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Abstract

Digital healthcare systems have enabled the collection of mass
healthcare data in electronic healthcare records (EHRs), allowing
artificial intelligence solutions for various healthcare prediction
tasks. However, existing studies often focus on isolated components
of EHR data, limiting their predictive performance and interpretabil-
ity. To address this gap, we propose ProtoEHR, an interpretable
hierarchical prototype learning framework that fully exploits the
rich, multi-level structure of EHR data to enhance healthcare pre-
dictions. More specifically, ProtoEHR models relationships within
and across three hierarchical levels of EHRs: medical codes, hospi-
tal visits, and patients. We first leverage large language models to
extract semantic relationships among medical codes and construct
a medical knowledge graph as the knowledge source. Building on
this, we design a hierarchical representation learning framework
that captures contextualized representations across three levels,
while incorporating prototype information within each level to cap-
ture intrinsic similarities and improve generalization. To perform a
comprehensive assessment, we evaluate ProtoEHR in two public
datasets on five clinically significant tasks, including prediction of
mortality, prediction of readmission, prediction of length of stay,
drug recommendation, and prediction of phenotype. The results
demonstrate the ability of ProtoEHR to make accurate, robust, and
interpretable predictions compared to baselines in the literature.
Furthermore, ProtoEHR offers interpretable insights on code, visit,
and patient levels to aid in healthcare prediction.
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1 Introduction

The digitization of healthcare systems in recent years has led to
the accumulation of substantial electronic health records (EHRs)
[25, 28]. The patient’s EHR data contain demographics, as well as
detailed information about the hospital visit, including medical pro-
cedures performed, clinical diagnoses, and prescribed medications.
Numerous studies [12, 30] have focused on developing models to
facilitate the prediction of patient outcomes, such as mortality risk
[7] and readmission possibilities [31], as well as personalized treat-
ment strategies, including classification of phenotypes [11] and
drug recommendation [27]. Accomplishing these tasks assists clini-
cal decision-making, improves treatment quality, and allows better
allocation of resources.

Existing frameworks for healthcare prediction capitalize on the
various characteristics of EHR data [25]. Each patient can have
multiple hospital visits at different times. Each hospital visit is for
specific reasons, and with doctors reaching varying diagnoses, or-
dering the required procedures, and prescribing the corresponding
medications (typically recorded using a standardized coding system,
for example, ICD codes!). Therefore, EHR data naturally form a
hierarchical structure that spans the levels of the patient, the visit,
and the code [6, 7]. This structure provides a rich and interpretable
representation of a patient’s clinical journey, enabling models to
capture both temporal and semantic dependencies across levels for
more effective healthcare prediction.

Beyond hierarchical connections across different levels of EHR
data, it is equally important to consider the intrinsic similarities
among entities within each level. At the patient level, individuals
may share lifestyle habits that influence their risk factors, increasing
the propensity towards certain illnesses, e.g., smoking and poor diet
increase the likelihood of coronary heart disease [16]. At the visit
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level, patients may visit hospitals for similar purposes. It could be a
routine visit to pick up prescriptions or it could be an emergency.
Thus, we argue that visits also exhibit similarities with predictive
value. At the code level, medical codes are typically categorized
into diagnoses, procedures, and medications [15], suggesting that
similarity can be inferred within each category. In addition, codes
can also be examined from a pathological or toxicological perspec-
tive, further enriching their contextual interpretation. While prior
works have leveraged patient-level similarities through prototype
learning [36, 38], intrinsic similarities within the visit and code
levels remain largely underexplored. We argue that modeling both
within-level similarities and cross-level hierarchies offers signifi-
cant potential to improve healthcare predictions by fully capturing
the complex semantics in EHR data.

To effectively capture both the hierarchical structure and the
intrinsic similarities within EHR data, we propose ProtoEHR, a hi-
erarchical prototype learning framework for healthcare predictions.
We first apply large language models (LLMs) to construct a medical
knowledge graph (KG) that captures the rich semantic relationships
among medical codes, thereby enhancing the code-level modeling.
Subsequently, building on the medical KG, we develop three spe-
cialized local encoders to model information at the code, visit, and
patient levels, in alignment with the natural structure of EHR data.
At each level, we introduce a novel prototype-based encoder to cap-
ture intrinsic similarities among objects and enhance the quality
of representation through shared information. The patient-level
representation, together with the learned prototypes from all three
levels, is then fed into a customized hierarchical fusion module that
integrates information across levels. The output of this module is
finally passed through a linear projection layer to generate task-
specific predictions. This architecture not only enhances predictive
performance across clinical tasks, but also improves interpretabil-
ity by highlighting the relative contributions of code-, visit-, and
patient-level information to corresponding tasks. In summary, our
contributions are as follows:

e We propose ProtoEHR, a novel hierarchical prototype learning
framework that integrates prototype learning and hierarchical
representation learning to model both within-level similarities
and cross-level hierarchies in EHR data.

e We develop an interpretable mechanism based on hierarchical
prototypes and conduct both qualitative and quantitative analy-
ses to provide valuable insights into how different levels of the
hierarchy contribute to clinically meaningful outcomes.

e We conduct extensive experiments on two real-world datasets
across five prediction tasks, where ProtoEHR consistently achieves
strong performance, outperforming state-of-the-art baselines.

2 Preliminaries

Here we introduce the mathematical definition of the EHR dataset
and medical KG, as well as the research problem.

Definition 1 (EHR Dataset). An EHR dataset D = (C,V) is
Neode
i=1

information V = {V; }f\i 1» Where N4 and N are the total numbers
of unique medical codes and patients in the dataset, respectively. For
each patient i, “V; is an ordered sequence of hospital visits, defined

asV; = (Vi1 -,V |v,)), where |'V;| denotes the number of visits.

composed of a set of medical codes C = {c;} and hospital visit
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Each visit V; j contains multiple medical codes recorded during

that visit, denoted as Vj j = {c; jx € C}l:ijl, where |V} j| denotes
the number of medical codes associated with the visit, and ¢; j x
denotes the k-th medical code recorded in the j-th visit of patient i.

Definition 2 (Medical KG). A medical KG is defined as G =
(C,R,F), where C and R are the sets of entities and relations,
respectively. The fact set is given by & = {(cp, 7, ¢t)|cp, ¢ € Cor €
R}, where each triplet (cp, 1, ¢;) indicates that a medical code cy, is
related to another one c; through relation r.

Problem 1 (EHR-based Healthcare Prediction). Given an
EHR dataset D = (C, V), the objective of EHR-based healthcare
prediction is to learn a patient-specific representation and predict
the corresponding clinical outcome. For each patient i with histori-
cal records V;, the prediction is performed using a function/model
f, formulated as §; = f(D, i, V;), where §; represents the predicted
outcome. The nature of §j; varies depending on the specific predic-
tion task, e.g., § € {0, 1} for mortality prediction,and § € {1,--- ,K}
for length-of-stay prediction with K discrete classes.

3 Proposed Method

Figure 1 presents an overview of our proposed ProtoEHR frame-
work. It consists of three main stages: building the medical KG to
exploit the relationships between medical codes in the EHR data;
learning hierarchical representations and incorporating shared in-
formation with prototypes; and fusing the extracted patient repre-
sentations with the learnt hierarchical prototypes for the prediction
of healthcare outcomes. The structure and details of each of these
stages are discussed below.

3.1 Medical Knowledge Graph Construction

To take advantage of the rich medical knowledge stored within the
relationships between the medical codes, we constructed a medical
KG with the diagnosis, procedure, and prescription codes in the
dataset, as shown in Figure 1a. Since the numerous meaningful rela-
tionships therein are overwhelming for human experts to identify,
we leverage powerful LLMs for automatic construction [12, 37].

Existing biomedical KGs, such as the UMLS-KG [3], could be
used to incorporate medical knowledge but there is a possible mis-
match between its ontologies and the medical code set C, thus
requiring further processing. Closed-source LLMs like GPT-4 [1]
demonstrate strong capabilities in automatically retrieving triplets
for KG construction but are prohibitively expensive when dealing
with large entity sets, such as the medical code set in our case. In
contrast, open-source LLMs, such as the Llama series [8], offer a
more cost-effective alternative but have weaker retrieval capabili-
ties. To balance quality and efficiency, we employ an open-source
LLM to retrieve triplets, a closed-source LLM to train a classifier for
filtering out false triplets, and a clustering-based approach to refine
the relations. This hybrid strategy ensures that the constructed
medical KG remains both expressive and robust. The three steps
for KG construction are detailed as follows:

Retrieval. To begin with, we use an open-source LLM (Llama3-
70B [8]) denoted as LLM; to discover the semantic relationships
within the medical codes. Taking each pair of the medical codes in
the medical code set C as input, LLM; identifies the set of plausible
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(a) Medical KG Construction
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(b) Hierarchical Representation Learning

' o ' ) )  \ ‘o
Iy ° - o - h]
o a -] 2 ] =2
0 o 0 o 0 o
o g o | [grC_FeplgrtCtTy |
m e ol e ml |8 T
2 4 2 o e =) (-2 A - 6'
a coo o 5 a Q a o
8 2 8|8 gl (8| = |3
] 500 o . 8 m S m I
B b - 8 sl la] 2 |3 |8] © 8
& & 2 o S =l e o — T
iy Hypertension - o ~ ° 8 o ‘:n
_— - r _— -
ﬁ -, [ ) < =) -] O — °
- - O m Q O & o A-Al S 2
Medical KG Construction “EHT e O = oA = 0 -
-~ A
Q99 2
Retrieval Cleaning Refinement
ﬁ (c) Proto-based Encoder (d) Hierarchical Fusion Legends
o i Step 1: Prototype Learning Q D
ementia w/o prototype
K
Insulin. O O . knowledge
ith tot:
Type 2 Head CT Scan Q | oype
Diabetes |
K . earnable
Glucose  Hydralazine ) prototypes
. Step 2: Prototype Infusion vV enhanced
Type1 Chest X-ray Aspirin Z prototypes
Diabetes 4 Q I element-wise
O K sum
Hypertension matrix
2 v ® multiplication

Figure 1: The architecture of our proposed ProtoEHR framework. (a) A set of medical codes in EHR data is used to construct
a medical KG with LLMs via three stages: retrieval, cleaning, and refinement. (b) Taking the constructed medical KG as
well as patient information as input, hierarchical representations at the code, visit, and patient levels are learned. The local
encoders take the representation of the previous level and learns a prototype-free representation. This is then used as input
to the proto-based encoder to infuse prototype knowledge into the representation. (c) Prototype-based encoder consists of
prototype learning and prototype infusion, where enhanced prototypes are first obtained and the representation is updated with
these enhanced prototypes. (d) Hierarchical fusion aggregates the learned patient representation with hierarchical prototype
knowledge. “Proto-based” is the abbreviation for “prototype-based”.

triplets, #7. Denoting the pair of codes as ENTITY; and ENTITY,,
the extraction process can be expressed as:

LLM; .
Prompt, (ENTITY, ENTITY;) ——— (ENTITY;,Relation, ENTITY,)

Cleaning. To improve the quality of the retrieved triplets in
%1, we further employ a closed-source LLM (GPT-4 [1]) via the
OpenAl API, denoted as LLM,. This model curates a subset of
triplets, ;' C 771, by assessing their validity. While 77 is designed
to be comprehensive, ensuring that no meaningful relations are
overlooked, 7' prioritizes accuracy, filtering out false or misleading
relations to maintain the integrity of the constructed KG. The subset
curation process can be expressed as:

. LLM,
Prompt, (ENTITY{,Relation, ENTITY;) —— True/False

We take the triplet subset 7, and the associated labels from LLM>

to train a classifier fi to clean the remaining triplets 7 \ 7. This

identifies the plausible triplets in a time- and cost-effective manner,

producing the cleaned triplet set 7.

Refinement. The triplets retrieved and filtered through LLMs
often contain lexically similar but distinct relations, such as is
treated with and is treated using, which should be unified
for effective representation learning in the medical KG. Following
[12], we first extract word embeddings for all relations using a

pre-trained language model (BERT [17]) and apply agglomerative
clustering [24] to group lexically similar relations. However, lexical
similarity does not always equate to semantic similarity—relations
with opposing meanings may differ by only a few words, e.g., be
not typically associated with and be often associated
with. To address this, we leverage an open-source LLM to detect
and refine clusters containing semantically contradictory relations.
Finally, we obtain the high-quality triplet set ¥ for medical KG.

The three-step process ensures the construction of a more ex-
pressive and robust medical KG, which serves as the foundation for
subsequent model stages. Further details on the reliability of the
generated KG are provided in Appendix B.

3.2 Hierarchical Representation Learning

Building on the medical KG, we design a hierarchical representation
learning process, which can be seen in Figure 1b. To obtain code-
level representations, we use the medical KG G = (C, R, ) along
with patient data V; as input to the local encoder at the code level.
Specifically, we employ a multi-relational graph convolutional net-
work, CompGCN [29], to iteratively update the attributes of entities
and relations with global medical knowledge. The representations
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are updated as follows:

1 1 -1 1-1 1 [ I-1
cp=0 Z Wed(e, )|, = Wi L ()
(u,r;)ENy

where cf, and rf denote the layer-I representations of entity v and
relation i, respectively. Welnt and erel are the learnable weight ma-
trices for updating entities and relations at layer [, while o denotes
an activation function. The set N, consists of the neighbors of
entity v connected via the associated relations r;. The function ¢
represents the circular correlation.

After global message passing, the updated representations of
medical codes are processed by the code-level prototype-based
encoder, PEnc®(-), which incorporates shared information across
codes through prototype learning. The details of this prototype-
based encoder are provided in Section 3.3. Following this step, we
obtain the updated code representation, denoted as ¢; j € R,
where d is the embedding dimension, for the k-th medical code
recorded in the j-th visit of the i-th patient.

The visit-level representations are obtained by passing the
code representations into the visit-level local encoder. Here we
simply use average pooling, and the representation for j-th visit of
i-th patient is calculated based on the representations of medical
codes recorded in this visit:

) 1 [ Vil
T il kzl Lk

@

’
L
PEnc®(-) with the updated visit representation v; ; obtained.

To obtain the patient-level representations, we account for
the temporal sequence of multiple visits and employ a Transformer-
based encoder to capture interactions among them. Given that re-
cent visits have a stronger impact on future healthcare predictions,
we use the representation of the last visit after the Transformer
encoder as the patient-level representation p;. This representa-
tion is further enhanced through the patient-level prototype-based
encoder, PEnc(-). This enables us to obtain the updated patient
representation p;.

Similarly, o] . is fed into the visit-level prototype-based encoder

3.3 Prototype-based Encoder

We now provide a detailed explanation of the prototype-based en-
coder PEnc(-), which is applied at all three levels of the hierarchy.
This module (Figure 1c) consists of two key steps: prototype learn-
ing and prototype infusion.

Prototype Learning. The first step takes the representations
of objects (codes, visits, or patients) within the same level and
learnable prototypes as input. For each level of the hierarchy, the
prototypes are randomly initialized and the number of prototypes
is a hyperparameter. Without loss of generality, let the input repre-
sentations be denoted as X’ € R™*? and the learnable prototypes
as H € R'"Xd, where n is the number of objects, m is the number
of prototypes, and d is the embedding dimension. To enable proto-
types to absorb intrinsic similarities from the objects, we employ a
cross-attention mechanism, formulated as the equation below:

(HWQ) (X' Wi) T

Vd

H = Softmax( )X Wy, (3)
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where Wg, Wk, and Wy are learnable parameters. This mechanism
enhances the prototypes by integrating information from the ob-
jects at the corresponding level, enabling a more structured and
meaningful representation.

Prototype Infusion. With the enhanced prototypes obtained in
the previous step, the second step infuses the intrinsic similarities
captured by the prototypes into the object representations. For each
input object representation x;, we apply the similarity-weighted
summation idea for infusion [19], formulated as follows:

’ 1 S i : xz/' T’:!j
xi=x]+ p” Z a; jWrhj, with a; ; = Softmax(# ,
= I 111

where W represents learnable parameters, and a; j denotes the
normalized similarity between object x; and enhanced prototype
h j. The resulting prototype-infused object representations, X, are
subsequently used to compute representations at the next level in
the code-visit-patient hierarchy.

3.4 Hierarchical Fusion

We now detail the hierarchical fusion module used to generate
the final patient representation. The structure of this module is
outlined in Figure 1d. Specifically, for each patient i, the patient-
level representation p; is fused with prototypes from all three
hierarchical levels—code, visit, and patient—denoted as H®, H?, and
HP, respectively. This fusion is achieved using a cross-attention
mechanism, formulated as follows:

(pWS) (HW)T
va

The resulting level-specific representations {pf|t € {c,u,p}} are
then combined to form the final patient representation:

pf = Softmax( YH'WE, t € {c,0,p} (5)

exp(p! "wr/7)
DI {c,o,p} eXp(P;LTWF/T)

Pilf‘mal _ Z ,BtPf, with ; =
te{c,op}

Here, 7 is the softmax temperature, and f; represents the contri-
bution weight of each level, computed based on the normalized
similarity between the learnable vector wr € R? and pl? , thereby
determining the relative importance of information from each hier-
archical level to the prediction, enabling a more interpretable and
effective modeling approach.

For healthcare prediction, the final patient representation is
passed through a linear projection layer to generate the predicted
outcome, i.e., §; = Linear( p?nal). The whole framework is trained
with a task-specific loss, which depends on the prediction task [12]:
binary cross-entropy loss is used for binary classification and multi-
label classification tasks, while cross-entropy loss is applied for
multi-class classification tasks.

(6)

Table 1: Basic information about MIMIC-III and MIMIC-IV
after preprocessing. c, v, and p are the abbreviations for code,
visit, and patient respectively. #v/p and #c/p separately de-
notes the average number of visits per patient and the average
number of codes per visit.

Dataset  #Patients #Visits #Codes #v/p #c/v

MIMIC-IIT 5,453 14,330 657 2.63  39.7
MIMIC-IV 51,473 167,042 708 325 216
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4 Experiments

4.1 Experimental Setup

Datasets. We use two real-world medical datasets, MIMIC-III
[15] and MIMIC-IV [14] for experiments. The basic statistics of the
datasets are presented in Table 1. For MIMIC-II, a sliding window
is employed to augment the sample size for all tasks other than mor-
tality prediction. We split both datasets into train/validation/test
sets with a ratio of 6:2:2.

Tasks and Metrics. Five tasks were used for evaluation:

e Mortality Prediction. An imbalanced binary classification task
with label y; € {0, 1} where y; = 1 indicates mortality. For a pa-
tient with |V;| visits, the model takes data (Vi,1, ..., Vj|v;-1)
to predict if the patient is deceased in the visit V|4, and if it
occurs within 30 days from the visit V; |4, 1.

e Readmission Prediction. A binary classification task with label
y; € {0, 1} where y; = 1 indicates readmission. For a patient with
|Vi| visits, the model takes data (Vi 1, ..., Vj|4;-1) to predict
if visit V; |9, occurs within 30 days from the visit Vj |41

o Length-of-stay Prediction A multi-class classification task
with 10 labels indicating the duration of the patient’s hospital
visit y; € {0, 1, ..., 9}. For a patient with |V;| visits, the model
takes data (Vi1, ..., V) to predict the duration of the visit
Vi, |v;|- The label y; = 0 represents discharge within one day,
the labels y; € {1, ..., 7} indicate that the duration of stay is
{yi<t<y+ 1}7y,~=1 days, the label y; = 8 means the patient’s
stay is 7 < t < 14 days, and the label y; = 9 indicates that the
stay is longer than 14 days.

e Drug Recommendation A multi-label classification task where
the model takes data (Vi1, ..., Vjjq5-1) U (Vith’il to predict
the prescriptions on visit V; |q;,|. Notation (Vi:I’Vi\ denotes the
data of the last visit excluding prescription codes. The output
is a multi-hot vector §; € R?0? where the set of prescriptions
contain 201 elements, the last dimension is used to indicate no
prescriptions on the last visit.

e Phenotype Prediction A multi-label classification tasks where
the model takes data (V;1, ..., Vjj4,1-1) U V], to predict

i|V;
the phenotypes on visit Vj |4;,. Notation (vitl,(v,»ll dlenotes the
data of the last visit excluding diagnosis codes. The output is a
multi-hot vector §j; € R?® where the set of phenotypes contains
25 diagnoses [11], and the last dimension is used to indicate no

phenotype is present on the last visit.

Three different metrics were used across tasks for performance
evaluation. The area under the receiver operating characteristic
curve (AUROC) quantifies the model’s ability to differentiate be-
tween classes; the area under the precision-recall curve (AUPRC)
is similar to AUROC but emphasizes measuring performance on
separating imbalanced classes; the F1 score is a balance between
precision and recall, capturing the importance of false positives and
false negatives. For these metrics, we report both the performance
mean and the standard deviation (std) of bootstrapping 100 times.

Baselines. We compare the performance for different tasks
against several representative baselines: Deepr [22], AdaCare [21],
GRASP [36], StageNet [9], GraphCare [12], and KerPrint [33]. For
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each baseline, we perform hyperparameter tuning based on the rec-
ommended search ranges specified in their original papers to ensure
a fair and competitive comparison. For methods that incorporate a
KG in their modeling, we use the same medical KG constructed in
our framework to ensure consistency across evaluations.

Implementation. In our implementation, the Adam gradient
optimizer and ExponentialLR scheduler are used. To optimize model
performance, hyperparameter search is performed using grid search.
It should also be noted that this can be implemented more efficiently
with Bayesian-based search methods such as Optuna [2]. The pa-
rameters considered include CompGCN layers {1,2,3,4}, transformer
encoder depth {1,2,4}, number of code-level prototypes {32,64}, num-
ber of visit-level prototypes {4,8,16,32}, number of patient-level
prototypes {2,4,8,16}, dropout probability {0.1, 0.3, 0.5}, and learning
rate {0.0001, 0.0005, 0.001}. We use early stopping to prevent over-
fitting for all models, and AUPRC on the validation set is used as
the early stopping metric for all tasks apart from the length-of-stay
prediction, for which we use AUROC. The early stopping threshold
is set to 20 epochs. The implementation codes are available here?.

4.2 Performance Evaluation

Table 2 displays the results for ProtoEHR and the baselines on both
datasets across five tasks. Our approach outperforms all baselines
on almost all of the tasks, demonstrating the effectiveness of mod-
eling within and across hierarchical levels for prediction. We can
observe that on MIMIC-III, ProtoEHR outperforms the baselines
most noticeably in predicting mortality, achieving a 20.7% AUPRC
improvement. On MIMIC-IV, our approach achieves the best results
in predicting mortality and length of stay, achieving a 17.2% AUPRC
improvement and a 7.4% F1-score improvement, respectively. Since
mortality prediction is a patient-level task (as explained in Sec-
tion 4.4.1), achieving superior performance on this task shows that
explicitly modeling the hierarchical structure and incorporating
patient-level similarity are crucial in helping the model distinguish
patients of imbalanced classes.

Among the baselines, GRASP is better at predicting mortality
due to its use of prototypes at the patient’s level, further demon-
strating the importance of capturing intrinsic similarity in the EHR
data. In comparison, KerPrint achieves competitive performance on
drug recommendation and phenotype prediction because it models
the complex relations within the code level and integrates it directly
with the learned patient representation, enabling the model to apply
code-level knowledge to code-level tasks. Regarding GraphCare,
its original implementation relies on GPT-4 to retrieve all possi-
ble knowledge triplets associated with each entity, resulting in a
highly enriched knowledge graph that includes many entities not
present in the original EHR dataset. This external augmentation
introduces additional medical knowledge but is computationally
expensive and not feasible in our setting. To ensure fairness and
reproducibility, we use GPT-4 to generate a smaller set of triplets,
limiting the entities to medical codes only. The relatively lower per-
formance of GraphCare under our KG construction suggests that
its effectiveness is heavily dependent on the richness of external
knowledge. In contrast, our proposed ProtoEHR achieves robust

Zhttps://github.com/caizicharles/ProtoEHR git
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Table 2: Results comparison for five tasks on MIMIC-III and MIMIC-IV. Best results are in bold and the second best results are
underlined. Performances are reported in the form of mean(std). ProtoEHR achieves best or second-best performance on 24/24
metrics across all five tasks on two datasets, demonstrating robust generalization across datasets and clinical prediction targets.

Task 1: Mortality Prediction Task 2: Readmission Prediction Task 3: Length of Stay Prediction

Model MIMIC-III ‘ MIMIC-IV MIMIC-III ‘ MIMIC-IV MIMIC-III ‘ MIMIC-IV

AUPRC AUROC ‘ AUPRC AUROC ‘ AUPRC AUROC ‘ AUPRC AUROC | AUROC F1 ‘ AUROC F1
Deepr 82424 674444 | 145,59 882116 | 309121 591420 | 543509 70.6,45 | 723109 222112 | 80.8102 28.0405
AdaCare 6.0116 615155 | 12.7425 884415 | 314422 60.1,,, | 544,09 70.6,05 | 73.0,05 22.7,1, | 824,90, 297,44
GRASP 92,31 685,,, | 13.6527 88.8,,, | 295121 57.0x21 | 53.0009 69.6106 | 712409 181110 | 8l.1x02 26.0404
StageNet 55418 594445 | 13.2429 87.3117 | 35.2427 60.0420 | 50.2410 68.7+06 | 71.9409 223411 | 81.3402 27.4405
GraphCare | 5.6+15 584443 | 92422 80.8+19 | 31.7425 585422 | 52.3109 69.1406 | 65.0408 13.4407 | 692404 19.6404
KerPrint 5.0413 588447 | 10.6425 83.7422 | 2944200 57.8419 | 53.4109 70.2405 | 7091099 21.6412 | 779403 26.7404
ProtoEHR | 11137 71.4s31 | 17.0:33 89.2:13 | 33.0,,c 617125 | 54.5:00 70.9:05 | 75.3x00 23.6:12 | 83.2x02 31.9:05

Task 4: Drug Recommendation Task 5: Phenotype Prediction
Model MIMIC-III ‘ MIMIC-IV MIMIC-III ‘ MIMIC-IV

| AUPRC AUROC  F1 | AUPRC AUROC  F1 | AUPRC AUROC  F1 | AUPRC AUROC  F1
Deepr 67.0106 91.0,53 50.9407 | 70.6102 95.6100 56.6403 | 63.4408 83.6104 429109 | 77.5x03 92.6101 609104
AdaCare 62.6107 880404 445105 | 693102 94.7101 56.0403 | 57.6+08 80.6404 31.5+09 | 759403 91.9401 5994104
GRASP 63.0407 89.7403 45.8405 | 68.9402 952400 554403 | 57.6407 80.1105 319409 | 76.2403 9194101 60.7404
StageNet 66.0106 904403 50.7407 | 70.5402 95.4100 574403 | 62.6407 83.1:104 423109 | 77.5403 92.6101 60.4404
GraphCare | 659106 84.3104 43.7109 | 647402 944101 46.6402 | 624506 82.5104 43.8407 | 73.0403 90.0101 51.3404
KerPrint 679,07 91.0,05 523,07 | 721,05 959:00 58.7,5, | 67.8,05 854,04 502110 | 78.7503 93.3:01 63.6,4
ProtoEHR | 70.6106 91.7:03 54.4:08 | 724202 95.8,0; 60.0102 | 68.2:07 86.1x04 456, | 78.5,.05 93.2.0, 64.2104

performance by fully leveraging both within-level similarities and
cross-level hierarchical structures in the EHR data, demonstrating
effectiveness even with a lightweight and clinically grounded KG.

4.3 Ablation Study

Detailed ablations are performed to analyze the contribution of the
medical KG constructed, as well as the prototype learning modules.
Five sets of ablations are performed, including ProtoEHR without
medical KG, without code-, visit-, and patient-level learnable proto-
types, and without the hierarchical fusion (HF) module. As shown
in Table 3, removing any of the components from the model results
in poorer performance. From the results, we can see that removing
the learned medical KG causes a 47.6% decrease in AUPRC for the
prediction of mortality. This is clear evidence that using medical
KG to enhance the modeling within the code-level is critical for
the prediction of the EHR and that our KG construction process
is effective. In addition, removing code-, visit-, and patient-level
prototypes results in a decrease of 5.3%, 20.6%, and 20.0% AUPRC
for the task, providing evidence that capturing intrinsic similarities
within each level also benefits predictions.

As the importance of the medical KG is clear, we further per-
form ablations of the different types of edges in the KG to analyze
individual contributions from the medical relations. Figures 2a to
2e visualize the results of edge removal in MIMIC-IV. We can ob-
serve that removing P < P edges has the most noticeable effect
compared to removing the edges of a single type of code. This is
particularly significant for the prediction of mortality, resulting in
a decrease in AUPRC 30%. Procedures often indicate the severity of

the condition, this knowledge is strengthened by linking between
procedures, since procedures are generally applied simultaneously.
Among the experiments that remove the edges between different
types of codes, the removal of D <> P connections has the greatest
impact on three of the five tasks. Connections between diagnosis
and procedure codes reveal the motivations behind the procedures.
Tasks such as phenotype prediction require this knowledge to infer
the diagnoses behind the visit, it is therefore reasonable for the
model’s predictive ability to decrease after detaching said edges.

4.4 Interpretability Study

The interpretability granted by hierarchical prototype learning in
our framework is two-fold: understanding which level of the hierar-
chy contributes the most to the predictions and the patterns that the
hierarchical prototypes capture. We conducted these experiments
in MIMIC-1V because it contains more patients, thereby producing
more stable and robust results.

4.4.1 Modeling Level Importance v.s. Tasks. As explained in
Section 3.4, the fusion weights {f; |t € {c,v, p}} represent the extent
to which prototypes at each level contribute to the final representa-
tion and evaluation task. Hence, by recording the fusion weights for
each sample in the test set, we can plot the average weights for each
task, as shown in Figure 3. To begin with, we can see that patient-
level prototypes are the most important for mortality prediction.
This is intuitive as mortality prediction is a patient-level task, it
requires analyzing the health status of the patient as a whole to de-
termine whether the patient will be deceased within the time frame,
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Table 3: Ablation study of our proposed method for five tasks on MIMIC-IV. Notations w/o, Proto., and HF abbreviates without,
prototype, and hierarchical fusion respectively.

Task 1: Mortality Task 2: Readmission Task 3: LOS

Task 4: Drug Rec.

Task 5: Phenotype

Model AUPRC AUROC AUPRC AUROC AUROC F1  AUPRC AUROC F1  AUPRC AUROC F1
w/ ALL 17.0433 89.2413 54.5109 709405 83.2402 31.9405 72.4102 95.8401 60.0402 78.5+03 93.240.1 64.2404
w/o Medical KG 89415 86.7+18 52.1409 68.840.6 81.6402 29.2404 714402 954401 59.3+03 77.4403 92.6401 61.7404
w/o Code Proto.  16.1.3¢ 88.8415 52.64009 69.9105 82.5402 30.2.05 71.7402 95.540.1 60.0402 78.4103 93.2401 63.3+03
w/o Visit Proto. 13.5427 86.8+16 52.84009 69.310.6 82.8+0.2 30.3105 71.9402 95.6401 59.4+02 78.3+03 93.110.1 63.6404
w/o Patient Proto. 13.64128 86.3117 53.3409 70.2405 83.040.2 30.6405 713102 95.5+01 59.8402 78.1403 93.0401 63.6404
w/o HF 14.0426 88.3+15 54.2109 70.8405 83.0402 30.9405 72.4102 95.7+0.1 59.6403 78.3+02 93.1.01 62.3403
v 54.5 836 726 78.8

ole ©54.0 o222 o723 o8

§15 ESB.S 882.8 572_0 g78A0

S 2530 2824 377 2776
13 : 82.0 71.4 77.2
12 525 81.6 711

None D-D P-P M-M D-P D-M P-M
Removed Edge Type

(a) Mortality

NoneD-D P-P M-M D-P D-M P-M
Removed Edge Type

(b) Readmission

NoneD-D P-P M-M D-P D-M P-M
Removed Edge Type

(c) LoS

NoneD-D P-P M-M D-P D-M P-M
Removed Edge Type

(d) Drug

NoneD-D P-P M-M D-P D-M P-M
Removed Edge Type

(e) Phenotype

Figure 2: Bar plots of model performance for five tasks on MIMIC-IV when ablation is performed on the six different types of
edges in the medical KG. D, P, and M are the abbreviations for diagnosis, procedure, and medication/prescription respectively.
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Figure 3: Bar plots showing the contribution of code-, visit-,
and patient-level prototype knowledge in the hierarchical
fusion module for all five tasks on MIMIC-IV.

and the inclusion of patient-level cohort information improves this
assessment. Moreover, despite drug recommendation and pheno-
type prediction being code-level tasks, the level each task deems
important is different, most noticeably the contributions from the
visit-level for phenotype prediction. We hypothesize that this is
because diagnoses between visits are more correlated than drugs
between visits. To verify this statement, we calculate the Jaccard
score between the diagnoses/drugs of each patient’s visit and the
task label, and subsequently average the scores across patients in
the test set. The values obtained are 0.287 and 0.439 for drug recom-
mendation and phenotype prediction, respectively, supporting the
fact that visit-level information is more important for phenotype
prediction and therefore contributes more to predictions.

4.4.2 Prototype Importance Visualization. By analyzing the
information prototypes encode, we gain further insights into how
prototypes encode intrinsic similarity within each level to enhance
prediction. Figure 4 visualizes the importance of each prototype
in cross-attention for the prediction of the length of stay, where

[a) 0.75
2 o HEEe o NEER: o III
S s 1 z12- 0.50
'8 2- g 13- g 13-
E 29[l % 14. £ L0.25
8311 <151 3 15]
0123456789 0123456789 000

0123456789

LoS Label (Short - Long) LoS Label (Short - Long) LoS Label (Short - Long)

Figure 4: Heat maps of code-, visit, and patient-level pro-
totype importance against the length of stay task label on
MIMIC-IV. The five most important prototypes are displayed.

we selected the top five most important prototypes for analysis.
For all three levels, as the task label increases (longer stay), some
prototypes increase, whilst others decrease in significance in a
monotonic manner. This suggests that different cohort knowledge is
encoded by different prototypes, and for different patients, different
cohort knowledge is used for prediction.

4.4.3 Prototype Effectiveness. Looking at the top 5 most fre-
quent diagnosis and procedure codes present in the last visit of the
top 300 patients of each patient-level prototype, the information
that these prototypes capture could be inferred. The full results
can be seen in Table 4. The importance of patient prototype ID
0 increases from 0.0034 to 0.62 as the patient’s length of stay be-
comes longer, which can be validated by looking at the recorded
medical codes. Complications of Surgical Procedures or
Medical Care,Other Vascular Catheterization; Not Heart,
and Extracorporeal Circulation Auxiliary to Open Heart
Procedures are examples of these critical medical codes, generally
requiring longer stays as the condition is severe and recovery is
gradual. In contrast, since the importance of patient prototype ID
13 decreases from 0.18 to 0.0097 with increasing stay duration, the
associated codes should represent less severe medical codes that
typically require shorter hospital stays. As observed in the results,
Nonspecific Chest Pain, Alcohol-related Disorders, and
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Table 4: Top-5 diagnosis and top-5 procedure codes associated
with the top-300 patients sorted by patient-level prototype
importance for length of stay prediction on MIMIC-IV. First
row: ID 0; Second row: ID 13.

Diagnosis Codes Procedure Codes

Residual Codes; Unclassified |e Other Vascular Catheterization;
Essential Hypertension Not Heart

Disorders of Lipid Metabolism |e Extracorporeal Circulation Auxiliary
Complications of Surgical Pro- | to Open Heart Procedures

cedures or Medical Care o Enteral and Parenteral Nutrition

o Other Aftercare

Coronary Artery Bypass Graft

(CABG)
e Other OR Procedures on Vessels
Other
than Head and Neck
o Essential Hypertension o Other Diagnostic Procedures
o Nonspecific Chest Pain e Routine Chest X-ray
o Residual Codes; Unclassified |e Electrocardiogram
o Alcohol-related Disorders o Other Therapeutic Procedures
o Cardiac Dysrhythmias o Other CT Scan

Routine Chest X-ray are related to this prototype. Conditions
without complications are generally less complex, whilst results
from routine checkups are often examined later without the need for
the patient to stay, suggesting that this prototype captures medical
events with earlier discharge. In a clinical setting, this interpretable
characteristic of the model allows clinicians to pinpoint the medical
codes/conditions that may have resulted in the deterioration of the
patient’s health. From another point of view, if a certain prototype
repeatedly occurs for different patients, hospital management can
inspect the associated codes to prevent the occurrence of any device
malfunction or oversight.

To further quantify the effectiveness of the learned prototypes,
we perform a clustering experiment to test whether the learned
prototypes can be used to discover shared patterns in patients. For
each patient in the test set, we retrieve three importance vectors of
prototypes from the hierarchical fusion module—one correspond-
ing to each hierarchy level—with each vector encoding the relative
importance of that level’s prototypes (e.g., a visit-level vector of
length four reflects the attention weights of the four learned visit-
level prototypes). Subsequently, we apply K-Means clustering to
each set of prototype vectors. The silhouette scores are computed
for each cluster to measure the compactness and separation of the
resulting clusters. Knowing that our learned prototypes are posi-
tively correlated with the task labels, higher silhouette scores would
indicate that the prototypes effectively capture intrinsic similari-
ties among patients and form a clinical pattern that is beneficial
for prediction, thereby demonstrating their quantitative efficacy.
The results obtained for mortality and length-of-stay prediction
on MIMIC-1V are detailed in Table 5. In accord with the previous
analysis in Figure 4, patient-level prototypes play an important role
in mortality prediction, and three levels of prototypes contribute
equally to length-of-stay prediction.

5 Related Work

EHR-based Healthcare Predictions. Existing studies develop
various models for EHR-based healthcare predictions. Specifically,
GRAM [5] uses recurrent neural networks (RNNs) to capture the
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Table 5: Silhouette scores between prototypes of each level
for mortality and length-of-stay prediction tasks.

‘Code Visit Patient

Mortality 049 073 0.81
Length-of-Stay | 0.56 0.56 0.54

temporal dynamics of patient representations, while Deepr [22] and
AdaCare [21] apply convolutional neural networks (CNNs) for visit
information aggregation. StageNet [9] and MiME [7] further lever-
age both RNN and CNN to encode and combine visit embeddings
for final patient representations.

Recent studies leverage graph structures to capture the relations
between medical codes and visits for patient representation learning.
For example, GT-BEHRT [23] designs a graph transformer to better
capture implicit information in long visit sequences, with more
robust patient representations obtained. G-BERT [26] constructs a
medical ontology tree to account for the relations between medical
codes. Moreover, GraphCare [12], KerPrint [33] and SeqCare [32]
either construct personalized KGs or introduce external KGs as the
foundation for hierarchical representation learning, where learned
representations are subsequently used for healthcare predictions.
To further enhance the patient representations, GRASP [36] and
PRISM [38] introduce the prototype learning at the patient level
only and learn patient-specific prototypes for sharing information.

Due to the high-stakes nature of healthcare, offering interpretabil-
ity for EHR-based healthcare predictions endows trust in both pa-
tients and clinicians [20]. MedPath [34] offers interpretability by
encapsulating disease progression paths on the KG that connect
symptoms to diagnoses. KARE [13] first augments the patient’s
EHR context using a KG, and then leverages an LLM to analyze the
augmented context for interpretable reasoning chains. GraphCare
[23] computes attention weights for nodes in a KG to capture their
respective importance. Instead of using KGs, MedRetriever [35]
extracts patient-relevant segments directly from the unstructured
text, which serve as the rationale for model predictions.

The aforementioned studies underscore the importance of ex-
plicitly modeling the hierarchical structure of EHR data, while also
highlighting the need to capture intrinsic similarities therein. In
contrast to approaches that focus solely on patient-level similarity,
our method systematically incorporates intrinsic similarities at all
levels of the hierarchy. We construct patient representations by
progressively aggregating information from the code level, through
the visit level, and ultimately to the patient level. Additionally, the
learned prototypes capture clinically meaningful patterns, enhanc-
ing both predictive performance and interpretability.

Prototype Learning. Prototype learning refers to a set of ma-
chine learning techniques that identifies or extracts a representative
“prototype” reflecting the overall information of data within a spe-
cific group. This approach has been widely adopted in computer
vision. For instance, ClusterFormer [19] iteratively learns proto-
types of image features using cross-attention to resemble expecta-
tion maximization. ProtoPNet [4] uses prototypes as weights for
a CNN to highlight different properties of the images. ProtoGAN
[18] acquires class prototypes by training a network to map class
features to a lower-dimensional space. Another method [10] applies
the moving average to update class prototypes to use as anchors



ProtoEHR: Hierarchical Prototype Learning for EHR-based Healthcare Predictions

for contrastive learning. Motivated by its advantage of capturing
shared information, we introduce hierarchical prototype learning to
capture the intrinsic similarity at all three levels, as well as directly
enhancing the patient representation at the final fusion stage.

6 Conclusion

In this work, we proposed a novel and interpretable EHR predic-
tion framework that takes advantage of prototype learning and
hierarchical learning to explore the within-level similarities and
cross-level hierarchy for healthcare prediction. Comprehensive ex-
periments on mortality prediction, readmission prediction, length
of stay prediction, drug recommendation, and phenotype prediction
were conducted across two datasets to determine the effectiveness
of the model. Our interpretability study supports the efficacy of
using prototype learning to unravel the reasons behind model pre-
dictions, which includes examining the contributions of each level
and the importance of hierarchical prototypes toward the output.
In future work, we aim to enhance the construction and learning
of medical KGs to better capture the correlations between medical
codes and task labels, and to incorporate additional clinical infor-
mation such as laboratory test results to further improve predictive
performance while validating on a more diverse set of datasets.
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A Details of Medical KG Construction

During the retrieval stage, we use an open-source LLM (Llama 3
70B [8]) to extract candidate relations, yielding 398,555 triplets. As
these include spurious links, a cleaning stage follows: we ask GPT-
4 to label a subset of 30,000 triplets with binary validity, of which
14,378 are judged true. We then train a classifier on this labeled
subset by first embedding each triplet with BERT [17] and feeding
the embeddings to a multilayer perceptron (MLP) to predict validity.
Applying the trained classifier to the remaining unlabeled triplets
marks 122,422 as likely true at a probability threshold of > 0.5.
For the final KG, we combine all 14,378 GPT-verified true triplets
with the top 71,890 classifier-scored triplets (the highest-probability
subset, sized at 5x the GPT-verified positives), resulting in a KG
with 86,268 triplets and 713 entities (including one for padding).

The aim of the final refinement stage is to reduce the number
of unique edges to obtain generalized representations of medical
knowledge. We apply agglomerative clustering with ward linkage to
merge edges based on their word embedding distance. This method
is effective in recognizing edges with similar names. However, this
also introduces the problem that semantically opposing edges could
differ by a single word, but could still be grouped as similar. Hence,
we use the same LLM as in the second stage to determine whether
any cluster contains semantically opposite edges. Triplet refinement
reduces the number of unique edges from 2,330 to merely 269,
significantly improving the robustness of the constructed medical
KG. Note that the directed edges are subsequently reversed for
the CompGCN layer. All the prompt designs are provided in the
implementation codes.
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B LLM Reliability for KG Construction

We assess the reliability of our medical KG constructed using LLMs,
focusing on its efficiency, stability, and robustness.

Our approach exhaustively retrieves candidate relations by query-
ing each code pair using an LLM. This offline procedure ensures
comprehensive coverage without incurring repeated computational
costs. The resulting KG centers on general semantic relations (e.g.,
“causes”), forming a strong foundation for downstream healthcare
tasks. To address concerns about the reliability of LLM-generated
facts, we implemented a multi-stage filtering and refinement pro-
cess to eliminate low-confidence or implausible triplets. These steps
contribute to a high-quality, consistent, and non-redundant KG.

In our framework, Llama-70B is used to extract relations between
medical code pairs. We evaluated its stability by randomly selecting
100 codes from the set of medical codes C to generate all possible
code pairs and extract the linking relation five times for each pair.
We then embedded these relations using BERT and computed cosine
similarities between the five extractions for each pair. A mean and a
standard deviation were obtained for cosine similarities within the
five extractions. The overall mean cosine similarity across all code
pairs was 0.93 with a standard deviation of only 0.05. These results
demonstrate that Llama produces highly consistent outputs, and
any sampling randomness is negligible. Compared to traditional KG
construction, which relies heavily on manual curation by domain
experts, our LLM-based strategy offers a scalable and cost-effective
alternative for clinically meaningful graphs.

C LLM for Direct Healthcare Predictions

In addition to the compared baselines, one might question the ef-
fectiveness of using LLMs directly for healthcare prediction tasks.
Here, we use prompts directly with Llama models to perform mor-
tality prediction on MIMIC-III, which are shown in Table 6. Both
Llama-8B and Llama-70B are unsuitable for directly performing
mortality prediction when compared to the F1-score achieved by
ProtoEHR of 49.1. The smaller 8B model produces invalid outputs
at a much higher rate compared to the 70B model, highlighting that
prompt engineering alone is insufficient to mitigate these issues
in smaller models. Even though the 70B model performs slightly
better, its prediction reliability remains unsatisfactory, and the asso-
ciated deployment costs further discourage its practical application.
From the Llama output, we also observe that both models exhibit a
bias that frequently predicts patient death, resulting in a high false
positive rate. These results reinforce the necessity of our tailored,
data-driven approach.

Table 6: Performance of Llama for mortality prediction on
MIMIC-III. T denotes temperature.

Model (T) ‘ F1Score | Error Rate
Llama-8B (T=0) 0.06 14.56%
Llama-8B (T=0.7) | 0.05+0.01 25.61%
Llama-70B (T=0) 0.08 0.09%
Llama-70B (T=0.7) | 0.07+0.00 3.91%
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GenAlI Usage Disclosure

LLMs are used during this research for two main purposes: (1)
medical KG construction by proposing triplets between medical
codes and determining whether the triplets are true or false, and
(2) performing grammar and clarity checks during the preparation
of the paper. The LLM-generated KG has been validated from mul-
tiple aspects, as shown in the experiment section and appendix.
No text was generated without human review, and all research
contributions are the result of the authors’ original work.
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