthma, (14.22) Hypertension, (18.73)
Cancer, (0.14) SMI, (0.56) Hypertension, (1.85) | Hypertension, (6.57) | Asthma, (15.33)
Female SMI, (0.10) Hypertension, (0.41) | SMI (1.31) Diabetes, (2.22) Diabetes, (5.74)
Hypertension, (0.09) | Cancer, (0.29) Cancer, (0.82) Cancer, (2.08) Cancer, (4.98)
Diabetes, (0.04) Diabetes, (0.13) Diabetes, (0.62) SMI, (1.85) CHD, (2.33)
RA, (0.04) RA, (0.11) RA, (0.34) RA, (0.78) SMLI, (2.16)
COPD, (0.04) COPD, (0.06) Stroke, (0.15) COPD, (0.52) COPD, (2.03)
Stroke, (0.02) Stroke, (0.05) Osteoporosis, (0.12) | CHD, (0.48) RA, (1.52)
Characteristic | Sex 55-64 65-74 75-84 >85
Overall Male 1,025,303 (44.23) 804,781 (43.80) 520,119 (41.53) 212,069 (35.86)
population® Female | 1,293,001 (55.77) 1,032,510 (56.20) 732,134 (58.47) 379,308 (64.14)
Multimorbid Male 569,714 (55.57%) 610,217 (75.82%) 480,029 (92.29%) 212,069 (100.00%)
population® Female | 667,294 (51.61%) 708,136 (68.58%) 642,057 (87.70%) 379,308 (100.00%)
Mean conditions | Male 1.73 (1.40) 2.49 (1.55) 3.33 (1.63) 3.86 (1.57)
(overall)® Female | 1.61 (1.39) 2.26 (1.57) 3.14 (1.67) 3.85(1.58)
Mean conditions | Male 2.73 (1.02) 3.08 (1.28) 3.55(1.51) 3.86 (1.57)
(multimorbid)® | Female | 2.72 (1.00) 3.03 (1.24) 3.48 (1.49) 3.85(1.58)
Hypertension, (42.48) | Hypertension, (59.57) | Hypertension, (68.77) | Hypertension, (69.88)
Depression, (22.26) CHD, (27.58) CHD, (35.56) CKD, (46.06)
Anxiety, (19.22) Diabetes, (25.57) CKD, (30.51) CHD, (39.08)
Diabetes, (18.14) Depression, (18.62) Diabetes, (28.62) AF, (32.80)
CHD, (17.35) Anxiety, (16.84) Cancer, (27.16) Cancer, (31.23)
Top 10 most Male
lent Asthma, (14.31) Cancer, (16.84) AF, (22.82) Stroke, (26.24)
S :)Zvdamons Cancer, (7.43) Asthma, (14.49) Stroke, (19.43) Diabetes, (25.61)
i COPD, (6.64) CKD, (13.17) COPD, (16.58) HF, (19.61)
(prevalence, %) . A
Stroke, (5.66) COPD, (12.24) Depression, (15.36) Dementia, (18.28)
AF, (4.69) AF, (11.72) Anxiety, (14.87) COPD, (16.14)
Hypertension, (35.67) | Hypertension, (55.22) | Hypertension, (70.72) | Hypertension, (75.88)
Depression, (30.80) Depression, (27.24) CKD, (30.33) CKD, (47.63)
Anxiety, (25.63) Anxiety, (23.94) Depression, (24.39) AF, (26.30)
Asthma, (16.45) Asthma, (16.94) Anxiety, (23.28) CHD, (25.55)
Female Diabetes, (10.93) Diabetes, (16.54) Diabetes, (20.35) Dementia, (25.02)

Cancer, (9.32)
CHD, (6.47)
COPD, (4.95)
Osteoporosis, (4.40)
CKD, (4.12)

Cancer, (14.62)
CHD, (13.05)

CKD, (12.91)
Osteoporosis, (10.26)
COPD, (8.61)

CHD, (20.26)
Cancer, (19.28)
Osteoporosis, (18.43)
Asthma, (16.24)

AF, (15.37)

Osteoporosis, (24.53)
Stroke, (23.83)
Anxiety, (22.41)
Depression, (21.91)
Cancer, (21.02)

The rows labelled with “(overall)” report statistics for all individuals who ultimately developed multimorbidity by the end of the study. In contrast,
the rows labelled with “(multimorbid)” report statistics for individuals who already had multimorbidity within the corresponding age band. Condition
abbreviations: serious mental illness (SMI), chronic obstructive pulmonary disease (COPD), coronary heart disease (CHD), stroke or transient
ischaemic attack (Stroke), atrial fibrillation (AF), heart failure (HF), chronic kidney disease (CKD), rheumatoid arthritis (RA), cancer excluding
non-melanoma skin cancers (Cancer).
* n (proportion within age band, %).
® 5 (multimorbidity prevalence within sex and age band, %).
¢ Mean number of conditions per individual (SD).
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< Vlethods

so7  Study population. This work was conducted as part of COMPuTE project (Complex Multiple
ses Long Term Conditions—Phenotypes, Trends, and Endpoints). We conducted a longitudinal co-
s00 hort study using anonymised EHRs from CPRD?>*, which received ethical approval (CPRD ref-
so erence: 22_001771). Our cohort consisted of 6,671,245 individuals, including 3,314,652 who
o1 developed multimorbidity (>2 of 18 selected chronic conditions), 1,226,245 who remained
sz condition-free, and 2,130,348 with a single condition at the end of study. Participants were
e0s followed from birth until the first occurrence of death or study exit no later than 31 December

s« 2019. Study exit was defined as the earliest transfer out or the last practice download date.

sos Chronic conditions. We studied 18 chronic conditions selected based on prevalence and clin-
eos 1cal significance across major disease categories: mental health (anxiety, depression, serious
s mental illnesses), respiratory (asthma, chronic obstructive pulmonary disease), metabolic (di-
ss abetes), cardiovascular (hypertension, coronary heart disease, stroke or transient ischaemic
oo attack, atrial fibrillation, heart failure, peripheral arterial disease), renal (chronic kidney dis-
st0 ease), neurological (dementia, Parkinson’s disease), musculoskeletal (osteoporosis, rheumatoid
s11  arthritis), and oncological (cancers excluding non-melanoma skin cancers). Of these, 16 condi-
sz tions were selected from the QOF indicators, with anxiety and Parkinson’s disease additionally
s13 1ncluded due to their increasing prevalence and clinical relevance with age. SNOMED CT code
e14 lists (https://github.com/ndpchs-cprd/CPRD-22-001771-CoMPuTe/tree/main/Codelists) were
15 used to ensure a consistent identification of conditions. The first recorded diagnosis of each
st condition was assumed to reflect its presence thereafter. The selected conditions collectively
s17 represent the majority of the multimorbidity impact, enabling examination of both physical-

st mental health interactions and cross-system disease clustering patterns.

s19  Other measures and variables. We included CPRD data on sex, date of birth, dates of di-
s20 agnosis for each condition, IMD quintiles (as a measure of socioeconomic deprivation), eth-
21 nicity, and geographic region based on the location of the registered general practitioner. The
e22 characteristics of the primary study cohort by social factors are summarised in Supplemen-
e2s tary Table S1. Hospitalisation data were obtained through linkage with HES*?, and mortality
e« data were linked from ONS*!. In addition, we retrieved 45 conventional clinical markers from

e2s CPRD records (Supplementary Table S2).

e2c  Multimorbidity profile identification. For each individual, we map the diagnosis of each
27 condition to nine age bands spanning the life course (from <18 to >85 years), creating 18-

e2s dimensional binary health state vectors indicating which specific conditions had been diag-
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s20 nosed by the end of each age band. Within each age-sex stratum, we applied LCA'" to in-
es0 dividuals with multimorbidity (>2 conditions) to identify distinct clusters. Following previ-
sat ous studies”!'®, the optimal number of clusters was determined on the basis of model parsi-
s> mony using the Bayesian information criterion (BIC), Akaike information criterion (AIC) and
ess consistent AIC (cAIC), which balance goodness of fit against model complexity to minimise
s« overfitting. Final selection further incorporated clinical relevance and interpretability, as es-
ess tablished through successive rounds of expert-panel review and consensus meetings within the
s3s COMPUTE consortium. For each identified cluster, we computed two key metrics: condition
37 prevalence, defined as the proportion of individuals within a cluster having each condition; and
sss condition exclusivity, defined as the proportion of individuals with a specific condition in a
ss9  given age band who belonged to that particular cluster (Supplementary Fig. S2-S3). Subse-
ss0 quently we applied agglomerative hierarchical clustering using Ward’s method to the vectors
s+t of condition prevalence and exclusivity, thereby quantifying cluster similarity across age bands
sz (Supplementary Fig. S4). Clusters within each sex group were merged based on thresholds
s43 Informed by clinical interpretability and hierarchical clustering results (Supplementary Note
es¢  S1.1), thus forming multimorbidity profiles. Each multimorbidity profile was characterised by
es5 1ts distinct composition of chronic conditions (Supplementary Fig. S5) and named according
ss6 to a convention detailed in Supplementary Note S1.2. This approach ensured accurate identi-
47 fication of sex- and age-specific profiles while capturing multimorbidity patterns consistently
ess across different strata. LCA was implemented using the StepMix package>*, and hierarchical

s10 clustering was performed using the SciPy package’® in Python v3.8.

eso  Multimorbidity trajectory reconstruction. Using the multimorbidity profiles identified for
st each individual across the age bands, we identified the longitudinal trajectories of multimor-
es2 bidity. We also identified states in which individuals were free of all 18 chronic conditions

es3  (denoted “H”), had a single condition (“‘S), had died (“D”), or had exited the study (“E”).

s«  Multimorbidity burden assessment. We assessed the burden of multimorbidity using three
655 metrics: mortality, hospitalisation rate, and hospitalisation prevalence. Mortality for each mul-
es6 timorbidity profile was calculated within each age band as the proportion of individuals who
es7 died while in that profile relative to the total number of individuals who experienced the profile
ess 1n that age band. The hospitalisation rate was defined as the mean number of hospitalisations
eso per year among individuals within a specific profile and age band. The prevalence of hospital-
es0 1sation represented the proportion of individuals hospitalised at least once during the age band

es1 relative to the total number of people who experienced the profile in that age band.

28


https://doi.org/10.1101/2025.05.24.25326850
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2025.05.24.25326850; this version posted May 25, 2025. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

sz Statistical analysis with social factors. We analysed the association between the multimorbid-
ess 1ty profiles and key social factors: socioeconomic deprivation, ethnicity, and geographic region.
e« For each profile, we calculated its prevalence across subgroups within each social factor and
ess performed statistical significance tests using pairwise Z-tests with Bonferroni correction. For
e each subgroup-profile combination, we compared prevalence with all other subgroups within

es7 the same profile and reported the least significant p-value from these comparisons.

ess Interpretable machine learning framework with biological factors. Although clinical mark-
eso ers are well-established indicators for individual conditions, their role in multimorbidity re-
s mains poorly characterised®!?. The synergistic effects of coexisting conditions can substan-
e71 tially alter clinical marker patterns, rendering condition-level associations insufficient for iden-
e72 tifying profile-level markers. To address this, we developed an interpretable machine learning

t** combined with a novel reference-adjusted SHAP*** to quan-

73 framework using XGBoos
e74 tify the relevance of clinical markers to specific multimorbidity profiles in a data-driven man-
e7s ner. This framework offers several advantages: XGBoost inherently handles missing values
e7 and maintains scale invariance across heterogeneous marker distributions, while the reference-
77 adjusted SHAP quantifies individual marker contributions relative to clinical reference ranges,
e7s thereby improving clinical interpretability.

679 For each individual in each age band, we extracted the most recent measurement of the 45
es0 clinical markers, aligning with the latest diagnosis information used for profile identification.
st This resulted in clinical marker vectors that represented individuals’ biological states in spe-
es2 cific age bands. Missing marker values were explicitly indicated in vectors, and each clinical
ess marker vector was labelled according to the individual’s multimorbidity profile in the corre-
es4 sponding age band. We then sampled 10,000 clinical marker vectors per profile for each sex,
ess creating two datasets comprising 210,000 male and 180,000 female samples. These datasets
sss were divided into training subsets (80%) and testing subsets (20%). An XGBoost classifier
ss7 was trained to predict multimorbidity profiles based on clinical markers, formulated as a multi-
ess class classification task. Owing to XGBoost’s inherent ability to handle missing values and
eso scale invariance, we did not perform additional preprocessing or normalisation. The key hyper-
s0 parameters included a learning rate of 0.1, a maximum tree depth of 12, and 500 boosting iter-
eo1 ations. The performance metrics of the model demonstrated robust discrimination, with males
ee2 achieving an area under the receiver operating characteristic curve (AUROC) of 0.894, area
ses under the precision-recall curve (AUPRC) of 0.384, and top-k accuracy of 0.383 (k=1), 0.677
s¢ (k=3), and 0.814 (k=5). Female models showed comparable performance (AUROC=0.891,
ss AUPRC=0.413) with top-1 (0.402), top-3 (0.703) and top-5 (0.841) accuracy. In practice, a
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e9s top-k prediction of the most probable profiles could enable clinicians to prioritise preventive
s and monitoring strategies tailored to the likeliest progression pathways. To improve clinical
s9s interpretability, we implemented a reference-adjusted SHAP methodology. Traditional SHAP
s90 analysis can highlight markers that are valuable for classification but clinically irrelevant, such
700 as markers of the normal range incorrectly identified as important indicators. Our approach
701 focused specifically on markers whose abnormal values (outside the clinically defined refer-
702 ence ranges) positively contributed to the correct identification of multimorbidity profiles. We
703 defined clinical relevance as the mean SHAP value among samples with positive SHAP values
704 and clinical marker values beyond their normal reference ranges (Fig. S11-S12). This refined
705 analysis identified clinical markers that are associated with multimorbidity profiles, potentially
706 serving as early clinical indicators for these profiles. We conducted these analyses using the

707 xgboost package*® and the SHAP package* in Python v3.8.

78 Ethical approval. The CPRD database is approved by the East Midlands—Derby Research
700 Ethics Committee, reference 05/MREQ04/87 for public health research according to approved
710 research protocols, and the research protocol for this study received specific approval from the

711 CPRD’s Research Data Governance (reference 22 00177).

712 Data availability. Data supporting the findings of this study are available in the article and its
713 Supplementary information. The data underlying this article is provided by the UK CPRD elec-
714 tronic health record database, which is only accessible to researchers with protocols approved

715 by CPRD’s Research Data Governance.

76 Code availability. The code used for this study is available at https://github.com/liuyuaa/
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