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A B S T R A C T

Wearable electrocardiogram (ECG) devices, with their outstanding advantages of comfort and portability,
play a vital role in daily arrhythmia monitoring outside the hospital. However, the embedded CPU used
in most devices greatly limits the deployment of high-performance models. Therefore, it is increasingly
important to develop lightweight neural networks and reduce computing requirements to achieve edge
deployment of wearable devices. Knowledge distillation (KD) offers a promising solution for compressing and
deploying lightweight neural networks by transferring knowledge from complex teacher models to enhance
the performance of compact student models. However, conventional KDs give less thought to selecting strong
and accessible teachers for students, which can lead to suboptimal outcomes. To mitigate such limitations,
in this study, we propose a multi-teacher self-distillation (MTSD) framework to improve the performance
of lightweight arrhythmia detection models in wearable ECG monitoring. Specifically, we first leverage
representations from teacher models via similarity of activation patterns in the intermediate layer, to capture
inter-category and inter-channel relationships, which then incorporates an MTSD framework to ensure the
correctness and acceptability of teacher supervision. Furthermore, the self-distillation framework facilitates
knowledge sharing across different layers within the model, thereby enhancing overall performance. Extensive
experiments conducted on three medical signal datasets demonstrate the superiority of the proposed method
over existing state-of-the-art distillation methods, achieving the AUC/accuracy by 0.922, 0.908 and 87.05%.
Notably, the model processed a 12-lead 10-s ECG signal in only 1 ms on an NVIDIA Jetson Orin NX.
. Introduction

With the rise of wearable ECG devices for arrhythmia monitor-
ng, their portability and real-time monitoring capabilities are gaining
idespread attention. Currently, long-term ECG monitoring relies on
lectrocardiogram signals captured on the human body surface by
earable ECG devices, including 12-lead wearable ECG undershirts
nd wearable ECG patches. However, their limited computational re-
ources challenge the deployment of complex neural networks. Thus,
ompressing and optimizing lightweight neural networks for efficient
igh-performance applications on these devices is becoming increas-
ngly crucial. Knowledge distillation (KD) [1] stands out as a promising
olution for model compression technique that enhances the perfor-
ance of lightweight models by transferring the insights, i.e., internal
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representations, of an over-parameterized teacher model to a compact
student model [2].

Traditional KD relies on pre-trained large models to guide the train-
ing of student models, known as offline distillation [3–5]. To achieve
more advanced distillation results, previous studies have proposed a
novel distillation model where two or more networks dynamically learn
from each other in a peer-to-peer manner during the training process,
termed online distillation [6–8]. This enables multiple networks to
emulate each other’s predicted probabilities, facilitating a two-way
transfer of knowledge. Unlike offline distillation, online distillation
does not depend on a pre-trained teacher model but often produces
superior results. A specialized case within online distillation is re-
ferred to as self-distillation (SD) [9,10], eliminating the need for an
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additional second network. Instead, the model’s output serves as the
target, guiding the model to self-learn and enhance overall general-
zation performance. In terms of training objectives, KDs typically use
oth real and soft labels of the teacher model to jointly supervise
he optimization of the student model, and some studies have used
ntermediate layer features to allow students to learn pixel-level feature
epresentations for more complete knowledge [11]. However, wear-

able ECG signals are inherently non-smooth and contain substantial
heterogeneous noise, making it challenging for networks to effectively
capture critical information. Consequently, the loss of information
during model compression may be more pronounced when traditional
online distillation methods are directly applied to ECG signal-based
arrhythmia detection algorithms.

1.1. Motivation and contribution

In online distillation, there are three key issues to consider for
ransferred knowledge: (i) whether the teacher’s guidance is correct,
ii) whether the knowledge is easy for the students to learn, and (iii)
whether the knowledge can represent the high-level semantic informa-
tion of the teacher’s model and ensure the stability of the KD process.
Specifically, since in online distillation, the teacher model and the
student model are optimized simultaneously in a mutually reinforcing
manner, for some instances, the teacher model may not be able to
predict correctly, and consequently, the student model guided by that
soft label will produce sub-optimal results. Subsequently, the gap in
model architecture is another barrier that prevents well-represented
student model learning. Seyed et al. [12] illustrated that a larger
eacher model does not result in a better student model and introduced

assistants to bridge the gap between teacher and student model ar-
chitectures. Essentially, the difference in model capacity represents a
ap in representational power, and for overly large teacher models, it
s difficult to make a compact student model effectively capture the
igh-level representations in the teacher model. Finally, transferring
nowledge by aligning the middle layer representation of the teacher–
tudent model may not converge in online distillation. Inseop et al. [7]
llustrated that the online distillation process is not suitable due to the
lexible changes in the feature maps that occur in each training round,
nd that directly aligning the feature maps would have a negative effect
n the optimization of the model. Additionally, the middle layer feature
aps of the model have redundant information and are not highly

ondensed knowledge.
At present, some methods have been proposed to try to guide

tudents to get the right teacher guidance [13–15] or make the trans-
ferred knowledge more acceptable [16,17]. However, these methods
ften focus on only a single dimension. Although these methods have

achieved certain results in their respective goals, they fail to take
into account both the correctness and acceptability of knowledge at
the same time, which limits the distillation effect. Therefore, how to
achieve the coordinated optimization of correctness and acceptability
in knowledge distillation is still a key issue that needs to be solved
rgently.

To address the above challenges, we propose a novel solution to
nable the student model to learn the teacher model’s class activation

pattern instead of aligning the feature map, using adaptive weighting to
ssign greater learning bias to correctly guided teachers and easier-to-
earn knowledge, and combining it with a self-distillation framework
o further attenuate the knowledge loss due to differences in model

architectures.
The contributions of this article can be summarized as follows:
(1) We propose a multi-branch self-distillation framework that

everages deep layers as teacher supervision for shallow layers, thereby
mitigating architectural discrepancies and simplifying the training pro-
cess.

(2) We investigate a strategy to assign the correct teacher and easy-
o-learn knowledge to the student model through coefficient-weighted
2 
distillation loss, adaptively adjusting the importance of the two weight-
ing coefficients at different training stages by optimizing the learning
rocess.

(3) Instead of overly redundant feature maps to supervise the opti-
ization of the student model, the dependency between category and

hannel activation is refined by capturing the differences in activation
atterns of different categories in the middle layer of the teacher model.

The rest of the paper is organized as follows: Section 2 describes the
related work, Section 3 details the methodology and experimental setup
proposed in this study, Section 4 presents the experimental results,
Section 5 discusses the results, and finally, Section 6 provides the
onclusions.

2. Related work

2.1. Deep learning based arrhythmia detection

To date, numerous studies have demonstrated the reliability of
deep learning (DL) methods for ECG signal analysis and ECG arrhyth-
mia detection. A Transformer-based deep neural network, ECG DETR,
was proposed by Hu et al. [18] to perform beat-by-beat location
and category detection of continuous single-lead ECGs by capturing
the dependencies between heartbeats, achieving good generalization
ability. Yao et al. [19] implemented the processing of ECG signals
of different lengths using an attention-based time-incremental convo-
lutional neural network (ATI-CNN). Petmezas et al. [20] proposed a
hybrid CNN-LSTM neural network for capturing the temporal dynam-
ics of ECG signals and processing unbalanced training data through
focal loss, which is important for helping clinicians screen for atrial
fibrillation. Soltanieh et al. [21] evaluated the effectiveness of multiple
elf-supervised (SSL) methods including SimCLR, BYOL, and SwAV for
CG representation learning on several popular arrhythmia datasets. To
ddress the difficulty of detecting arrhythmic diseases based on basic
CG features, a novel deep neural network, DeepArr, was proposed by
idani et al. [22]. The network uses a sequential fusion approach to

combine feed-forward and recurrent networks as a means of capturing
elevant representations of arrhythmic features of ECG signals, and

its effectiveness has been demonstrated on the MIT-BIH arrhythmia
ataset. In addition, several studies [23–26] have used DL to diagnose

arrhythmias. However, most studies have paid less attention to the
omputational requirements of the algorithms and the usability of
earable ECG for clinical deployment.

2.2. Knowledge distillation

KD is an effective method for achieving model compression by trans-
ferring representations from high-capacity teacher models to compact
student models.

2.2.1. Knowledge from intermediate layer
Recently, many studies have utilized representations from interme-

diate layers of models to transfer knowledge. KD employing interme-
diate layers can generally be categorized into two types: feature-based
nd relation-based.

Deep neural networks excel in learning hierarchical feature repre-
sentations with increasing levels of abstraction [27]. In feature-based
KD, the output feature maps from intermediate layers are used to
train student models under the guidance of knowledge from powerful
teacher models. Zagoruyko et al. [28] proposed using squared CNN
intermediate layer feature maps to generate attention maps, improv-
ing student model performance by mimicking the attention patterns
of the teacher model. Passban et al. [29] introduced a multi-layer
information fusion mechanism, enhancing traditional KD methods by
considering information from all layers of the teacher model using
an attention mechanism. To mitigate issues arising from the direct
matching of layers with different semantics, Chen et al. [30] suggested
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Information Fusion 122 (2025) 103178 
using an attention mechanism to dynamically assign appropriate target
ayers from the teacher model to each student layer. Zhang et al. [10]
roposed a self-distillation framework with a multi-branch structure,
here shallow and deep branches serve as student and teacher models,

espectively. Wang et al. [31] proposed a method to improve knowl-
edge distillation by regularizing the feature direction and norm. They
found that traditional knowledge distillation methods mainly focus on
global feature matching while ignoring the local structural information
of features. By constraining the direction and norm of features at the
same time, the performance of the student model was significantly
improved.

Relation-based KD explores relationships between different layers
of feature maps. Liu et al. [5] introduced generative adversarial net-
works to optimize student models by distinguishing feature maps from
oth student and teacher models using an additional discriminator,
nsuring consistent feature distributions. Park et al. [32] aimed to
apture interrelationships between samples and proposed distance and
ngular distillation losses to penalize structural differences in these
elationships. Peng et al. [33] proposed Correlation Consistency for
nowledge Distillation (CCKD), utilizing a generalized kernel approach

based on Taylor series expansion to capture inter-instance correlations
and convey instance-level and inter-instance correlation information to
student models.

However, direct matching of feature maps in online distillation may
ot be suitable, as capturing only sample correlations risks losing local

and specific category information.

2.2.2. Multi-teacher distillation
In the context of multi-teacher distillation approaches, a critical as-

ect is how to effectively integrate information from multiple teachers.
Previous studies [34] treated multiple teachers equally, overlooking the
varying importance of different teachers. Seyed et al. [12] proposed
the use of assistants to bridge the gap between high-capacity teacher
models and student models, albeit at the cost of increased computa-
tional complexity. Li et al. [35] introduced an adaptive weighting factor
approach to fusing feature maps from multiple teachers, prioritizing
stronger teachers with higher weights, but did not sufficiently address
the student’s acceptance of knowledge from overly dominant teachers.
Shi et al. [13] proposed a multi-instructor weighted distillation loss ap-
roach, encouraging student models to allocate more learning weights
o teachers who are more dissimilar, yet dissimilar teachers may not
ecessarily represent correct guidance.

In essence, integrating multi-teacher KD entails addressing two
fundamental challenges: ensuring correct guidance from teachers and
nsuring that the knowledge provided by teachers is accessible and
eneficial for students.

2.3. Knowledge distillation in diverse applications

The idea of knowledge distillation is also widely used in diverse
fields. In the processing of dirty labels, Cheng et al. proposed a label
denoising method based on dataset distillation [36]. They used dataset
distillation technology to generate compact datasets and effectively
remove noisy labels. Zhang et al. [37] proposed an online knowledge
distillation framework based on parameter mixture (OKDPH) that ex-
plicitly estimates the curvature of the loss landscape by constructing a
ybrid weight model (HWM), thereby promoting flatter minima and
mproving the generalization performance of the model. To address
he problem of imperfect annotations in medical image segmentation,
ang et al. [38] proposed a reliable mutual distillation framework to
ombat annotation noise through the collaboration of two segmentation
odels. The framework uses the complementary knowledge between

the models to clean up the training data, and significantly improves
the segmentation performance under noisy annotations by enforcing
onsistency constraints and reliability-aware sample selection strate-
ies. In recent years, deep learning has been widely used in industrial
 d

3 
information fields such as fault diagnosis [39–42]. Feng et al. [39]
have achieved accurate monitoring and prediction of the health status
of gears by building a high-fidelity digital model and realizing real-
time interaction with the physical system. This method also has great
potential in the field of medical monitoring. By building a digital model
of the patient’s heart, the electrophysiological activity and mechanical
movement of the heart are simulated in real time, so as to more
accurately monitor the occurrence and development of arrhythmias.
However, digital twin technology places high demands on the real-time
performance and computational efficiency of the model, which is highly
consistent with the goals of the knowledge distillation model compres-
sion algorithm [43,44]. Li et al. [40] proposed a cross-modal zero-shot
diagnosis framework based on non-contact sensing data (such as in-
frared thermal imaging and acoustic data), which achieved efficient
fault diagnosis through global and local feature fusion. Cross-modal
data fusion analysis provides a comprehensive data perspective for the
model, but also increases the computational requirements. Therefore,
it is extremely important to perform cross-modal distillation [45–47]
to obtain a compact and sufficient representation.

3. Method

This section first provides an overview of the proposed MTSD, fol-
owed by a description of the multi-teacher supervised adaptive weight-
ng strategy and the techniques for capturing dependencies between
iddle layer categories of the teacher model and channel activation
atterns.

3.1. Overview

We integrate a multi-teacher SD framework, illustrated in Fig. 1. SD
is a variant of online distillation that eliminates the additional model
and relies on internal feedback to improve generalization and compress
the model. In this framework, a deep network acts as the teacher,
nd a shallow network as the student. By instructing the shallow

network to mimic the deep network, high-level semantic information
from deeper layers transfers to shallower layers, refining internal repre-
sentations and bolstering the overall backbone network. Additionally,
as both networks share the same architecture, characterization deep-
ens layer-by-layer, enhancing the student model’s representation while
improving the teacher model’s performance. Furthermore, the trained
shallow network can operate independently of the deep layers, directly
handling reasoning tasks.

In the SD framework depicted in Fig. 1, there are four branch
structures denoted as 𝐵𝑖, where 𝑖 = 1, 2, 3, 4. Each branch 𝐵𝑖 consists
f a sequence of bottleneck layers followed by fully connected layers
nd a softmax output layer. Let 𝑞𝑖, for 𝑖 = 1, 2, 3, 4, denote the output of
he softmax layer corresponding to the first through fourth classifiers,
ith 𝑞4 representing the deepest layer.

This framework operates as a multi-teacher distillation system,
here the shallow network serves as the student and the deeper

networks act as its teachers. Specifically, when 𝐵1 serves as the student,
2,3,4 are its teachers. Similarly, when 𝐵2 is the student, 𝐵3,4 serve

as its teachers, and when 𝐵3 is the student, 𝐵4 is its sole teacher.
The optimization of each student model is constrained by three loss
functions: the cross-entropy loss 𝐶 𝐸 for the ground truth, the KL diver-
gence loss 𝐾 𝐿 between the teacher model’s predictions and the student

odel’s outputs, and the loss 𝐴𝑆 𝑀 associated with the proposed
ctivation similarity map (ASM), which captures the intermediate-level
ategories of the teacher model through channel activation patterns.
mong them, 𝐾 𝐿 and 𝐴𝑆 𝑀 constitute the distillation loss of multi-

eacher supervision, and the losses of different teachers are distributed
y weighting with adaptive coefficients. The specific algorithm will be
escribed in the following.
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Fig. 1. An overview of the proposed multi-teacher self-distillation framework.
Fig. 2. Adaptive weighting factor fusion for distillation loss based on gradient direction
and prediction uncertainty.

3.2. Adaptive multi-teacher guidance

This subsection introduces the proposed method of adaptive weight-
ing for multi-teacher distillation loss coefficients, as illustrated in Fig. 2.

In multi-teacher online distillation, multiple models act as super-
visors for optimizing student models. Not all supervisory signals from
these teachers contribute equally to optimization; some may even
mislead. Hence, it becomes crucial to assign greater loss weights to
teachers providing strong positive guidance, smaller weights to weaker
ones, and eliminate guidance that hinders student model optimization.
We assess the benefit of distillation loss based on gradient direction-
ality, analyzing knowledge distillation through the lens of multi-task
learning.

In the KD process, the cross-entropy loss of the student model serves
as the primary task, while the remaining distillation losses function
4 
as auxiliary tasks. If the gradient direction of an auxiliary task loss
aligns with that of the main task loss, it indicates a beneficial impact
on the main task. Conversely, orthogonal or reverse gradients suggest
a detrimental effect. Fig. 3 illustrates the gradient directions and op-
timization objectives of auxiliary task losses supervised by different
teacher models, where the main task is the cross-entropy loss of the
student model. In Fig. 3(a), auxiliary task loss 2 should be discarded
if its gradient opposes that of the main task loss. In Fig. 3(b), both
auxiliary task losses exhibit similar gradient directions to the main task
loss and share the same optimization objective, thus warranting weight
assignment.

Therefore, we employ cosine distance to measure the similarity of
gradient directions between different losses. The formula for cosine
distance is given by:

 = min(1 − cos(∇𝐶 𝐸 ,∇𝐾 𝐷), 1). (1)

Subsequently, a higher weight is assigned to the auxiliary task loss
that exerts a greater impact on the optimization of the main task
(i.e., the loss with a smaller cosine distance). The weight is calculated
as:

 𝑖
𝑔 = 1

𝐾 − 1 (1 −
exp(𝑖)

∑𝐾
𝑗=1 exp(𝑗 )

), (2)

where 𝑔
𝑖 denotes the weight of the distillation loss from the 𝑖th

teacher model at a given time, where 𝑖 = 1, 2,… , 𝐾, and 𝐾 is the total
number of teacher models. 𝑖 represents the cosine distance between
the gradient of the distillation loss from the 𝑖th teacher model and the
main task loss of the student model.

Simultaneously, we acknowledge that student models should prior-
itize learning from accessible rather than overly challenging sources.
As discussed in [12], excessively large teacher models may not suit
compact student models because of their greater parameter count and
resulting representational power, contrasting with the capabilities of
compact models. Hence, it becomes necessary to assess the disparity
between teacher and student models and allocate students to teachers
from whom learning is more feasible.
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Fig. 3. Schematic representation of the direction of the loss gradient and optimization
bjective for the auxiliary and main tasks in the backpropagation process.

When training models for classification tasks, larger models typi-
cally produce sharper and more accurate predictive distributions com-
pared to smaller models [48–50]. In contrast, smaller models often
yield flatter and less accurate distributions. To quantify model capacity,
we utilize the uncertainty of predictive distributions. Specifically, the
entropy of predictions serves as a measure of uncertainty:

𝑈 = − 1
𝑁

∑

𝑁

𝐶
∑

𝑖=1
𝑝𝑖 log(𝑝𝑖), (3)

where  denotes the uncertainty of the model’s prediction, 𝑁 is the
number of samples in a batch, 𝐶 is the number of categories, and 𝑝𝑖 rep-
resents the probability of the model’s prediction for the 𝑖th category. A
higher value of  indicates a flatter prediction distribution, suggesting
weaker model characterization. The disparity between different models
can thus be formulated as:

 = |

|

𝑈𝑇 − 𝑈𝑆
|

|

. (4)

Based on the gap  between the teacher and student models, higher
eights were assigned to the distillation loss of teacher models with

maller gaps, as shown in the formula below:

 𝑖
𝑠 =

1
𝐾 − 1 (1 −

exp(𝑖)
∑𝐾

𝑗=1 exp(𝑗 )
), (5)

where 𝑠
𝑖 denotes the weight of the distillation loss for the 𝑖th teacher

model, with 𝑖 = 1, 2,… , 𝐾, where 𝐾 is the number of teacher models.
 smaller gap between the student and teacher models indicates easier

knowledge transfer, resulting in a higher assigned weight.
To fuse the two sets of weight coefficients and adaptively adjust

their importance across different training phases, we introduce a train-
able parameter 𝛿 that is updated after each iteration using an optimizer.
𝛿 is initialized randomly within the range (0, 1). The fusion weighting
coefficient is then given by:

 𝑖 = 𝜎𝑠(𝛿)
 𝑖

𝑔

2
+ (1 − 𝜎𝑠(𝛿))

 𝑖
𝑠

2
, (6)

where 𝜎𝑠 is the sigmoid function.

3.3. Channel-enhanced activation similarity map

Given the significant variation in activation across channels for
ifferent categories of samples, we aimed to enhance the category-
nformed representation of the teacher model by capturing these ac-
ivation patterns. A straightforward approach to achieve this is by
omputing the ASM of the feature maps between samples, denoted as
ollows:

𝐴𝑆 𝑀 =
𝐹𝑇 ⋅ 𝐹⊤

𝑇

‖𝐹𝑇 ⋅ 𝐹⊤
𝑇 ‖2

, (7)

where 𝐹𝑇 denotes the intermediate layer feature map of the teacher
model, with dimensions 𝑏 × 𝑐 × 𝑙, where 𝑏 is the batch size, 𝑐 is the
umber of channels, and 𝑙 is the feature-length. 𝐴𝑆 𝑀 represents the
5 
sample channel activation pattern similarity of the teacher model, with
imensions 𝑏 × 𝑏.

Compared to feature maps, 𝐴𝑆 𝑀 emphasizes the activation pat-
terns of samples across different categories. Samples within the same
category typically exhibit similar activation patterns and higher cor-
relation values, whereas samples from different categories show lower
correlation values.

However, we acknowledge that the 𝐴𝑆 𝑀 obtained in this manner
may lack global information from the feature map. Therefore, we intro-
duce the Efficient Channel Attention (ECA) module [51], which aims
to capture inter-channel dependencies based on global information and
enhance category-specific information across different channels of the
eature map. This results in the feature map representation of the
eacher model as:

𝐹𝐸
𝑇 = 𝐹𝑇 ⋅ 𝜎(𝑤 ∗ (𝑔(𝐹𝑇 ))), (8)

here, 𝑔(⋅) denotes global average pooling, 𝑤 represents the convolution
kernel, which is defined as a set of trainable parameters, ∗ denotes the
convolution operation, and 𝜎 signifies the sigmoid function.

Subsequently, the sample channel-enhanced activation similarity
map (CASM), computed based on the modulated feature map, can be
expressed as:

𝐶 𝐴𝑆 𝑀 =
𝐹𝐸
𝑇 ⋅ 𝐹𝐸 ⊤

𝑇

‖𝐹𝐸
𝑇 ⋅ 𝐹𝐸 ⊤

𝑇 ‖2
, (9)

where 𝐹𝐸
𝑇 represents the intermediate layer feature map of the teacher

odel after being enhanced by the ECA module.
We aim for the student model to acquire improved category in-

ormation from the teacher model for enhanced optimization results.
Therefore, we align the 𝐴𝑆 𝑀 of the student model directly with the
 𝐴𝑆 𝑀 of the teacher model as shown in Fig. 4. The loss is formulated

as:

𝐴𝑆 𝑀 = 1
𝑁

𝑁
∑

𝑖=1
‖𝐴𝑆 𝑀𝑆 − 𝐶 𝐴𝑆 𝑀𝑇 ‖

2
2, (10)

where 𝐴𝑆 𝑀𝑆 represents the ASM of the middle layer of the student
odel, 𝐶 𝐴𝑆 𝑀𝑇 denotes the CASM of the middle layer of the teacher
odel, and 𝑁 indicates the number of pixel points in the ASM.

It is noteworthy that 𝐴𝑆 𝑀 has fewer pixels and exhibits less flexibil-
ty during the optimization process, thereby enhancing the stability of

the distillation. Additionally, significant differences exist in the feature
maps of models with varying architectures and configurations. To
measure feature similarity across models and layers, we utilize centered
kernel alignment (CKA) [52], as depicted in Fig. 5(a) and (b). Direct
lignment can make it challenging for the student model to learn,
hereas 𝐴𝑆 𝑀 mitigates these differences, as shown in Fig. 5(c) and

(d), thereby enhancing the acceptance of knowledge.

3.4. Multi-teacher self-distillation

Vanilla KD entails extracting representational knowledge from a
pre-trained, over-parameterized model (referred to as the teacher
model) and transferring it to a compact model (referred to as the
student model) through end-to-end training. The student model is
supervised by both actual labels and predictions from the teacher

odel. Specifically, the loss function of the student model is formulated
as follows:

 = 𝐶 𝐸 (𝜎(𝑦𝑠), 𝐲) + 𝑇 2𝐾 𝐿(𝜎(𝑦𝑡∕𝑇 ), 𝜎(𝑦𝑠∕𝑇 )). (11)

here, 𝐶 𝐸 represents the cross-entropy loss computed against ground-
truth labels, 𝐾 𝐿 denotes the KL divergence loss based on the teacher’s
output, and 𝑇 signifies the distillation temperature. 𝑦𝑠 and 𝑦𝑡 denote
ogits from the student and teacher models, respectively, with 𝜎(⋅) rep-
esenting the softmax function. In this work, we further introduce the
ctivation similarity map loss 𝐴𝑆 𝑀 and the multi-teacher distillation

loss adaptive weighting strategy.
The overall loss function can be decomposed into four parts:
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Fig. 4. Distillation of activation similarity map enhanced by ECA module.
Fig. 5. Similarity heatmaps of intermediate features and activation similarity maps
from different layers measured by CKA. (a), (b) measure the similarity of features in
the middle layer of the model, (c), (d) measure the similarity of the model activation
similarity map. The horizontal and vertical axes are the number of layers of the model.

• Cross-entropy loss of the prediction of the deepest branch 𝐵4 with
the true label 𝐲:

1 = 𝐶 𝐸 (𝑞4, 𝐲). (12)

• The sum of the cross-entropy loss of the first three branches’
predictions and true label 𝐲:

2 =
3
∑

𝑖=1
𝐶 𝐸 (𝑞𝑖, 𝐲). (13)

• The sum of the KL divergence loss of all student model predictions
and the predictions of the corresponding teacher model:

3 =
3
∑

4
∑

 𝑖𝑗
𝐾 𝐿𝐾 𝐿(𝑞𝑖, 𝑞𝑗 ), (14)
𝑖=1 𝑗=𝑖+1

6 
Algorithm 1: The training process

Input : Training Dataset  =
{

(𝐱𝑖, 𝐲𝑖)
}𝑁
𝑖=1. A backbone network

with four branches 𝐵𝑖, 𝑖 = (1, 2, 3, 4). Three ECA
channel attention modules and a weighting
adjustment parameter 𝛿.

Output: Four convergent branching models.
1 while 𝐵1 to 𝐵4 are not converged do
2 Sample a mini-batch  from Dataset ;
3 Forward propagation  into the network to obtain the

predictions 𝑞𝑖, 𝑆 𝑀𝑖 and 𝐴𝑆 𝑀𝑖, 𝑖 = 1, 2, 3, 4;
4 Calculate the cross-entropy loss 𝐶 𝐸 , the KL divergence loss

𝐾 𝐿 and the 𝐴𝑆 𝑀 loss 𝐴𝑆 𝑀 as Equation (10, 11);
5 Calculation of the cosine distance  of the gradient for

different distillation losses with cross-entropy losses as
Equation (1);

6 Calculate the uncertainty 𝑈 in the predictions of the
teacher model and the student model and the gap between
the teacher and student models  as Equation (3, 4);

7 Calculation of weighting factors for different loss elements
𝐾 𝐿 and 𝐴𝑆 𝑀 as Equation (2, 5, 6);

8 Calculate the overall loss 𝐿𝑡𝑜𝑡𝑎𝑙 as Equation (12, 13, 14, 15,
16) and update the parameter;

9 end while

• The sum of the 𝐴𝑆 𝑀 loss of all student model predictions and
the predictions of the corresponding teacher model:

4 =
3
∑

𝑖=1

4
∑

𝑗=𝑖+1
 𝑖𝑗

𝐴𝑆 𝑀𝐴𝑆 𝑀 . (15)

Here  𝑖𝑗
𝐾 𝐿 and  𝑖𝑗

𝐾 𝐿 are the weights of the KL divergence loss
and the 𝐴𝑆 𝑀 loss, respectively, between the 𝑖th student model
and its 𝑗th teacher model, as shown in Eq. (9).

Then the overall loss function can be expressed as:

𝑡𝑜𝑡𝑎𝑙 = 𝛼1 + (1 − 𝛽)2
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

+ 𝛽3 + 𝛾4
⏟⏞⏞⏞⏟⏞⏞⏞⏟

, (16)
ℎ𝑎𝑟𝑑 𝑙 𝑎𝑏𝑒𝑙 𝑙 𝑜𝑠𝑠 𝑑 𝑖𝑠𝑡𝑖𝑙 𝑙 𝑎𝑡𝑖𝑜𝑛 𝑙 𝑜𝑠𝑠
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Table 1
Evaluation metrics for compression efficiency.

Evaluation metric Description

MFLOPs Millions of floating-point operations in the model inference process
Parameters Number of parameters of the model
Power consumption (PC) Average energy consumption for model inference on Jetson Orin NX in Wh
Inference time (IT) Time (ms) required by the model for a single inference of a 12-lead ECG of 10s length on Jetson Orin NX
Compression rate (CR) Parameter ratios before and after model compression
Acceleration rate (AR) Ratio of inference time before and after model compression
c
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among them, 𝛼, 𝛽 and 𝛾 are hyperparameters set. The overall training
process is shown in Algorithm 1.

4. Experiments and results

4.1. Dataset and experimental settings

This study utilizes two arrhythmia databases, CPSC2018 and PTB-
XL, to evaluate the effectiveness of the proposed method.

CPSC2018: This database comprises 12-lead ECG records from 6877
atients, featuring a balanced male-to-female ratio and sourced from
1 hospitals. Each record ranges from a few seconds to tens of seconds,

sampled at 500 Hz. The database includes nine types of ECG records:
atrial fibrillation (AF), first-degree atrioventricular block (IAVB), left
bundle branch block (LBBB), right bundle branch block (RBBB), pre-
mature atrial contractions (PAC), premature ventricular contractions
(PVC), ST segment depression (STD), and ST-segment elevation (STE).
Each record is segmented into 10-s ECG signals with a 50% overlap,
with the corresponding label assigned from the first label of the record.
The database contains a total of 13,285 12-lead heart rhythms, each
segment being 10 s long, with abnormal signals used for training and
testing purposes.

PTB-XL: This database comprises 21,799 12-lead ECG records, each
0 s long, collected from 18,869 patients. It includes 71 tags covering
arious forms, rhythms, and diagnostic statements, categorized into five
rimary categories and 24 subcategories. For this study, we focus on
he five primary categories (NORM, CD, MI, HYP, STTC) derived from
iagnostic statements as tags. Each record may have one or multiple
ags. Records without primary category labels were excluded, resulting
n the utilization of 21,388 records.
G12EC: The database contains multi-label ECG records of 10 s in

length and 500 Hz sampling rate from 10,344 patients (male: 5551,
female: 4793) from Georgia in the southeastern United States. The
database contains 27 types of disease labels including atrial fibrillation
and other diseases. After excluding disease labels that only appear once,
a total of 9407 records are used for training and testing.

The following are the settings for the optimizer and training hyper-
arameters, as well as the selection of evaluation metrics.

4.1.1. Training setting
In this study, parameters were set to 𝛼 = 3, 𝛽 = 0.3 and 𝛾 = 3000.

Training encompassed 200 epochs with a batch size of 64. Optimization
utilized the SGD optimizer with an initial learning rate of 0.01 and
employed a step learning rate scheduler. The dataset was randomly
split into 80% for training and 20% for validation.

4.1.2. Evaluation metrics
For classification evaluation, metrics including Accuracy (𝐴𝑐 𝑐), and

he Area Under the ROC Curve (AUC-score) are employed. These met-
ics are computed based on four indices: true positives (𝑇 𝑃 ), true nega-

tives (𝑇 𝑁), false positives (𝐹 𝑃 ), and false negatives (𝐹 𝑁), determined
y the label’s positive or negative classification. Where,

𝐴𝑐 𝑐 = (𝑇 𝑃 + 𝑇 𝑁)∕(𝑇 𝑃 + 𝑇 𝑁 + 𝐹 𝑃 + 𝐹 𝑁). (17)

The 𝐴𝑈 𝐶 − 𝑠𝑐 𝑜𝑟𝑒 represents the area under the ROC curve, which
is plotted using various cut-off values. In this curve, 𝑆 𝑒 (Sensitivity) is
plotted on the vertical axis and 𝑆 𝑝 (Specificity) on the horizontal axis.
 R

7 
Six metrics are introduced to comprehensively evaluate compres-
sion efficiency in model compression: MFLOPs, parameters, power
onsumption (PC), inference time (IT), compression rate (CR), and
cceleration rate (AR). Detailed descriptions of these metrics can be
ound in Table 1.

4.2. Performance of self-distillation

In this study, we validate the effectiveness of the proposed method
n three arrhythmia databases, CPSC2018, PTB-XL and G12EC, using
ccuracy and AUC scores to evaluate model performance on their
espective test sets. We conduct a comparative analysis across three
cenarios: (i) full supervision using cross entropy alone, (ii) incorpora-
ion of KL divergence in an SD framework where each branch mimics
nly the deepest layer, and (iii) addition of feature map MSE loss in
he SD setup. To demonstrate the method’s applicability, we validate
t on ResNet, xResNet, MobileNet V2, and ShuffleNet V2 architectures.
etails are provided in Table 2.

As shown in Table 2, all distilled models outperformed the model
trained solely with 𝐶 𝐸 . However, upon adding the feature map imita-
tion loss 𝑓 𝑒𝑎 to the SD framework, some model branches exhibited
weaker performance compared to those using only 𝐾 𝐿. This sug-
gests that directly aligning the feature maps of teacher–student models
during online distillation may lead to instability in the optimization
process. Subsequently, employing the multi-teacher adaptive fusion
SD framework resulted in improved performance across all model
branches. Specifically, for the CPSC2018 database, the 𝐵3 branch of
ResNet34 achieved an accuracy of 87.05%. For the PTB-XL database,
the 𝐵3 branch of MobileNet V2 achieved an AUC score of 0.922. For
the G12EC database, the 𝐵4 branch of ResNet34 achieved an AUC score
of 0.908.

Furthermore, it is noteworthy that shallow branches tend to exhibit
greater performance gains compared to deep branches. For instance, in
the CPSC2018 database, ResNet18 shows a performance improvement
of 0.41% for the 𝐵4 branch, whereas the 𝐵1 branch improves by 2.1%.
Similarly, xResNet18 demonstrates a 1.21% improvement for the 𝐵4
branch and a 2.22% improvement for the 𝐵1 branch, while ShuffleNet
V2 shows a 1.74% improvement for the 𝐵4 branch and a notable 3.84%
improvement for the 𝐵1 branch. This observation suggests that shallow
branches, characterized by simpler representations, are more effective
in learning relevant information and are easier to optimize compared
to deeper branches with more complex representations.

4.3. Comparison with state-of-the-arts

In this section, we compare the proposed method with other state-
f-the-art algorithms. Table 3 presents the performance differences be-

tween various methods and the proposed SD framework across different
teacher–student model architectures.

In Table 3, we employed ResNet152 as the teacher model to as-
sess multiple student models on the CPSC2018, PTB-XL and G12EC
atabases. Compared to offline distillation methods such as OKD [1],

FitNet [11], and AT [28], as well as online distillation methods like
DML [6] and BYOT [10], our proposed multi-teacher adaptive fusion
D approach consistently outperformed on both datasets. Notably,
esNet34 achieved the highest accuracy of 86.98% on CPSC2018,
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Table 2
Comparison of performance of each classifier in self-distillation on CPSC2018, PTB-XL and G12EC.

Net 𝐶 𝐸 𝐾 𝐿 𝑓 𝑒𝑎 𝑎𝑠𝑚 CPSC2018 PTB-XL G12EC

𝐵1 𝐵2 𝐵3 𝐵4 𝐵1 𝐵2 𝐵3 𝐵4 𝐵1 𝐵2 𝐵3 𝐵4

RN18

! 84.23 85.28 85.92 86.11 0.894 0.904 0.906 0.905 0.871 0.883 0.885 0.886
! ! 85.20 85.92 86.07 86.03 0.909 0.916 0.918 0.918 0.883 0.888 0.892 0.892
! ! ! 85.99 86.37 86.22 86.22 0.908 0.914 0.917 0.916 0.877 0.881 0.886 0.884
! ! ! 86.33 86.69 86.52 86.52 0.912 0.918 0.921 0.921 0.891 0.897 0.901 0.904

RN34

! 85.24 85.58 86.48 85.96 0.897 0.906 0.907 0.909 0.874 0.883 0.894 0.882
! ! 86.11 86.30 86.63 86.37 0.909 0.915 0.918 0.917 0.881 0.886 0.890 0.890
! ! ! 86.07 86.45 86.56 86.60 0.908 0.915 0.916 0.916 0.871 0.879 0.886 0.885
! ! ! 86.48 86.86 87.05 86.98 0.914 0.920 0.920 0.921 0.894 0.899 0.902 0.908

xRN18

! 83.74 84.83 85.32 85.50 0.887 0.889 0.897 0.896 0.856 0.876 0.883 0.887
! ! 85.81 85.92 86.11 85.99 0.905 0.909 0.911 0.911 0.881 0.886 0.892 0.892
! ! ! 85.05 85.39 85.43 85.32 0.899 0.904 0.906 0.906 0.871 0.874 0.878 0.879
! ! ! 85.96 86.14 86.48 86.71 0.913 0.917 0.919 0.919 0.885 0.890 0.895 0.899

xRN34

! 84.38 85.54 85.84 85.58 0.888 0.895 0.896 0.900 0.868 0.874 0.892 0.896
! ! 85.35 85.62 85.73 85.54 0.906 0.911 0.915 0.915 0.875 0.883 0.889 0.887
! ! ! 85.36 85.62 85.81 85.66 0.898 0.902 0.905 0.904 0.875 0.878 0.881 0.881
! ! ! 85.73 86.33 86.78 86.82 0.917 0.920 0.920 0.921 0.889 0.896 0.902 0.905

MNV2

! 82.57 83.66 84.68 84.87 0.892 0.899 0.899 0.904 0.845 0.849 0.851 0.885
! ! 83.28 84.79 84.94 84.78 0.898 0.905 0.907 0.906 0.849 0.856 0.859 0.861
! ! ! 82.91 84.41 84.34 84.26 0.895 0.904 0.905 0.904 0.847 0.863 0.863 0.862
! ! ! 83.89 85.43 85.92 86.41 0.911 0.921 0.922 0.920 0.864 0.879 0.887 0.898

SNV2

! 79.71 82.12 83.92 83.28 0.889 0.892 0.895 0.893 0.862 0.860 0.867 0.877
! ! 80.73 83.43 84.19 84.11 0.897 0.905 0.908 0.906 0.868 0.872 0.873 0.871
! ! ! 80.69 82.53 83.85 83.25 0.899 0.905 0.908 0.906 0.867 0.869 0.874 0.872
! ! ! 83.55 85.05 85.13 85.02 0.911 0.914 0.912 0.912 0.873 0.886 0.891 0.888

RN: ResNet, xRN: xResNet, MNV2: MobileNet V2, SNV2: ShuffleNet V2.
Table 3
Comparison of performance on different teacher–student model architectures on CPSC2018, PTB-XL and G12EC.

Database Teacher Student Baseline OKD [1] FitNet [11] AT [28] DML [6] BYOT [10] This work

CPSC2018

ResNet152

ResNet18 86.11 86.33 86.33 86.26 85.13 86.22 86.52
ResNet18_S 84.23 85.99 84.64 84.94 86.26 85.99 86.33
ResNet34 85.96 86.56 86.03 86.30 86.41 86.60 86.98
ResNet34_S 85.24 86.30 85.54 85.77 86.71 86.07 86.48
MobileNet V2 84.87 85.77 85.58 85.88 85.54 84.26 86.41
ShuffleNet V2 83.28 84.49 83.66 84.19 84.38 83.25 85.02

PTB-XL

ResNet18 0.905 0.913 0.913 0.913 0.910 0.916 0.921
ResNet18_S 0.894 0.910 0.911 0.909 0.913 0.908 0.912
ResNet34 0.909 0.913 0.912 0.913 0.917 0.916 0.921
ResNet34_S 0.897 0.912 0.908 0.911 0.916 0.908 0.914
MobileNet V2 0.904 0.908 0.912 0.909 0.909 0.904 0.920
ShuffleNet V2 0.893 0.906 0.905 0.904 0.905 0.906 0.912

G12EC

ResNet18 0.886 0.899 0.893 0.899 0.903 0.884 0.904
ResNet18_S 0.871 0.888 0.879 0.889 0.874 0.877 0.892
ResNet34 0.882 0.899 0.891 0.901 0.906 0.885 0.908
ResNet34_S 0.874 0.894 0.889 0.893 0.884 0.871 0.895
MobileNet V2 0.885 0.890 0.896 0.895 0.887 0.861 0.898
ShuffleNet V2 0.877 0.891 0.884 0.891 0.889 0.872 0.889
c
W
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ResNet18 and ResNet34 achieved the highest AUC score of 0.921 on
TB-XL, and ResNet34 achieved the highest AUC score of 0.908 on

G12EC.
Our method exhibits significant advantages when the student model

shares architectural similarities with the teacher model, such as
ResNet18 or ResNet34. Even when the student model differs in archi-
ecture from ResNet152, as with MobileNet V2 and ShuffleNet V2, our
pproach still demonstrated superior performance. Unlike approaches
elying on larger-scale ResNet152 as a teacher model, our method
chieves representation transfer solely by leveraging knowledge across
ifferent levels of its hierarchy, eliminating the need for additional
eacher models. Furthermore, by utilizing activation similarity graphs
s knowledge representations and employing a multi-teacher fusion
trategy, our approach addresses knowledge disparity across model
 (

8 
levels, leading to more effective knowledge migration and model
compression.

4.4. Compression efficiency evaluation

In this subsection, we evaluate the model efficiency post-
ompression using the NVIDIA Jetson Orin NX edge computing chip.
e use several metrics to comprehensively assess compression effi-

iency, including MFLOPs, parameters, PC, IT, CR, and AR.
Initially, we compare the PC of the uncompressed model with that

f the minimal model 𝐵1, compressed using our proposed method,
n an inference dataset comprising 13,285 12-lead ECG records from
he CPSC2018 database. The specific PC comparison is illustrated in

Fig. 6, where green denotes the inference PC of the compressed model
denoted as Model_S), and red represents the inference PC of the
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Fig. 6. Comparison of inference PC on Jetson Orin NX before and after model
compression, with the PC of the model compressed to 𝐵1 in green and the PC of
the uncompressed model in red.

Fig. 7. Comparison of MFLOPs, IT, and parameters before and after model compression
(𝐵1). Larger scatters indicate larger parameter counts.

uncompressed model. The PC of the compressed models is signifi-
cantly lower than that of the original models, with ShuffleNet V2_S
achieving the lowest PC of 0.038 Wh. ResNet34 shows the highest
PC compression rate, reducing from 0.29 Wh before compression to
0.0507 Wh after compression, a compression ratio of 5.71 times. This
demonstrates the effective reduction in inference PC achieved by our
proposed compression method.

Subsequently, we compared the MFLOPs, IT, and parameters before
and after model compression (𝐵1). A visual comparison of the combined
three metrics is shown in Fig. 7. A larger scatter indicates a larger
number of parameters in the model. As can be seen from Fig. 7,
all the compression models have significant effect improvement in
parametric quantity, IT, and MFLOPs metrics. Among them, ShuffleNet
V2_S has the shortest single IT, the least MFLOPs, and the number of
parameters. Also, Table 4 lists the specific MFLOPs, model parameters,
IT, CR, and AR. As can be seen from the table, the MFLOPs were
all reduced significantly after model compression, and the number of
parameters were all below 150K, among which the ShuffleNet V2_S had
the lowest number of parameters of 29.23K, and the ResNet34_S had
the highest CR of 68.75 times. Meanwhile, the inference efficiency of
the compressed models was significantly improved, in which ShuffleNet
V2_S took only 1.04 ms for a single inference of 12-lead ECG with a
length of 10 s, and the AR of the remaining models reached 2–3 times.
It is further shown that the proposed method can effectively reduce the
computational complexity and inference PC of the model.
9 
Fig. 8. Loss landscape around local minima. (a) Direct alignment of feature maps for
single-teacher original SD. (b) Proposed MTSD.

4.5. Distillation stability and generalization

In this subsection, we assess the stability of our proposed method
during the distillation process using the loss landscape visualization
technique [53]. Fig. 8 illustrates the landscape of losses around the lo-
cal minima of the model. Observing the figure, the region surrounding
the local minima appears flatter with our proposed method, indicating
less sensitivity of loss values to parameter changes. This robustness
suggests reduced susceptibility to outliers during model training and
a more stable optimization process. Furthermore, flatter local minima
are indicative of improved generalization performance.

Activation similarity maps and loss weighting based on model gaps
effectively contribute to enhancing the robustness of the distillation
process. This approach mitigates to some extent the training instability
typically associated with the direct alignment of feature maps in online
distillation.

5. Discussion

5.1. Performance analysis

In this subsection, we analyze the performance of the proposed
method and compare it with other methods.

Table 2 shows the comparison of the proposed multi-teacher adap-
tive fusion strategy with the three cases of direct training, distillation
using only 𝐾 𝐿 within a multi-branch SD framework, and distillation
using both 𝐾 𝐿 and 𝑓 𝑒𝑎 within a multi-branch SD framework. When
𝑓 𝑒𝑎 loss is introduced to the distillation process, the performance of
most of the model branches shows a decreasing trend. This indicates
that the pixel point changes of the feature map are more sensitive to
the online distillation process and there is information redundancy, and
the direct alignment of a large number of pixel points will lead to the
instability of the distillation process and reduce the robustness of the
model. The proposed method expands the single-teacher paradigm to
multi-teacher based on SD and introduces a supervised loss adaptive
weighting strategy based on information correctness and acceptability,
which effectively facilitates information sharing at different levels in
the backbone network. Meanwhile, the ECA module is utilized to
enhance the mutual information and dependency relationship between
channels and categories, and achieve more efficient and stable repre-
sentation migration through channel activation similarity maps instead
of feature maps, which achieves a better distillation effect.

In Table 3 the proposed method is compared with several state-
of-the-art distillation methods under different teacher–student model
architectures. The proposed method achieved relatively favorable re-
sults on CPSC2018, PTB-XL and G12EC databases. We believe that there
is a large discrepancy between the deep and shallow features of the
model, as shown in Fig. 5(a), (b), and that the discrepancy hinders the
propagation of knowledge from the deep model to the shallow model.
Even though ResNet152 possesses stronger knowledge representations
as a large-scale model, it is difficult to fully migrate its knowledge
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Table 4
Specific details of MFLOPs, Parameters, CR, IT, and AR before and after model compression.

Network MFLOPs Params CR IT AR

ResNet18 1745.24 3.85M – 3.67 –
ResNet18_S 217.28 80.33K ×47.92 1.16 ×3.16

ResNet34 3540 7.23M – 6.47 –
ResNet34_S 280 105.16K ×68.75 1.46 ×4.43

xResNet18 1819.48 3.87M – 4.81 –
xResNet18_S 259.2 94.72K ×40.85 1.95 ×2.46

xResNet34 3620 7.24M – 7.30 –
xResNet34_S 321.92 119.56K ×60.55 2.24 ×3.25

MobileNet V2 943.22 2.19M – 8.35 –
MobileNet V2_S 155.06 98.66K ×22.19 2.88 ×2.89

ShuffleNet V2 272.22 697.53K – 1.86 –
ShuffleNet V2_S 43.04 29.23K ×23.86 1.04 ×1.78
Fig. 9. The Relevance-CAM attention distribution of the model for PVC ECG signals. (a) Vanilla ResNet18 𝐵1 branch, (b) vanilla ResNet18, (c) the proposed MTSD ResNet18 𝐵1
ranch, (d) the proposed MTSD ResNet18.
m
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representations to the student model for compact student models such
as ResNet18 and ResNet18_S. In contrast, the proposed method does not
require additional large-scale teacher models and can achieve knowl-
edge sharing at different levels by itself. Meanwhile, the activation
similarity maps (Fig. 5(c), (d)) with small differences between the
deep and shallow layers of the model are used for the representation
migration, which makes the knowledge easier to disseminate to some
xtent.

5.2. Model efficiency analysis

The purpose of the model compression proposed in this work is to
eploy the model in wearable ECG devices with computational resource
onstraints; thus, evaluating the practical usability of the compressed
odel from multiple perspectives is crucial.

Fig. 6 depicts the computational power consumption before and
after model compression, measured on the NVIDIA Jetson Orin NX edge
computing chip. Following compression via the proposed multi-teacher
adaptive weighting SD framework, all student models exhibit a notable
eduction in power consumption, averaging 4–6 times less compared
o the original teacher model. This reduction is suitable for integration
nto small wearable ECG devices.

Furthermore, we conducted a detailed comparison of MFLOPs, pa-
ameters, CR, IT, and AR before and after model compression, as

illustrated in Fig. 7 and detailed in Table 4. Fig. 7 visually contrasts
he efficiency gains achieved by the student models compared to their

respective teacher models. All student models exhibit significantly re-
duced parameters, MFLOPs, and IT, highlighting the effectiveness of
the compression process. Notably, ShuffleNet V2, inherently designed
for lightweight applications, demonstrates superior computational effi-
ciency post-compression. With fewer than 30K parameters, it is well-
suited for deployment in miniaturized wearable devices, achieving
 p

10 
inference times close to 1 ms, and meeting the real-time demands of
arrhythmia monitoring.

Moreover, it is observed that the CR and AR of the student mod-
els compressed using the proposed multi-teacher adaptive fusion SD
framework tend to increase with the number of parameters in the
original teacher models and their corresponding inference times. This
trend arises from the exponential increase in convolution channels as
model depth increases to enhance representations, resulting in larger
gaps between parameter volumes in shallow and deeper layers, thereby
boosting compression and acceleration rates.

5.3. Case study

In this subsection, we employ Relevance-CAM [54] to visualize the
odel’s attention distribution towards input signals, assessing whether

he student model achieves comparable representational capabilities to
he teacher model. Fig. 9 illustrates the attention distribution for PVC

ECG signals. It is observed that the model’s attention predominantly
focuses on the R-wave. Specifically, the PVC disease feature is most
pronounced during the 7th heartbeat, with deeper layers showing
heightened attention concentration towards this beat, while other parts
of the R-wave receive weaker attention, as depicted in Fig. 9(a), (c).
Following optimization using the MTSD framework, Fig. 9(d) reveals
hat ResNet18’s attention distribution is notably concentrated in the
nset region. Moreover, the attention distribution of the ResNet18

𝐵1 branch closely aligns with that of the teacher model, surpassing
vanilla ResNet18 performance, as shown in Fig. 9(b). This highlights
the efficacy of the proposed SD framework in transferring high-level
epresentations from the teacher model.

5.4. Limitation

Although our framework has achieved remarkable results in ar-
hythmia monitoring, it still has some limitations. First, due to the com-
lex model structure and multiple gradient extractions during training,
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the computational cost is high and the training time is long, which
ay limit its application in large-scale datasets or resource-constrained

nvironments. Second, our method performs well on arrhythmias, but
ts generalization ability in other tasks or domains has not been fully
erified. In cross-domain tasks where data distribution varies greatly,
he performance of the model may degrade. In addition, the model is
ensitive to hyperparameter settings and may require more parameter
uning. Future research directions may be to make the student model
daptively evaluate, review, and summarize the teacher’s knowledge
ase and the student’s self-reflection, so that the learning task is closer

to the process from easy to difficult, and verify the applicability of the
framework in other tasks.

6. Conclusion

This paper introduces a multi-teacher self-distillation framework
for compressing large-scale arrhythmia monitoring models intended
for deployment in wearable ECG devices. The framework systemati-
cally integrates considerations of teacher supervision correctness and
cceptability, leveraging activation similarity maps to effectively guide
tudent model optimization. This approach enhances distillation pro-
ess stability and model generalization, presenting a novel approach to
ulti-teacher online distillation.

Overall, the learning process of knowledge distillation requires two-
way communication, and its effectiveness depends not only on how
the teacher model extracts the minimum sufficient representation but
also on the student’s ability to transfer representations. The student
model needs to effectively improve its performance from the teacher’s
distribution and self-reflection. Therefore, in future work, introduc-
ing curriculum learning to gradually train the model from simple
to complex in an adaptive manner, allowing students to review and
evaluate the knowledge they have learned, thereby improving learning
efficiency and final performance is a possible development direction.
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