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Abstract—Driven by the soaring traffic demand and the grow-
ing diversity of mobile services, wireless networks are evolving
to be increasingly dense and heterogeneous. Accordingly, in
such large-scale and complicated wireless networks, the optimal
controlling is reaching unprecedented levels of complexity, while
its traditional solutions of handcrafted offline algorithms become
inefficient due to high complexity, low robustness, and high over-
head. Therefore, reinforcement learning, which enables network
entities to learn from their actions and consequences in the
interactive network environment, attracts significant attentions.
In this paper, we comprehensively review the applications of
reinforcement learning in wireless networks from a layering
perspective. First, we present an overview of the principle, funda-
mentals and several advanced models of reinforcement learning.
Then we review the up-to-date applications of reinforcement
learning in various functionality blocks of different network
layers, ranging from the low-level physical layer, to the high-
level application layer. Finally, we outline a broad spectrum
of challenges, open issues, and future research directions of
reinforcement learning empowered wireless networks.
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I. INTRODUCTION

The past decades have witnessed the rapid development
of wireless communication, achieving ubiquitous networking
and Internet access for various kinds of mobile devices. In
consequence, both mobile services and wireless traffic are
growing explosively and diversely [1, 2]. To meet the ever-
increasing requirements on quantity and diversity, wireless
networks are undergoing massive changes, in terms of the net-
work architecture as well as the functionality across different
network layers. In particular, wireless networks are turning
to be much denser and more heterogeneous [3], along with
the surge in wireless resource dimensions and the number of
control parameters [4]. Hence, the optimal control of wireless
networks is reaching unprecedented levels of complexity.

Traditionally, the optimal control of wireless networks is
achieved by the prevalent methodology of offline optimization.
Specifically, various control problems are first formulated as
different kinds of optimization problems and then solved
by the carefully handcrafted algorithms, using mathematical
tools from optimization theories, such as convex optimization,
game theory, dynamical programming and etc. Moreover, these
algorithms are periodically executed to find the optimal net-
work configuration according to the current network situation.
Nevertheless, such offline algorithms are insufficient to handle
increasingly complex control problems in wireless networks.
The main deficiencies lie in the following perspectives:
• High complexity: Most of the optimization problems in

wireless networks are non-convex and intractable, which
makes it almost impossible to find an optimal solution in
polynomial time.

• Low robustness: Offline optimization requires an accurate
model of network dynamics. When the model parameters
are imperfect or outdated, the performance may be greatly
degraded.

• High overhead: Many offline algorithms require central-
ized processing, as well as information exchange among
distributed network entities. In the context of network
densification, the timely information exchange would
cause extremely high overhead.

Recently, leveraging reinforcement learning (RL) [5] for
intelligent wireless networks is emerging as a promising
solution. As one of the most attractive machine learning (ML)
techniques, RL is a learning process where an agent period-
ically observes the environment, makes decisions, evaluates
rewards and then accordingly adjusts its policy to achieve a
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goal. Moreover, recent advances in deep learning (DL) open
a new area for RL [6]. Therefore, with the ever-increasing
computing capacity of wireless networks, researchers start to
exploit RL for increasingly complex control problems therein.
In particular, RL is highly desirable for wireless networks
owing to the following advantages:
• Solving various optimization problems efficiently: RL

provides computation-efficient solutions to diverse op-
timization problems, not only Markov decision process
(MDP) problems and games, but also intractable non-
convex optimization problems.

• Learning network dynamics from raw observations: RL
doesn’t require accurate environment modeling. Through
trial-and-error in the interactive environment, RL agents
can autonomously learn implicit knowledge of network
dynamics from raw high-dimensional observations.

• Learning distributively with local observations: With the
distributed multi-agent RL, network entities can learn
their own control policy with local observations and
without centralized processing, which greatly contributes
to overhead and signaling reduction.

According to the above properties, RL enabled online
learning can meet the challenges faced by wireless networks,
and overcome the shortages of traditional offline optimization,
which motivates the tremendous development in this research
field. Despite the growing interest of applying RL in wireless
networks, most existing works focus on specific optimization
problems and a comprehensive yet concise survey is still
missing. To understand the development as well as provide
a guide for the application of RL in wireless networks, this
paper gives a systematic review on the relevant works from
a layering perspective. Moreover, the key pros and cons of
RL applications in different layers are discussed for further
research. We also investigate the challenges and open issues,
to shed a light on the future research direction in this field.

We organize the rest of this paper as follows. First, we
discuss related survey articles concerning the ML empowered
wireless networks in Section II, which helps distinguish the
contributions of this paper. Then, the fundamental knowledge,
evolution, and categories of RL are presented in Section III.
Section IV reviews up-to-date RL applications from a layering
perspective. In Section V, we outline challenges, open issues,
and future research trends for applying RL in wireless net-
works. Finally, Section VI concludes this paper.

II. RELATED SURVEY ARTICLES AND CONTRIBUTIONS OF
THIS SURVEY ARTICLE

With the fast development of artificial intelligence (AI),
corresponding ML methods including RL, DL, and deep
reinforcement learning (DRL) have attracted great attention
in the area of wireless networks. Also, some papers have
surveyed the crossovers between ML methods and wireless
networks. Table I summarizes related survey papers and ours
according to the paper scope in ML and wireless networks.

According to Table I, this paper is the first one that com-
prehensively investigates the applications of RL in wireless
networks. In comparison, recent research efforts in IoT, CRN,

WSN, SON and MEC are reviewed in [7–11, 16, 18, 19],
respectively. Bkassiny et al. [7] identified the applicable prob-
lems of ML in the context of CRN and reviewed the corre-
sponding solutions. Wang et al. [9] conducted the same review
but with the emphasis on model-free learning techniques.
The ML applications in IoT were investigated in [11] [16]
[18], where Mohammadi et al. [11] reviewed the application
of DL in data analysis problem of IoT, Hussain et al. [18]
presented an in-depth review of ML applications in resource
management of IoT, and [18] provided a comprehensive ap-
plications of DL in IoT. Alsheikh et al. [8] summarized and
analyzed ML algorithms used to address the common issues
in WSN, in which the comparative guide for other potential
applications is also presented. Valente et al. [10] reviewed
ML based controlling schemes in SON, and presented a clear
classification of these schemes in terms of use-cases. Wang et
al. [19] investigated how DL and MEC can be combined to
enable edge intelligence and intelligent edge.

Comprehensive surveys of DL applications in wireless net-
works were presented in [12–15, 17] with different emphases.
Both [12] and [13] reviewed the recent advances of DL as
well as their applications in wireless networks. The focus of
[12] was primarily on network management, whereas both
network analysis and management were considered in [13].
Luong et al. [14] presented an overview of DRL empowered
communication and networking, which covers network access,
security, caching, offloading and management. Elsayed et al.
[15] and Wang et al. [17] provided a comprehensive overview
of ML applications in a broad range of wireless networks. The
main problems reviewed in [15] included resource allocation,
spectrum access, base station (BS) deployment, and energy
efficiency. Whereas Wang et al. [17] surveyed how ML was
applied to obtain Pareto-optimal solutions in multi-objective
optimization of wireless networks.

Especially, the works presented in [7–11, 16, 18, 19] primar-
ily focused on how different ML approaches (supervised and
unsupervised, rules, fuzzy logic, etc.) were tailored to handle
different types of wireless networks. Since each of these papers
investigated only one sub-domain of wireless networks, the
guidance for applying RL in all scopes of wireless networks
is limited. On the other hand, the focus of [12–15, 17] was
on the applications of advanced ML methods, such as DL
and DRL, while the applications of traditional RL methods
were not touched. As RL has long been adopted to handle
the control problems in the area of wireless networks, how
this research field evolved and what the reasons behind are
still open questions. In addition, with virtualization enabled
by software-defined networking (SDN) and network function
virtualization (NFV) becoming a fundamental building block
of future wireless networks [20, 21], an in-depth review of RL
applications in virtual networks as well as network slicing is
still missing.

Different from existing surveys, this article aims at provid-
ing an up-to-date survey of research that lies at the intersection
between RL and wireless networks. Overall, the main contri-
butions can be summarized as follows:
• We present the evolution of RL and the cutting-edge RL

models from the perspective of wireless networks.
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TABLE I
SUMMARY OF EXISTING SURVEY PAPERS RELATED TO RL AND WIRELESS NETWORKS.

Year Reference ML methods Wireless networks
RL DL DRL Others CN IoT CRN WSN SON MEC VN others

2013 [7] X X X
2014 [8] X X X
2016 [9] X X X X X
2017 [10] X X X
2018 [11] X X X
2018 [12] X X X X X
2019 [13] X X X X X X X X
2019 [14] X X X X X X X
2019 [15] X X X X X X X X
2020 [16] X X X X
2020 [17] X X X X X X X X X
2020 [18] X X X X X X
2020 [19] X X
2020 Ours X X X X X X X X X X

CN denotes cellular network, IoT denotes Internet of Things, CRN denotes cognitive radio network, WSN denotes
wireless sensor network, SON denotes self-organizing network, MEC denotes mobile edge computing, VN denotes
virtual network.

• We thoroughly summarize and category RL applications
in wireless networks in terms of network layers. Based on
this, we illustrate how the researchers tailor RL to address
various control problems across different network layers.

• We outline the challenges for applying RL in wireless
networks, and also figure out the open issues, which we
hope to enlighten future research directions in this area.

III. OVERVIEW OF REINFORCEMENT LEARNING

This section provides an overview of RL from fundamentals
to advanced models. We start with the basic principle of RL.
Next, we introduce the fundamental knowledge of MDP, the
main framework for RL. Then we give a brief introduction to
several important RL models as well as methods. Finally, we
present the evolution of RL and its driving factors in wireless
networks.

A. Basic Principle of Reinforcement Learning

RL is a promising ML paradigm which learns through
interaction and focuses on sequential decision making. As
illustrated in Fig. 1 The learner, which makes sequential
decisions is termed as the agent. Everything surrounding the
agent and it interacts with is defined as the environment
[22]. These two components interact continually (shown as
subscripts t, t + 1), the agent selecting an action At and the
environment responding to the action with state St+1 changed

Agent

Environment

Action At

Rt+1

Reward Rt

St+1

State St

Fig. 1. Illustration of the basic principle of RL.

and reward Rt returned. Specifically, the reward is a numerical
value which represents a long-term objective to be maximized
with the agent’s choice of actions.

According to the principle above, action, state and reward
characterize the interaction between the agent and its envi-
ronment. Moreover, an RL agent includes three key elements,
policy, value function and, optionally, model. Policy describes
how to act according to different situations, and it can be
defined as the map from observed environment states to
the actions to be taken. Value function is a prediction of
future reward, evaluating the goodness/badness of each state
and/or action. A model is the agent’s representation of the
environment, predicting what the environment will do next,
which is optional and will be discussed later.

B. Markov Decision Process

As a commonly used stochastic control process for sequen-
tial decision making, MDP provides a mathematical frame-
work to formulate the RL problems [23]. Generally, MDP can
be defined by a tuple (S,A, T ,R, γ), which is discussed as
follows,
• States: S is the set of states.
• Actions: A is the set of actions.
• Transition Matrix: T is the state transition matrix which

maps the state-action pair at time t onto a distribution
over possible states at t + 1, i.e., T (st+1|st, at) =
P[st+1|st, at].

• Reward: The reward function R maps a state-action pair
at t to the expected value for immediate reward at t+1,
which can be mathematically described as R(st, at) =
E[Rt+1|st, at].

• Discount Factor: The discount factor γ ∈ [0, 1] deter-
mines how important future rewards are to the current
state. For example, the total discounted reward from time
t can be defined as Gt =

∑∞
k=0 γ

kRt+k+1.
MDP (S,A, T ,R, γ) also defines policy and value function.

Specifically, a policy π maps a state s ∈ S to an action
a ∈ A, and it can be either deterministic a = π(s) or
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Fig. 2. The classification of model-free reinforcement learning methods.

stochastic π(a|s) = P[At = a|St = s]. On the other hand,
MDP defines two kinds of value functions, i.e., state-value
function vπ(s) = Eπ[Gt|St = s] and action-value function
qπ(s, a) = Eπ[Gt|St = s,At = a] (also denoted as Q(s, a)
and called as Q-value)1. The former is the expected value at
state s by adopting policy π, while the latter further includes
the action a in the condition.

Considering the goal is to find the optimal policy that
maximizes the long-term reward, the optimal value functions
in MDP can be expressed as

v∗(s) = max
π

vπ(s), (1)

q∗(s, a) = max
π

qπ(s, a). (2)

Also, these two optimal value functions hold such relation
v∗(s) = max

a
q∗(s, a), based on which the Bellman optimality

equation for v∗ can be obtained as follows [22],

v∗(s) = max
a
R(s, a) + γ

∑
s′∈S
T (s′|s, a)v∗(s′). (3)

However, (3) is a nonlinear equation without a closed-form
solution. Thus, several RL methods are proposed to find the
optimal policy by solving (3), which will be discussed in
Section III-C.

Besides the generally used finite and discrete MDP, some
extensions to MDP also attracted much attention and devel-
oped recently, such as infinite and continuous MDP on state
and action spaces, as well as the classical multi-arm bandit
(MAB) framework, which could be seen as a special case of
MDP with just one state, and the reward depends only on the
action [24]. An emerging direction is the partially observable
MDP (POMDP), a generalization of MDP with hidden states
[25]. Especially, the current state is not fully observable, and
rather an observation, which is a subset of all the available
information in a given state. POMDP maintains the complete
history of actions and observations to determine the optimal
policy. However, instead of tracking a complete history, an
agent maintains a belief state based on the probability distribu-
tion obtained by a set of observations, observation probabilities
and the underlying MDP. Since POMDP is complex and hard

1The terms of qπ and Q are interchangeably used in this paper to refer to
state-value function, which is in line with existing literature.

to solve, a common approach in the literature is to transform
POMDP to MDP.

C. Reinforcement Learning Methods

After the basic introduction of RL and its main framework
MDP, we now provide an overview of several commonly used
as well as advanced RL methods.

As a matter of fact, most traditional MDP problems assume
that the full knowledge of environment is known beforehand.
Hence we can use dynamic programming (DP) methods such
as policy iteration (PI) and value iteration (VI) to solve
these MDP problems (see [22] for details). Nonetheless,
RL problems focus on dynamic environment, in which the
environment model is unknown, i.e., both transition matrix and
reward function are unknown/inaccurate. Therefore, several
RL methods including model-based methods and model-free
methods are proposed. The former learns to fit the environment
model, transforming RL problems into traditional DP prob-
lems, while the latter is like trial-and-error learning, drawing
much attention.

Thus, we particularly discuss model-free methods here.
Especially, these methods can be further categorized into two
classes, i.e., methods for prediction and methods for control.
The former is to estimate the value function vπ underlying
specific policy π in an MDP, while the latter is to learn optimal
value function v∗ as well as optimal policy π∗ together.
Moreover, depending on whether the optimal action-value
function q∗(s, a) is updated by the policy being followed,
methods for control are divided into two categories, i.e., on-
policy and off-policy methods. The former estimates state-
value function assuming the current policy π continues being
followed, while the latter estimates it assuming a greedy policy
is followed rather than the current policy π. Fig. 2 presents
a classification of the existing model-free RL methods, which
will be introduced in the following.

1) Monte-Carlo Learning [26]: Monte-Carlo (MC) learn-
ing is commonly used for value prediction, which estimates
vπ(s) by averaging returns observed after visits to state s in
episodes. Here the episode denotes a sequence of interactions
between the agent and environment, from some state to ter-
minal state, which can be expressed as St, At, Rt, · · · , St+k.
Also, MC learning can be applied to action-value prediction
[22].
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However, the variance of the returns in MC learning can be
high, which leads to poor estimation. Besides, when interacting
with a system in practice, it might be impossible to reset the
system state to some particular state for sample returns [27].

2) Temporal Difference Learning [28]: As one of signifi-
cant methods of RL, temporal difference (TD) learning is able
to address above issues. Compared with MC learning, which
update the value until the end of the episode, TD learning only
waits until the next time step (t+ 1) by using bootstrapping.
Similar to MC Learning, TD learning can also be applied to
action-value prediction.

Therefore, TD learning can learn online after every step,
as well as work in continuing (non-terminating) environment,
which is quite practical. Besides, the simplest TD learning is
to update in the next time step, denoted by TD(0), while TD
learning becomes close to MC learning if calculating n-step
return with n→∞.

It is worth noticing that several RL methods for control
are based on MC and TD learning concerned with the policy,
which are discussed in the following.

3) Sarsa [29]: State-action-reward-state-action (Sarsa) is a
typical on-policy method for RL control problems based on
TD learning. As the name implies, the Q-value in Sarsa is
updated based on the current state S1, the executing action A1,
the reward R as well as the entered state S2 after executing
this action, and finally the next action A2 the agent chooses
in the new state. Thus, Sarsa updates action-value function as,

Q(St, At)← Q(St, At) + α[Rt+1 + γQ(St+1, At+1)

−Q(St, At)].
(4)

On the right side, Q(st, At), Rt+1 and Q(st+1, At+1) denote
the old value, observed reward and the estimate of future value
following the policy, respectively. α is a constant step-size
parameter (also known as learning rate), and α ∈ (0, 1].

4) Q-Learning [30]: Q-learning is an important off-policy
TD control method, defined by,

Q(St, At)← Q(St, At) + α[Rt+1 + γmax
a

Q(St+1, a)

−Q(St, At)].
(5)

Compared with the update in Sarsa, Q-learning makes
a difference in the estimate of optimal future value, i.e.,
max
a

Q(St+1, a), which follows a greedy policy instead of
current policy.

Nevertheless, above methods are tabular methods, in which
the state and action spaces are small enough to be represented
as arrays/tables for finding exact solutions. Obviously, these
tabular methods cannot be directly applied in large-scale
problems due to memory and time limit. Therefore, several
function approximation methods are proposed, in which the
approximate value function is represented as a parameter-
ized functional form with weight vector w ∈ Rd, just like
v̂(s,w) ≈ vπ(s) and q̂(s, a,w) ≈ qπ(s, a). For instance, v̂
might be a linear combination of state features, with w as
the vector of feature weights. Some function approximation
methods are discussed in the following.

5) Deep Q-Network [6]: Deep Q-network (DQN) is one
of important function approximation methods, in which q̂ is
characterized by deep neural networks, with w as the vector
of connection weights in neural networks.

By leveraging the neural network to estimate the Q-value
function, the input for the network is the current state, while
the output is the corresponding Q-value for each action.
Especially, DQN is still based on Q-learning method, and the
network training still refers to the Q-learning update equation,
which updates the network weights as,

wt ← wt + α[Rt+1 + γmax
a

q̂(St+1, a,wt)−

q̂(St, At,wt)]∇q̂(St, At,wt),
(6)

DQN is a representative of DRL, which embraces the advan-
tage of deep neural network (DNN) in approximating the value
functions, and hence speeding the learning process and im-
prove the RL performance [14]. Moreover, most DRL methods
are modifications and extensions to DQN, such as double deep
Q-learning methods [31], deep recurrent Q-learning methods
[32], etc. In particular, unlike traditional DL techniques, DRL
methods train the neural network frequently based on new
experiences obtained during the agent-environment interaction.

6) Actor-Critic Method [33]: Most aforementioned meth-
ods approximate the value function using parameter w, while
the policy is generated directly from the value function. In
contrast, the actor-critic method is another class of method
that learns both policy and value approximations.

Specifically, the actor-critic method directly parameterizes
the policy as π(a|s,θ) = P[At = a|St = s,θt = θ]2, with
v̂(s,w) ≈ vπθ

(s) kept for value function, which is also the
core concept of policy gradient methods. The policy based
actor selects the actions, and the value based critic criticizes
the actions taken by the actor. Since the updates are performed
based on the policy that the actor is currently following, the
actor-critic method is on-policy, which is still based on TD
learning. The update of θ can be expressed as,

θt ← θt + α[Rt+1 + γv̂(St+1,w)− v̂(St,w)]
∇θπ(At|St,θ)
π(At|St,θ)

,

(7)

which is close to the form of update equation (4) in Sarsa.
7) Multi-Agent RL [34]: Multi-agent RL is the integration

of multi-agent systems with RL, which extends MDP frame-
work to a Markov game for multi-agent systems [35]. Through
the cooperation of individual RL agents, multi-agent RL is
able to solve many complex tasks compared with single-agent
RL we discussed above. Moreover, agents communicate with
each other and interact with the environment, so that state
transitions are controlled by the current state together with all
agents’ actions.

Specifically, with n agents in the system, the set of actions
for agent i is defined as Ai, leading to the joint action set for
all agents as A = A1×A2×· · ·×An. The state transition func-
tion and the reward function become T (st+1|st, a1t , · · · , ant )
and R(st, a1t , · · · , ant ), respectively.

2In this paper, we use πθ and π(a|s,θ) interchangeably to refer to the
parameterized policy.
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a). Power domain

b). Frequency domain

c). Time domain

e). Multiple domain

d). Computing domain

a). User association

c). Transmission mode selection

b). Dynamic spectrum access

5). Network slicing

5). Software defined wireless network

Fig. 3. Overview of reinforcement learning applications in wireless networks from a layering perspective.

Consequently, the above discussion covers several important
and commonly used RL methods, including the hot DRL
as well as multi-agent RL methods. Note that most of the
other RL methods are extended/integrated from these methods
above, which share similar algorithm ideas. Different RL
methods can be considered for specific tasks and applications
in wireless networks.

D. Evolution of RL and Driving Factors

Owning to the promising gains in decision making men-
tioned above, RL applications are exhibiting huge potential
for growth recently. The datasets utilized in the RL framework
including information concerning state space, action space and
reward are gradually closing to the ground truth: from data
randomly generated following certain distributions or models,
to data obtained from simulators, then data collected from
real world network environments. Though over 70% of the
literature still utilizes randomly generated data in the RL
framework till 2020, the number of publications utilizing real
world data doubles year by year. Many factors are driving the
application of RL in wireless networks.

The first key factor is that RL is naturally suitable for issues
to be conquered in communication and networking research
fields. This is because channel statuses and network statuses
are continuously changing, which can be defined as states in
RL framework. And changes can be formulated as the state
transitions. Entities in wireless networks make decisions to
respond to changes in the external environment, which can be
described as actions. The achieved system metrics like latency
and throughput can be seen as rewards.

The second driving factor is the ever-increasing difficulty
and complexity of problems. By applying traditional opti-
mization theory, game theory and queuing theory, explicit
factors or elements involved in the formulated models need
to be specified. However, when the scale and complexity
of problems become intractable, it is almost impossible to
describe all various factors and heterogeneous elements in
traditional methods. On the other hand, RL takes advantage
of such tough problems, since the framework only needs to
specify the state space and action space, while the influence
of other elements is reflected in the reward from environment.
Hence, the inherent feature of RL technology is data-driven.

Another factor leading to the vigorousness of RL methods
in wireless networks is the significant value lying in large scale
of data, such as trajectory data, call detail record, deep packet
inspector data and so on. Thanks to many researchers working
on data anonymization, data cleaning and data publishing,
data usability is guaranteed, which provides the foundation
for applying RL methods.

IV. RL IN WIRELESS NETWORKS

To reveal the wide application of RL in wireless networks,
this section gives a comprehensive review of RL applications
from a layering perspective, as shown in Fig. 3. Specifically,
hot topics and corresponding applications of RL in wireless
networks are described layer by layer in the following.

A. RL for Physical Layer

Functionality blocks in the physical (PHY) layer are tradi-
tionally manually designed to optimize the radio performance
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TABLE II
SUMMARY OF RL APPLICATIONS IN PHY LAYER

Reference Scenario Addressed Problems Learning Model Control Scheme Proof of Convergence Performances
[36] Wireless networks Modulation/Demodulation DRL Cooperation By simulation: 1000 steps • Bit error rate: 10−3 − 10−2

[37] WSN Adaptive MCS Actor-critic learning Centralized None • Average throughput: 95% of optimal
[38] Wireless networks Adaptive MCS POMDP Centralized None • Transmission efficiency: 96% of optimal, 125% of P-timer
[39] Cognitive HetNets Adaptive MCS DQN Centralized By simulation: 3000 steps • Average rate: 83% of optimal, 187% of Benchmark
[40] Indoor mmWave networks Beam Selection Q-learning Centralized None • Beam search latency: 975 ms, 60.9% of Exhaustive search
[41] mmWave cellular networks Beam Selection Double DQN Centralized By simulation: 3000 steps -
[42] mmWave cellular networks Beam Selection Policy gradient Distributed By theory • 90% user SE: 9.8 bit/s/Hz, 127% of basic RL, 131% of Baseline

[43, 44] mmWave vehicle networks Beam Selection MAB Centralized By theory • Throughput: 98.27% of optimal, 90% of optimal within 56 min
[45] mmWave vehicle networks Beam Selection DQN Centralized None • Root Mean Square Error: 0.874, 98% of DP
[46] mmWave UAV networks Beam Selection MAB Centralized By simulation: 40 iterations • Expected regret: 15% of greedy
[47] 5G mmWave networks Beam Selection DQN Centralized By theory • Sum-rate: 99% of upper bound

under various channel conditions. Approximating these func-
tionality blocks with RL algorithms becomes a popular topic
recently. A brief summary of literature is presented in Table II.
As can be observed, these works mainly focus on modulation,
coding and beam selection in mmWave networks

1) Modulation and Coding: Modulation function trans-
forms digital bit streams into analogy signals which can be
transferred over analog wireless channel, while the demodu-
lation function is the inverse. A two-agent RL framework is
developed in [36] to implement modulation/demodulation. As
illustrated in Fig. 4, the transmitter of each agent is character-
ized by a DNN which maps the input bit string to a complex
number, while the receiver runs k-nearest neighbors (kNN) on
each complex number by comparing it with the modulated
preamble, and generates a guess for each transmission.

On the other hand, adaptive modulation and coding scheme
(MCS) is a widely adopted link adaption technique in the
physical layer of wireless networks. Recently, RL has been
applied to adaptive MCS from the perspective of optimal
control.

For example, an actor-critic learning based adaptive MCS
approach is proposed in [37] for both point-to-point commu-
nications and multi-node communications in WSN. The intel-
ligent agent residing in the transmitter adjusts the modulation
level and also the transmission power to adapt to the buffer
size and channel state information (CSI), so as to maximize the
long-term energy efficiency. Besides, Feres et al. [38] define a
new finite-state Markov channel model to address the varying
MCS. Specifically, based on POMDP formulation, such prob-
lem is solved under the robust header compression control by
successive approximation with Markov process. Differently,
Zhang et al. [39] investigate the adaptive MCS problem using
DQN in cognitive heterogeneous networks (HetNets). The
primary user (PU) learns the pattern of interference caused
by the random spectrum occupation of secondary users (SUs),
and accordingly chooses MCS level to improve data rate.

2) Beam Selection: The essential problem in mmWave
massive multi-input-multi-output (MIMO) systems is beam
selection, which is to choose the transmitting beam that is
pointing to user equipments (UEs) and achieves the highest
channel gain. Beam selection for single UE in indoor sce-
nario is investigated in [40], where a multi-stage Q-learning
approach is developed to determine the optimal beam from
multiple BSs for the highest signal quality. Specifically, the
Q-learning agent is first trained with an offline dataset. Then,
the generated Q-table in offline stage is used to suggest the
candidate beam sets for the online beam searching phase.

N (0, N0)Agent 1 Agent 2

C
ha

nn
el
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RX

TX

b

b

Rewardε

o1(b)

ô2(b, b̂)ˆ̂
b

ô1(b)

ô2(b, b̂)

b̂

Fig. 4. Framework of two-agent RL for modulation/demodulation.

Shafin et al. [41] develop a double DQN based broadcast
beam selection algorithm for CN. The agent at BS dynamically
adjusts broadcast beam according to the quality of service
(QoS) satisfaction of UEs, in order to improve the coverage.

On the other hand, beam selection problem for multiple
UEs is studied in [42], where each mmWave BS interacts
with each other and learns the best beamwidth and transmis-
sion power level in a distributed way, using multi-agent RL
framework. Different from [42], where each mmWave BS is
assumed to serve only one UE, more practical scenario where
BS communicates with multiple UEs simultaneously through
beamforming is considered in [43–47].

In [43], the BS simultaneously selects a subset of beams
for multiple vehicles using MAB in order to fully exploit the
multiplexing gain. Taking the context information including
positions and trajectories of vehicles, [44] develops an MAB
based online fast ML approach to maximize the amount
of successfully transmitted data. Whereas [45] addresses the
joint vehicle scheduling and beam selection problem using
DQN. A cascade framework composed of two convolutional
neural network (CNN) layers is proposed. The first layer
takes position and height of vehicles as input and outputs
the achievable signal strength of each beam pair for each
vehicle. Then the results are used by the second layer to
allocate time slots for each vehicle. Vaezy et al. [46] focus
on unmanned aerial vehicle (UAV) mmWave networks and
propose an MAB based beam selection algorithm. With the
unknown dynamics in blockage of mmWave channels, the
UAV learns to adjust beams to improve the QoS satisfaction
of served UEs. Thompson sampling is adopted to find the
optimal solution. Mismar et al. [47] exploited DQN for joint
beamforming and power allocation problem in 5G mmWave
networks. According to signal to interference plus noise ratio
(SINR) in receiver, the agent determines the analog beams and
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allocated power to different UEs.
3) Discussions on RL Applications in PHY Layer: Though

RL has been successfully applied to handle several important
problems in PHY layer, there is still room for improvement.

Agent cooperation in [36] would cause extra signaling over-
head, and also bring latency in the state collection. Considering
modulation/demodulation is performed at the symbol level,
bad decision may be made. For instance, only 95% of optimal
performance is achieved in [37]. Thus DL may be more
appropriate for modulation/demodulation.

As for the beam selection, different observations are taken as
the state variables in RL frameworks, such as CSI [42, 47, 48],
locations [40, 43, 44], QoS satisfaction [41]. However, low
signal to noise ratio (SNR) of mmWave link before beam-
forming makes it hard to acquire CSI. Location information
which is application layer parameters may increase the latency
of data collection. In addition, there may exist errors in these
state variables due to the dynamical obstacle (as considered
in [46]), low precision positioning and CSI estimation. In this
regarding, robustness should be considered when designing
RL algorithms. Another critical issue is learning delay, as the
best beam is frequently changing (ms level). For instance,
though the beam searching latency in [40] is reduced by
39.1% compared to the exhaustive search approach, it is
still undesirable in the practical mmWave communication
systems. On the other hand, both DRL and RL models are
adopted for beam selection. However, considering the limited
dimension of state and action space, the trade-off between data
processing load and optimality should be carefully considered
with respect to the network sizes, when designing the learning
model. Moreover, results show that an up to 56min is needed
to achieve the 90% of the optimal performance [40]. There
may be a long time during which RL performs badly. Hence
fasting the convergence of RL based approaches is highly
desirable.

B. RL for Media Access Control Layer

The media access control (MAC) layer of wireless networks
is responsible for resource allocation, scheduling, mobility
management and interference coordination, etc. RL has long
been used to address the control problems in MAC layer and
shows the superior performance. We present an overview of
RL applications in MAC layer in Table III.

1) Resource Allocation: Resource allocation is a funda-
mental functionality in MAC layer, the aim of which is to
coordinate the resource sharing in multiple domains (power,
frequency, time, computation, etc.) among users. Traditionally,
resource allocation problems are usually modeled as complex
multi-object optimization problems, which, however, are too
complex to be solved exactly [4] and may not have closed-
form solutions. Inspired by its capability of solving complex
optimization problems efficiently, tailoring RL algorithms to
better allocate resources, has attracted considerable research
efforts. In the following, we discuss related works according
to their focused resource domain.

a) Resource Allocation in Power Domain: Researches
in this domain can be classified into power control of single

transmitter [49–52] and power control of multi-transmitter [53,
54].

Meng et al. [49] investigate the power control problem in
full-duplex CRN using DQN. The cognitive BS periodically
detects the interference power from primary networks, and
opportunistically communicates with SUs using appropriate
power on the same channel. Mismar et al. [50] propose a
RL based closed loop power control for voice over long term
evolution (VoLTE) users. With the random occurrence of link
impairments, the BS can autonomously adjust transmission
power allocated to served users to meet their target SINR. Lee
et al. [51] exploit DQN for user selection and power control
in time divide duplex (TDD) multi-access networks. The BS
determines the user to serve and also transmission power.
The problem is formulated as a constrained MDP, and further
transformed into an unconstrained MDP using Lagrangian
approach. Particularly, CSI and Lagrangian approach are taken
as the state, in order to make the algorithm circumstance-
independent. Zhang et al. [52] consider the CRN consisting
of a primary transmitter-receiver pair, a secondary transmitter-
receiver pair and several sensors. Spectrum is shared between
primary and secondary pairs. The secondary transmitter col-
lects interference level of primary transmitter through sensors,
and accordingly adjust its own transmission power to meet the
QoS requirement. Two asynchronous variants of actor-critic
learning, i.e., asynchronous advantage actor-critic (A3C) and
distributed proximal policy optimization are proposed to solve
this problem.

Compared with the focus on one transmitter of above
works, power control of multi-transmitter studies how to
adjust the transmission power of multiple transmitter-receiver
pairs simultaneously to mitigate the interference. Most of RL
applications in this field adopt the multi-agent framework. For
instance, Nasir et al. [53] address the power control problem
in mobile ad hoc networks (MANET) using multi-agent DQN.
Each transmitter acts as an agent, which observes channel
condition, location, experienced/generated interference from/to
neighbors, and adjust transmission power level accordingly.
Xiao et al. [54] proposed a multi-agent DRL based distributed
power allocation scheme for small cell networks. With the
local observations of user density, historical SINR and CSI
estimations, each small cell independently determines the
transmission power allocated to served users. Both energy
consumption, cell throughput and caused interference are
considered in the reward function.

b) Resource Allocation in Frequency Domain: RL has
been adopted to make decisions of spectrum allocation [55–
58], spectrum handoff [59] and hopping [60]. Most of the RL
applications in this field adopt multi-agent learning framework,
considering that decisions are usually made on the UE side in
a distributed manner. The centralized learning framework is
only adopted in [60].

Wang et al. [55] exploit RL for the spectrum allocation
in Carrier Sense Multiple Access (CSMA) based CRN. The
problem is formulated as a POMDP with unknown system
dynamics. DQN is applied to overcome unknown dynamics
and prohibitive computation therein, and achieve near-optimal
channel access policy. On the contrary, Naparstek et al. [56]
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TABLE III
SUMMARY OF RL APPLICATIONS IN MAC LAYER

Problem Sub-Problem Reference Scenario Learning Model Proof of Convergence Performances
power [49] Full duplex CRN DQN By simulation, 35 episodes • Average Throughput: 85.7% of optimal
power [50] LTE RL None • Throughput for 5 UEs: 101% of Random algorithm
power [51] TDMA networks DQN By theory • Data rate: 90% of optimal
power [52] CRN A3C By simulation, 200 steps • Reward: 90% of optimization method, 120% of DQN
power [53] MANET DQN By simulation, 30000 steps • Sum rate: 105% of WMMSE, 114% of central
power [54] Small cell networks DRL By theory • Average throughput/energy consumption: 125%/66.7% of Bi-SON
spectrum [55] CSMA CRN POMDP, DQN By simulation, 70 steps • Average reward: DQN 0.947, Whittle Index 0.767

spectrum [56] Multi-channel
wireless networks DQN By simulation, 50 episodes • Average channel utilization: 200% of Slotted Aloha

• Average user rate: 140% of DP
spectrum [57] LTE-LAA DQN By theory • Average airtime allocation: 17% of existing proactive schemes

spectrum [58] D2D Underlaying CN Multi-agent
actor-critic learning By simulation, 100 steps • Outage probability: 60% of Q-learning, 62% of DQN

• Sum rate: 134% of Q-learning, 131% of DQN

spectrum [59] CRN Transfer actor-critic learning By simulation, 30000 steps • PSNR with 10 dB SNR: 133% of Myopic
• MOS: 105% of Q-learning, 122% of Myopic

spectrum [60] CRN Q-learning By simulation, 500 steps • Utility: 103% of Q-learning, 121% of Random
time [61] LTE-U WiFi Q-learning None • Aggregate capacity: 115% of non-dynamic

time [62] Delay-tolerant IoT DQN By simulation, 200 episodes • Average utilization gain: 200% of Heuristic control
• Average throughput: 114.7% of Original

time [63] WSN POMDP, Q-learning By theory • Normalized throughput: 125% of fully-connected network
time [64] IRSA Q-learning By simulation, 10 steps • Normalized throughput: 253% of original IRSA
computation [65] MEC DRL By simulation, 200 steps • Average cost: 32% of Greedy, 18% of Local
computation [66] SDN enabled MEC DQN By simulation, 1000 episodes • Average service time: 77.8% of classic algorithm
computation [67] Energy harvesting MEC POMDP, Policy gradient By theory • Average utility: 123% of Greedy, 160% of MEC, 250% of local
computation [68] MEC POMDP, Multi-agent DRL By simulation, 8000 episodes • Average utility: 128% of Greedy, 575% of Random
computation [69] MEC DQN By simulation, 1000 steps • Average cost: 95.8% greedy, 99.44% of Lookahead
multi-domain [70] NOMA networks POMDP, DQN By simulation, 200 episodes • Throughput: 243% of slotted ALOHA NOMA
multi-domain [71] UAV networks Multi-agent Q-learning By theory • Average reward: 250% of random scheme
multi-domain [72] OFDMA networks DRL By simulation, 8000 steps • Average reward: 250% of random

multi-domain [73] Collaborative MEC Deep MC By simulation, 10000 steps • Average latency: 41% of greedy search, 48% of DQN
• Average energy consumption: 83% of greedy, 78% of DQN

multi-domain [74] MEC based
vehicular networks DQN By simulation, 25 episodes • Utility: 104.4% of Q-learning, 117.1% of local

multi-domain [75] MEC DRL By simulation, 8000 frames • Maximal computation rate:122.5% of edge, 206.9% of local

multi-domain [76] MEC based
vehicular networks DRL By theory • Energy consumption: 108% of optimal, 67% of conventional MEC

Resource
Allocation

multi-domain [77] Cache enabled MEC DQN None • Average energy consumption: 1̃13% of exhaustive search
user association [78] Energy harvesting IoT DQN By simulation, 20000 steps • Average sum rate: 141% of round-robin scheduling,96% of optimal
user association [79] V2X Q-learning, DQN
user association [80] mmWave HetNets Multi-agent DQN By simulation, 1000 steps • Sum-rate: 108% of max-SNR, 104% of heuristic, 98% of optimal

user association [81, 82] HetNets Multi-agent
dueling double DQN By simulation, 75 episodes • Smoothing system capacity: 114% of Q-learning, 107% of DQN

user association [83] 5G Multi-agent RL None • Successful transmissions: 110% of sensing based, 149% of Q-learning
dynamic
spectrum access [84] Ambient backscatter system Basic RL By theory • Average throughput: 136% of random policy, 91% of optimal

dynamic
spectrum access [85] Energy harvesting WSN POMDP, Double DQN By theory • Maximal reward gain: 113% of DQN, up to 117% of Q-learning

dynamic
spectrum access [86] CRN POMDP, DQN By theory • Decision accuracy: 114% of Q-learning, 200% of random policy

dynamic
spectrum access [87] Heterogeneous CRN DQN By simulation, 70000 steps • Spectrum utilization: 130% of half-20step-DQN, 157% of half-DQN

dynamic
spectrum access [88, 89] CSMA HetNets DQN By theory • Throughput: 132% of TDMA, 89% of ALOHA

dynamic
spectrum access [90] 5G V2I Multi-agent DRL None • Cost: 81% of DQN, 70% of Q-learning

transmit
mode selection [91] 5G D2D Multi-agent RL By simulation, 35 episodes • Data rate: 140% of greedy, 233% of random

Scheduling

transmit
mode selection [92] IoT Multi-agent

actor-critic learning By simulation, 1500 iterations • Blocking probability: 65% of RL-greedy, 78% of DQN
• Throughput: 128% of RL-greedy, 109% of DQN

single-node [93] CN DQN None • Sleeping gain: 101% of DQN, 349% of always-on policy
multi-node [94] Cloud-RAN DQN By theory • Total power consumption: 88% of FA

Hardware
Sleeping
Control multi-node [95] HetNets Deep actor-critic learning By simulation, 1000 steps • Normalized cost: 72% of Q-learning, 79% of TACT

BS dominant [96] HetNets MAB None • Data rate: 174% of classical, 97% of satisfaction based
• Handover failure: 36% of classical, 111% of satisfaction based

user dominant [97] WLAN DQN By theory • Average throughput: 131% of originalMobility
Management user dominant [98] HetNets Basic RL By theory • Throughput: 155% of SBH, 97% of RBH

• Number of hand-offs: 55% of RBH, 67% of SBH, 103% of optimal
content caching [99] RAN DRL By simulation, 40 episodes • Average cache hit rate: 101% of First In First Out policy
multi-domain
resource allocation [100] RAN DRL By theory • Average utility: 102% of Queue-aware control policy

spectrum allocation [101] RAN RL, DL By simulation, 25 steps • Resource utilization: 165% of heuristic, 112% of classical actor-critic
spectrum allocation [102] SDN-RAN Multi-agent DRL By theory • Spectrum efficiency: 400 bps/Hz; Satisfaction ratio: 99%
spectrum allocation [103] SDN-RAN Actor-critic learning, LSTM By simulation, 4000 steps • Utility: 110% of hard slicing
slicing configuration [104] WiFi Double DQN By simulation, 10 steps • Mean normalized throughput: 94% of optimal

Network
Slicing

UAV cooperation [103] MEC RL By theory • -

investigate the spectrum allocation in orthogonal frequency
division multiple access (OFDMA) systems using dueling
DQN [105]. The CSIs, transmission results (success/failure)
of last action, and capacity of each frequency channel are
jointly modeled as the state space. A long short-term memory
(LSTM) layer is adopted to transform the state vector into a
low-dimensional internal state. In addition, both competitive
reward and cooperative reward are considered in the DQN
model.

Spectrum allocation problems are addressed using RL in
the context of CN in [57, 58]. Challita et al. [57] work
on the proactive channel selection problem in long term
evolution-license assisted access (LTE-LAA) networks, the
aim of which is to guarantee fair spectrum sharing among
small cell base stations (SBSs) and access points (APs). In

particular, a non-cooperative game framework is developed,
and an end-to-end deep LSTM learning based scheme is used
to find a mixed strategy Nash equilibrium (NE). The encoder-
decoder module first transforms the historical traffic sequence
to a fixed dimension vector. Then a multi-layer perception
encodes all the vectors together, while the decoder network
further decodes the channel selection information from the
vector. Differently, Li et al. [58] consider the Device-to-Device
(D2D) underlayling CN and propose a multi-agent Deep actor-
critic learning based spectrum allocation scheme. Each D2D
pair chooses the resource block (RB) according to the CSI,
interference and occupied RB in the previous time slot. The
aim is to maximize the QoS satisfactions of both D2D and
cellular UEs.

Koushik et al. [59] investigate the spectrum handoff problem
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in CRN. Both Q-learning and transfer actor-critic learning are
adopted to address this problem. Specifically, the new arrived
SU first uses Q-learning to learn the optimal handoff policy if
there is no expert SU. On the contrary, if there exists the expert
SU, the newly joined SU would first try to find the expert
SU using manifold learning, and then get the expert policy.
The actor unifies the expert policy and generates native policy
to select actions. Through knowledge transfer, the learning
process of newly joined SU is greatly sped up.

Han et al. [60] exploit Q-learning for the frequency hopping
problem in CRN. The SUs make the frequency hopping
decisions and decide whether to stay associated with the
current BS or move to another BS based on the presence of
PUs and achieved SINR in the last time slot. The aim of this
scheme is to improve the SINR of the SUs against cooperative
smart jammers.

c) Resource Allocation in Time Domain: Time resource
allocation usually raises between two different systems, such
as LTE and WiFi coexisting systems in [61], and delay-tolerant
IoT and real-time application integrated environment in [62].
How to share the time resources between heterogeneous
systems is the key problem. Rupasinghe et al. [61] propose
a multi-agent Q-learning based time sharing scheme. Each
LAA BS learns to select the best duty cycle according to the
achieved capacity. The cost function here is modeled as the
gap between the target and achieved capacity. Chinchali et al.
[62] leverage basic RL for the time sharing of delay-tolerant
IoT traffic and conventional real-time applications. The aim
is to maximize the IoT traffic throughput while guaranteeing
QoS requirements of conventional real-time applications. The
central agents observe load, quality and number of cell ses-
sions, and accordingly determine the fraction of time when
IoT data is scheduled on top of conventional traffic.

Time sharing among homogeneous transmitters is investi-
gated in [63] using RL. Nisioti et al. [63] propose a decen-
tralized coordinated RL based approach for WSN. Due to the
lack of a centralized control point and partial observability of
network states, the MAC design is formulated into POMDP
framework, where each sensor node is an agent, and utilizes
Q-learning to learn the transmitted packets in each time slot.
The authors further extend the MAC design under the irreg-
ular repetition slotted ALOHA (IRSA) protocol in [64], and
theoretically analyze the optimality and near-optimal polices
of proposed design.

d) Resource Allocation in Computing Domain: Compu-
tation offloading is the main topic in this area. Due to the
limited computation capacity, it is necessary for UEs to offload
their computation tasks to the nearby edge servers. Therefore,
which units and how much should be offloaded to remain a
key problem.

Computation offloading in single UE and mobile edge
computing (MEC) server case is studied in [65] using DRL.
The agent is trained using policy gradient, and learns to choose
the offloading number of processing units according to the
CPU, memory occupation and requirements of tasks in the job
slot and backlog. A DQN based offloading scheme is proposed
to determine the target MEC server and also the volume
of computations to be offloaded. The state contains radio

bandwidths, harvested energy, and battery level. The aim is
to minimize the weighted cost, including power consumption,
delay, dropping probability and etc.

In contrast, [66–69] cope with the computation offloading
problem in multi-user MEC systems. Wang et al. [66] adopts
the centralized learning framework to address this problem.
A DQN based routing selection and computation offloading
scheme is developed for Software Defined Network (SDN)-
enabled MEC system. The agent is deployed at central con-
troller, observes the location of requests, and determines the
routing and offloading action accordingly.

Both [67, 68] exploit distributed multi-agent learning frame-
work for computation offloading. Tang et al. [67] focus on
IoT MEC systems with energy harvesting. To determine the
percent of tasks processed locally and remotely (at MEC
servers), the decentralized computation offloading optimiza-
tion problem is formulated as a POMDP problem with partially
observed data and energy states. A policy gradient based
algorithm is proposed to maximize the reward obtained by
task execution while reducing the electricity cost. Computation
offloading problem is also formulated as a POMDP in [68],
which is addressed by multi-agent DRL with policy gradient
and differential neural computers. Without the bandwidth and
preference information of others, each user independently
learns the optimal offloading policy so as to maximize its
utility in terms of processing time and energy consumption.

On the other hand, Zeng et al. [69] address the virtual
machine (VM) transferring problem in MEC systems using
DQN. VM, which takes charge of service data processing, can
be flexibly transferred among the edge servers of different BSs.
With the aim of minimizing overall cost, the agent dynamically
transfers the VMs according to their previous location and user
requests.

e) Resource Allocation in Multiple Domain: In order
to improve resource utilization, RL has also been adopted
for multi-domain resource allocation, and shows significant
performance improvement.

Joint power and frequency resource allocation is investi-
gated in [70, 71]. Zhang et al. [70] investigate such problem in
grant-free non-orthogonal multiple access (NOMA) networks,
where long-term throughput maximization is formulated as a
POMDP. With the power fading gain of links as observations,
the authors propose a DQN-based algorithm for solution and
LSTM is utilized to learn network contention states. Whereas
Cui et al. [71] solve this problem together with UE selection
in UAV communication networks using multi-agent RL. It is
formulate as a stochastic game, and then solved by a multi-
agent Q-learning, where each UAV acts as an agent and makes
decisions according to received SINR level.

Joint time and frequency resource allocation problem in
OFDMA networks is addressed using DRL in [72]. In this
work, the AP learns to orthogonality allocate resource units
(minimum allocation unit in time-frequency domain) of a
frame to mobile stations, according to condition of channel
and traffic request.

On the other hand, RL is applied in joint computation and
communication resource allocation in [73–75]. Chen et al.
[73] focus on the collaborative MEC based IoT and address

Authorized licensed use limited to: University of Canberra. Downloaded on October 05,2020 at 02:55:13 UTC from IEEE Xplore.  Restrictions apply. 



2327-4662 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2020.3025365, IEEE Internet of
Things Journal

11

this problem using deep MC tree search algorithms. Moreover,
DNN is utilized in the learning framework to predict actions
in a self-supervised learning manner. Liu et al. [74] consider
MEC vehicular networks and use Q-learning and DQN to
address this problem. In this work, vehicles are assumed
to be moving edge server, since static deployment of edge
servers may cause “service hole”. The agent located in the
central controller determines servers to offload, as well as
communication and computation resources to allocate for
each UE. DRL is adopted to solve this problem for wireless
powered MEC systems in [75]. A DRL based online offloading
algorithm, termed as DROO is proposed. The agent determines
the proportion of time used for wireless power transfer and
offloading, as well as the binary offloading decision, i.e., either
computing locally or at server.

Different from previous researches, [76, 77] investigate the
joint frequency, computation and storing resource allocation
problem. Peng et al. [76] focus on MEC based vehicular
networks and propose a DRL based approach, in which MEC
server collects the information about moving, position, and
task, and makes the allocation decisions in a centralized
manner using the deep deterministic policy gradient (DDPG)
learning. In [77], the problem in cache enabled MEC systems
is first formulated as a mixed integer nonlinear programming
(MINLP), and then solved by a MDP based framework.
Considering the high dimension of state and action space, DRL
is applied in the framework.

f) Discussions on RL Applications in Resource Alloca-
tion: Resource allocation is a well-studied problem in wire-
less networks, and is traditionally addressed by mathematical
tools such as integer programming and convex optimization.
Different from traditional schemes which focus on the utility
maximization in a single channel coherence time (CCT), the
RL based schemes are able to maximize the reward in the
long-run through trial-and-error.

Existing RL based resource allocation schemes have consid-
ered various state information of wireless networks, including
raw observations such as CSI [56, 59], QoS priority [59],
currently accessed channel [56], the inferred information such
as interference power [49, 60], and also the results of last
action [61]. Raw observations are easier to acquire, and
have higher efficiency in data collection and processing. For
instance, CSI are estimated every frame employing channel
reciprocity in TDD CN. Hence they are widely taken as
the input of conventional handcrafted algorithms. Inferred
information cuts down redundancy in the raw observations,
at the cost of increased data processing overhead, and has
the advantage in training efficiency. Whereas the results of
last action requiring extra storing resource. Overall, these are
all helpful parameters of network dynamics for finding an
optimal policy. Nevertheless, how to construct state space
to achieve the balance between accuracy and data process-
ing/storing/acquiring/training efficiency is still an open issue.

Moreover, Table III shows that most works in this field adopt
DRL models. Considering the large number of resource ele-
ments, combining DL and RL has advantage in accuracy and
optimality. However, DRL results in higher data processing
load, and thus may not appropriate for some scenarios where

learners have limited battery and processing ability, such as
MANET [53] and UAVs [71].

In addition, there are various metrics to evaluate the perfor-
mance of resource allocation, such as throughput, spectral effi-
ciency, buffering cost, energy consumption, energy efficiency,
quality of experience (QoE), fairness, and delay reduction.
Since existing RL applications in this field only consider a
small part of these objectives at the same time, the benefits of
RL in multi-objective optimization are not fully exploited.

On the other hand, both centralized and decentralized frame-
works are adopted in these RL applications. Learning the
allocation policy of multiple nodes through a centralized agent
possesses advantages in convergence rate and optimality. How-
ever, the timely collection of state information from multiple
distributed nodes requires additional signaling and would re-
sult in high overhead. Whereas distributed learning framework
has advantages in complexity and overhead. However, it would
decrease the convergence speed. As can be observed from
Table III, though some RL applications such as [57] using non-
cooperative game theory to study the convergence performance
of distributive learning, a considerable number of works only
prove the convergence by simulation. Results show that a long
time is required to converge to the optimal policy. For instance,
25,000 time slots are consumed to converge for the DQN in
[53]. In this regard, a cooperative RL framework as done in
[59] seems to be a promising solution, where only part of
important information about environment is exchanged among
the distributed agents. How to choose the information to be
exchanged in order to balance the convergence rate, overhead
and optimality is still an open issue.

Another critical issue of RL based resource allocation
approaches is the online bad decisions, especially at the
beginning when convergence is not reached. Online bad de-
cisions are unacceptable for some ultra reliable services such
as vehicular communications. The occurrence of online bad
decisions leads to the performance gap between RL based and
the optimal one. For instance, only 85.7% and 90% of optimal
performance are achieved by RL applications in [49] and
[51], respectively. Pre-training RL agents with traditionally
handcrafted algorithms seems to be a potential solution to
avoid the bad decisions at the beginning. However, how to
deal with random online bad decisions of converged RL to
approximate the optimal performance is still untouched in the
context of wireless networks.

Furthermore, computing from cloud to edge is an increasing
trend in nowadays wireless networks. RL has been success-
fully applied to build the intelligent edge in [65–69, 73–
77], i.e., offloading computing tasks, allocation computing and
communication resources in a data-driven and adaptive way.
However, computation capability of UEs is usually limited
and may be not able to make decisions timely. For example,
the total execution latency of DQN based approach in [53]
is about 0.059s, so it may be impractical considering the
short resource allocation period, such as 20ms considered in
[37, 50]. Besides, centralized learning would cause overhead
and latency in data collection. In this regarding, how to
dynamically compromise centralized, edge and UE learning,
and build the edge intelligence employing MEC architecture,
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is a promising topic.
2) Scheduling: Scheduling is another key functionalities

in the MAC layer, which is responsible for the provision of
guaranteed QoS in terms of delay, packet dropping rate (PDR),
throughput and so on. RL applications in this field mainly lie
in user association [78–83], dynamic spectrum access [84–90]
and transmission mode selection [91, 92].

a) User Association: User association policy determines
which BS serves what and how many users. Traditionally, user
association is decided based on the reference signal receiving
power (RSRP). However, this kind of scheme is known limited
in satisfying long term QoS demands when facing dynamic
and unpredictable network conditions.

Chu et al. [78] study the user association problems in
energy harvesting IoT, where UEs with various battery levels
communicate with one BS. At each time slots, BS decides
which UEs can access the available channels. An LSTM DQN
integrated framework is developed to address this problem.
The deep LSTM is trained to predict the current battery
level of candidate UEs based on the history battery levels.
Then the prediction results together with CSI are taken as the
input of the model, which finally outputs the user association
policy. Zhao et al. [79] propose to use multi-agent DQN
to address this problem in HetNets, where each UE makes
the local decision and sends the access requests to BSs. The
feedback from BSs is used to evaluate the reward and update
the DQN parameters. Similar learning framework is applied
in [80] to maximize the overall throughput via optimizing
user association in mmWave HetNets. At each time step,
the user autonomously selects one of its surrounding BSs to
send connection request, according to local observations. The
macrocell base station (MBS) broadcasts the resulted network
throughput to all users to help them evaluate the goodness of
their actions.

On the other hand, it is necessary to jointly optimize
user association and resource allocation to maximize resource
utilization. For instance, the joint optimization problem is
investigated in HetNets [81, 82]. Varying channel conditions
and interference may prevent UEs from meeting its minimum
QoS. In this regarding, UEs need to dynamically choose the
BS to associate and also the channels to communicate. This
problem is formulated as a stochastic game and the optimal
policy is found by multi-agent dueling double DQN. Yao et
al. [83] apply RL to address the user association and channel
access problem in 5G network. The problem is formulated as
a potential game, and multi-agent RL framework is proposed
to learn the good association and channel access probability
action for UEs. Both regret learning and the fictitious play
based algorithm are adopted to update the UEs’ policy.

b) Dynamic Spectrum Access: Huynh et al. [84] leverage
RL for the spectrum access scheduling problem in RF-powered
ambient backscatter communication systems. The agent at
SU transmitter learns to make optimal decisions, i.e., staying
idle, sending data, harvesting energy, or backscattering data,
according to the status of channel and energy, as well as data
demands.

Li et al. [85] consider the spectrum access scheduling
problem in energy harvesting WSN. Since it is costly and im-

practical to observe the power information of all nodes, only a
part of nodes is assumed to be observed therein. Therefore, the
authors formulate a POMDP problem with partial information
as belief states, and further propose a double DQN scheme to
obtain the scheduling policy for spectrum access. The energy
cost of unobserved nodes is avoided by the policy inference
in POMDP.

Li et al. [86] investigate the dynamic spectrum access in
CRN. Generally, for the bandwidth requirement, SUs need
to sense states of all channels and aggregate vacant chan-
nels among them. However, due to the limited aggregation
capability, only vacant channels within the aggregation range
can be utilized by the user, i.e., the whole system is partially
observable to the user, falling into a general POMDP. More-
over, a DQN-based algorithm is proposed to leverage channel
correlation for system state inference. Xu et al. [87] consider
the distributed spectrum access problem in heterogeneous
CRN. The considered heterogeneous cognitive mesh network
is composed of nodes that adopt different spectrum access
schemes. Secondary nodes observe the channel occupation,
and determine whether to transmit on certain channel or stop
transmission independently. This problem is formulated as
a POMDP and solved using deep recurrent Q-Network. Yu
et al. [88, 89] apply DQN in spectrum sharing in CSMA
based HetNets. Multiple nodes with different CSMA MAC
communicate on same spectrum. DQN based CSMA, termed
as CS-DLMA, is proposed to help node maximize long-
term utility in such heterogeneous environment. The agent
dynamically changes the length of packets to be transmitted
according to the sensing results and packet length in the
previous time slot. Note that the epoch is non-uniform due
to the heterogeneous CSMA.

Ning et al. [90] apply DRL to handle the channel selection
problem in 5G vehicle-to-infrastructure (V2I). A distributed
DRL framework is proposed, where each V2I user chooses its
channel for data transmission independently, according to the
experienced interference.

c) Transmission Mode Selection: RL is exploited for
transmission mode selection in D2D assisted 5G HetNets in
[91]. Each virtual reality (VR) user can stay in three modes,
i.e., macrocell broadcasting, mmWave small cell unicasting
and D2D multicasting. In order to maximize system through-
put in varying wireless environment, users need to dynamically
change the transmission mode. This problem is formulated as
a general-sum stochastic games, and then solved by a multi-
agent framework, where both Nash-Q-learning and Wolf-PHC
algorithms are used to handle different network scales. Multi-
agent actor-critic learning is exploited for mode selection of
IoT devices in [92]. Each IoT device is modeled as an agent
and dynamically chooses to sleep or be active, access or wait
at the selected channel or handoff, and also the MCS level,
according to the channel condition and traffic load.

d) Discussions on RL Applications in Scheduling: From
above review, it can be observed that RL has been widely im-
plemented to obtain the optimal scheduling policy. However,
there is still room for improvement in this research field.

Considering the mobility of UEs, user association should be
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determined from a global view, in order to achieve both load
balancing and utility maximization. However, the overhead
for state information collection and data processing would be
a serious problem with the trend of network densification.
Combining the LSTM and RL to exploit data correlation
and improve data efficiency in [78] is a more desirable
method. Nevertheless, the communication demand should also
be considered.

Moreover, multi-agent RL is widely adopted in address-
ing user association [81, 82], dynamic spectrum access [90]
and transmission mode selection [91, 92]. Though self-
organization and state collection efficiency are achieved, the
convergence and optimality become a critic issue, especially in
dense wireless networks. Moreover, the data processing load
and decision latency caused by DNN such as done in [79, 80]
should be taken into account, since UE generally has lower
data processing ability and is battery constrained.

3) Hardware Sleeping Control: Hardware sleeping is
deemed as the most efficient way to cut down the energy
consumed by wireless networks [106]. Most of conventional
sleeping control approaches are predicative, i.e., predict the
coming traffic and then activate/deactivate hardware. However,
it is hard to predict accurate traffic variation. On the other
hand, it is necessary to consider the long term performance
when designing sleeping control scheme, since frequent hard-
ware sleeping/activating transition would lead to extra energy
consumption and QoS dissatisfaction. Considering the above
deficiency, RL is desirable to solve hardware sleeping control
problems.

Whereas Liu et al. [93] address the single-node sleeping
control problem using DQN. A model-assisted scheme termed
as DeepNap is proposed to learn the optimal sleeping policies.
The traffic belief state is predicted through a traffic modeling
module, where the Baum-Welch algorithm is used to fit an
Interrupted Poisson Process (IPP) using real traffic data. The
state space is modeled as a combination of predicted traffic
belief state, queue length, and the operating status of the BS.
According to the observed state, the DQN agent chooses to
turn on or off the BS at each time slot. The reward function is
a weighted sum of the positive reward for served request, the
negative penalty for queued, re-transmitted, or failed requests,
and also the status transition cost of the BS.

Xu et al. [107] address the multi-node sleeping problem
for cloud radio access network (Cloud-RAN) using DQN,
the goal of which is to minimize the energy consumption
while guaranteeing the QoS requirements. At each time slot,
the DQN agent selects the working status, i.e., active or
sleeping, and also beamforming weights of remote radio heads
(RRHs), according to the results of last action and the QoS
demands. In order to reduce the dimension of action space, a
two-step scheme is proposed, in which the DQN agent first
determines the working status of RRH, then calculates the
optimal beamforming weights using convex optimization with
derived active set of RRHs.

Ye et al. [95] address the multi-node sleeping control
problem in two-tier HetNets using deep actor-critic learning,
in which DNN is first used to predict the traffic arrival rate of
each SBS. With the rate obtained as environment space, the

sleeping control policy of SBSs comes up with deep actor-
critic learning algorithms.

Discussions on RL Applications in Hardware Sleeping Con-
trol: RL has been successfully applied in hardware sleeping
control and shows superior long-term performance. Different
state parameters, such as working status [93, 95], buffer status
[93], traffic loads [93, 95], and QoS requirement [107] are
considered in these RL applications. These parameters are
all raw data available at transmitter and cause negligible
overhead and latency in data collection/processing. Hence,
to have an accurate modeling of the environment, all of
these parameters shall be jointly considered. Furthermore,
coordination among nodes is helpful for the sleeping control
with respect to optimality [108], but unfortunately, it is only
adopted in [95, 107]. Considering that centralized learning
of the policies for multiple nodes would cause significant
overhead and latency in data collection and processing, trans-
ferring the learned knowledge among multiple nodes would
be a more efficient way to realize coordination. In addition,
since the wireless traffic is dramatically changing in both time
and spatial domains, using DNN and time-related LSTM to
improve the learning efficiency of RL is a promising scheme.
On the other hand, most of the existing RL applications use the
randomly generated data to train the model, which makes their
performance questionable in real wireless networks. Thus, the
usage of real data for RL applications in wireless networks
should be further encouraged.

4) Mobility Management: Mobility management is essen-
tial to provide seamless connectivity to mobile UEs. RL
enabled mobility management has attracted considerable re-
search interests recently. Both [96–98] have used RL to design
smart handover schemes. Some of them focus on the BS-
dominant handover [96], where BSs decide UEs’ handover,
while the others focus on the user-dominant handover [97, 98],
where users determine the BS to handover. These schemes also
differ from each other in scenario, optimization objective, and
handover trigger condition.

Simsek et al. [96] study the BS-dominant handover problem
in two-tier HetNets. Each BS learns its optimal biased RSRP
value via MAB methods. Then UEs who fulfill the handover
condition are handed over to other BSs. After that, RB based
scheduling is performed.

Differently, Sun et al. [98] investigate the user-dominant
handover problem for mmWave HetNets. An RL based scheme
is proposed, where UE learns to select the target BS based
on the observed CSI to avoid unnecessary handovers, and
also maximize the volume of transmitted data between two
handovers.

In comparison, Cao et al. [97] address the user-dominant
handover problem for wireless local area network (WLAN)
using DQN. A hybrid framework is proposed to help the user
make handover decisions in order to avoid ping-pong effect
and improve the long-term throughput. This hybrid framework
first uses the CNN and recurrent neural network (RNN) to
abstract potential features such as the location information,
from the received signal strength indication (RSSI), which are
later taken as the input of DQN for handover policy.

Discussions on RL Applications in Mobility Management:
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From above review, we can see that RL has been successfully
applied to mobility management. BS-dominant handover pol-
icy based on MAB [96] can determine the handover policy
from the global view and strike a balance between the system
utility and users’ QoS. However, the handover decision is not
directly made by the agent, but is obtained from the results of
the selected BS, which would increase the decision latency and
cause optimality degradation. As for UE-dominant handover
studied in [97, 98], various state parameters including cell
load, QoS demands, and resource availability are considered.
From the point of optimal controlling, they shall be jointly
considered in handover. However, some parameters such as
cell load and resource availability, which are only available at
BS, are hard to acquire for UEs. In this case, information
exchanging between BS and UEs is required, at the cost
of overhead and latency of data collection. Moreover, only
the selfish rewards are adopted in the RL model, such as
avoiding unnecessary handover, and maximizing transferred
data. Nevertheless, the utility of the whole network should
also be considered in the reward function for load balancing
as well as global optimality.

5) Network Slicing: Network slicing [109], a promising
direction for future wireless networks, divides a mobile net-
work into multiple slices, and tailors each slice to the needs
of various services. Especially, under the network slicing
scenario, several works discuss RL application for resource
slicing problems in MAC layer.

For example, Xiang et al. [99] formulate RAN slicing as
a joint optimization problem with content caching and mode
selection. Especially, to deal with various user demands and
limited resources, the authors propose a DRL algorithm, where
the cloud server makes decision for maximum reward. In
comparison, Chen et al. [100] considers RAN slicing where
multiple service providers behave selfishly to maximize the
long-term payoff from the competition of communication
and computation functionalities. Such problem is modeled
as a stochastic game, and an online scheme based on DRL
is derived to approach the optimal abstract control policies
for NE. Yan et al. [101] investigate a collaborative learning
framework for resource scheduling in RAN slicing, where DL
is used to perform large time-scale resource allocation, while
RL is used to perform online resource scheduling with small
time-scale network dynamics. Such conjunction guarantees
performance isolation between slices with fast convergence
and high utilization.

Different from above works, Hua et al. [102] present an
SDN-based system in RAN scenario, which contains several
slices with sharing physical resources across BSs. The authors
model the varying service demands as state, the allocated
resources as actions, and further leverage DRL for solution.
Especially, a generative adversarial network-powered deep dis-
tributional Q-network is proposed to overcome the annoying
randomness and noise in communication. The authors further
incorporate user mobility in resource management of RAN
slicing in [103]. The actor-critic algorithm is utilized for
varying service demands, and LSTM is integrated to track the
user mobility and improve system utility.

The network slicing is also studied in WiFi scenario [104]

and UAV scenario [110]. Specifically, Bast et al. [104] ex-
plore fast-learning DRL for dynamic slicing configuration in
unplanned WiFi networks, in which double DQNs are utilized
to enhance the convergence speed and stability. Faraci et
al. [110] extend a 5G network slice with a fleet of UAVs,
each providing computing facilities. Based on RL framework,
the system controller keeps a cooperation between UAVs for
power consumption minimization with job loss probability and
queueing delay considered.

Discussions on RL Applications in Network Slicing: As
described above, network slicing divides the physical network
into multiple virtual networks (slices), where RL is leveraged
for dynamic creation and configuration. Among them, resource
allocation in RAN slicing is mostly investigated, and the action
space in RL is carefully designed to allocate specific resources.
For example, the action space is composed by the spectrum
resource in [101–103], power resource in [104], computation
resource in [100, 110], as well as caching resource in [99].
Compared with the researched scenarios, the real RAN slicing
environment is much more complex and dynamic, which
should be paid further attention with intelligent and general-
ized solution proposed. On the other hand, traditional network
slicing implementation is categorized into three types of core
network-only slicing, RAN-only slicing as well as core-RAN
slicing [101]. However, most existing works focus on RL
applications in RAN-only slicing, and it is still uncertain for
the applications in other two types.

C. RL for Network Layer

Environment dynamics can greatly influence routing, net-
work management and load balancing decisions in wire-
less networks. Hence, designing context-aware and intelligent
decision-making schemes using RL has attracted a lot of
research attention, which are discussed point by point in the
following.

1) Routing: A wide range of works have adopted RL to
design adaptive routing policies with different objectives in
dynamically changing networks. Table IV presents a brief
comparison of related works.

Energy consumption and delay aware routing is investigated
using RL for underwater acoustic sensor network (UASN)
[111, 112]. Jin et al. [111] propose a Q-learning based routing
protocol called RCAR. Once a node has packets to send, it
observes status of buffer and battery, as well as the location
of neighboring nodes, and perform RCAR to select the next
forwarder. RCAR can reduce delay and energy consumption
meanwhile avoiding congestion. Similar scenario is considered
in [112], where a distributed RL based CARMA protocol
is proposed to help node choose next hop according to the
number of unsuccessful transmission.

Besides the aforementioned works, RL based routing for
throughput and connectivity optimization in MANET is in-
vestigated in [113]. The inherent partial observability of both
routing and mobility is formulated as POMDP, where RL is
adopted to control forwarding decisions and node mobility.
Specifically, Q-routing based solution is proposed with the aim
to increase the packet transmission rate.
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TABLE IV
SUMMARY OF RL APPLICATIONS IN NETWORK LAYER

Domain Reference Scenario Learning Model Proof of Convergence Performances

Routing

[111] UASN Q-learning By simulation, after sending 50 packets • Energy consumption: 86% of QELAR; Average delay: 27% of QELAR

[112] UASN Multi-agent RL By theory • Average latency:7% of CARP, 76% of EFlood
• Throughput: 128% of CARP, 187% of EFlood

[113] MANET Q-learning None • Success rate: 104.5% of Hand-coded, 95.8% of Central controller, 109.5% of Centroidal
[114] MANET MAB By theory • Success rate : 80%

[115] WSN Least Squares
Policy Iteration By simulation, 40 episodes • Minimum success rate: Q-learning: 0% Proposed: 90%

Data
Aggregation

[116] WSN SMDP, Q-learning By theory • Energy cost: 110% of EXPL, 60% of on-demand scheme
• Average degree of aggregation: 88% of EXPL, 165% of on-demand scheme

[117] VANET Multi-agent Q-learning By simulation, after 4km • Number of observed reports: 88% of Non-learning, 71% of discrete-Q-table

Load
Balancing

[118] Multi-sink WSN Q-learning None • Average hop: 52% of round-robin;
• Average network lifetime: 93% of round-robin

[119] UASN Q-learning By simulation, after sending 50 packets • Network lifetime: 109%-213% of Vector-based-forwarding
[120] SDN networks RL None • Average delay: 77% of round robin; Average utilization: 120% of round robin

Network
Management

[121] SON Stochastic MAB By simulation, 10000 steps • Average rewards: almost 100% of optimal, 1̃07- 132% of default
[122] SON MAB By simulation, 3000 steps • Perceived reward: 103% of cognitive policy
[123] HetNets RL None -
[124] 5G Multi-agent RL By simulation, 200 minutes -

SDWN

[125] SDN networks MDP, DRL By simulation, 200 steps • Average request latency: 102% of optimal, 83% of greedy
[126] WLAN MAB By simulation, 1000 steps • Average page load time: 60% of no control
[127] IoT DRL By simulation, 60 episodes • Average packet delivery ratio : 102%-111% of OSPF
[128] MEC Q-learning By theory • Average delay: 25% of random method, 33% of nearest offloading method

To achieve a longer network lifetime as well as lower
energy consumption, the mapping of routing into POMDP
is presented in [114]. In order to approximate the optimal
node behavior, the decision problem is further reduced to a
MAB problem. In addition, a stochastic learning algorithm is
proposed to optimize the learning rate.

Wang et al. [115] propose a routing scheme that aims at
multiple objectives including route path length, load balancing,
link reliability and aggregation. Least squares policy iteration
(LSPI) technique is adopted in this scheme, which uses
parametric functions to approximate the Q-values of policies
and has the advantage in data efficiency and insensitivity to
the initialization.

2) Data Aggregation: Data aggregation in mobile sensor
networks requires to design adaptive and distributed algo-
rithms to capture the dynamics of moving sensors, sink nodes
as well as gateways.

Ye et al. [116] propose a stochastic decision framework
to investigate the fundamental trade-off between energy con-
sumption and transmission delay in case of distributed data
aggregation in WSN. The authors formulate the decision prob-
lem as a semi-Markov decision process (SMDP), by modeling
the state space as the collected data samples. The action set
includes two actions: 1) send the queued data immediately, or
2) wait to collect more data, while the latter could save energy
at the cost of increased delay. Two algorithms based on adap-
tive real-time dynamic programming and real-time Q-learning
are proposed and compared. Yu et al. [117] investigate the
delay controlling problem for data aggregation in vehicular ad
hoc network (VANET) using distributed RL. A novel scheme
termed as CatchUp is proposed, where vehicles adaptively
adjust their forwarding speed based on learning results, and
in turn, improve the chances of aggregating nearby reports.

3) Load Balancing: Load balancing is important to prevent
over or under utilization of a certain network entity which in
turn ensures the connectivity of the network.

In a multi-sink WSN, following the commonly devised
nearest-sink strategy when an event occurs, would exhaust the
energy of the sink node early. As a consequence, that sink
node would be isolated and numerous routing paths will be
broken. Pertinent to this issue, a Q-learning based adaptive

zone partition (QAZP) scheme is proposed in [118]. The
state is characterized by the available energy of hotspots and
the position of the centralized mobile anchor responsible for
network partitioning. QAZP scheme adaptively partitions the
network into zones, each of which is associated with a sink
node. Sink nodes dynamically adjust the zone size based on
the available energy of the nearby hotspots.

Hu et al. [119] propose an adaptive and energy efficient
routing protocol, QELAR, for UASN. QELAR protocol ex-
ploits Q-learning to learn the optimal forwarding decision to
balance the workload among nodes. QELAR considers the
available energy and also the energy distribution in a group of
nodes.

Huong et al. [120] propose an RLLR algorithm for load
balancing in SDN networks. RLLR adopted RL as the decision
framework. The agent at SDN controller computes the load
balancing weights for the candidate shortest paths of every
two nodes, according to traffic information.

4) Network Management: In the wireless networks, var-
ious tasks are automated by the network operators through
SON functions including load balancing, mobility robustness
optimization and so on. However, the optimal configuration of
each instance of a particular SON function in case of simul-
taneous deployment requires orchestration and coordination.
Furthermore, the SON functions are realized as a black box
by the designers who are RAN vendors, which makes this
task more complex. On the other hand, RL provides a possible
solution that enables an agent to adapt to the network dynamics
and learn the optimal configuration, which has been widely
used to address the network management problem.

Daher et al. [121] introduce a policy based SON manager
(PBSM) empowered with learning capability to configure
SON functions with the aim to meet the operator objectives.
The optimal mapping from the SON configurations to the
performance indicators are first learned by PBSM. A stochastic
MAB learning algorithm, named as the UCB1 is then proposed
to maximize the reward function representing the operator’s
objectives.

Based on a different MAB algorithm named as LinUCB, an
alternative learning approach for C-PBSM to achieve better
convergence speed at the cost of sub-optimal solution, is
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presented in [122]. LinUCB reduces the time for exploring the
action space by taking advantage of the SON configuration
value structure. Specifically, linear rewards are considered
corresponding to their feature vectors associated with actions,
and per iteration only one action is tested to evaluate the con-
sequences of different actions. Simulations show that LinUCB
has a much faster convergence speed.

A similar problem is considered by Iacoboaiea et al. [123]
for HetNets, and RL-based SON coordinator (SONCO) ap-
proach is provided. Specifically, three SON functions are
considered, including mobility robustness optimization, cell
range expansion and eICIC. The SONCO makes the accept
or decline decisions for the parameter update request from
SON functions with the aim to minimize the maximum regret
among all requests. The proposed RL framework encompasses
a multi-dimensional regret vector and uses linear function
approximation to deal with the inherent complexity for large
scale problems.

Preciado et al. [124] investigate the dynamical SON func-
tion configuration in 5G networks. A multi-agent RL frame-
work is adopted, where every SON function is considered as an
agent, and they may conflict with each other. Two typical SON
functions are considered, which are Mobility Load Balancing
(MLB) and Mobility Robustness Optimization (MRO). The
MLB agent observes proportion of edge users and cell load,
and accordingly sets the cell individual offset to improve the
capacity and coverage. Whereas MRO agent takes user speed
as state and determines the best handover parameters.

5) Software Defined Wireless Network: Similar to the idea
of SDN[129], software defined wireless network (SDWN)
[130] decouples the control layer and the data layer, provid-
ing both low-latency and low-energy consumption services.
Several related works with RL on this technology have been
proposed for network layer problems.

For instance, Zhang et al. [125] focus on multi-controller
SDWN scenario, and formulate the controller synchronization
problem therein as MDP, which is further solved by DRL-
based algorithm. Considering the low latency brought by
SDN, Moura et al. [126] explore SDWNs for Web QoE,
and formulate the system as a MAB framework. Two closed
control loops are proposed for changing the wireless channel
and the transmission power, and the UCB algorithm is utilized
for solution.

On the other hand, Guo et al. [127] investigate the routing
problem in SDN based IoT networks. The authors propose a
DRL based QoS-aware security routing protocol, where the
flow table and channel occupancy rate are the state space, the
switch assignment composes the action space, and packet loss
rate as well as processing delay are computed as the reward.

Baek et al. [128] investigate the load balancing problem
in SDN-based Fog/MEC networks, where SDN Fog controller
manages network resources, and SDN Fog nodes serve user re-
quests. Based on Q-learning, the latency minimization problem
is formulated into RL based decision-making process, where
the number of tasks to be allocated is viewed as the state, and
the offloading neighbour nodes as well as offloading tasks are
determined by the action.

6) Discussions on RL Applications in Network Layer:
According to the review above, RL is a promising technique
for network layer problems especially the routing problems.

However, RL still faces various challenges in routing prob-
lems, such as the dynamic topology due to the mobility of
nodes in MANET, the limited battery and processing capa-
bility in WSN. Dynamic topologies pose great challenges on
convergence and decision accuracy. Since the neighbours are
dynamically changing, an optimal routing policy is difficult to
obtain and may require a very long time. How to efficiently
transfer the learned knowledge to the new cases is an inter-
esting question. Moreover, most of RL applications in this
field adopt the distributed learning framework which possesses
advantage in data collection/processing and time effectiveness,
but a global optimal routing is not guaranteed. Considering the
limited learning capability, cooperative learning among neigh-
bors seems to be a promising solution to achieve global opti-
mality. Another possible solution is SDWN, whose controller-
infrastructure structure kindly matches RL framework, and
SDN controllers can be viewed as agents to balance centralized
control, scalability, and reliability requirement. However, the
trade-off still needs to be carefully considered.

As for the works on data aggregation, most are focus on the
static topology [116, 117], far from the real dynamic network
environment. On the other hand, as most works only consid-
ered network lifetime, the delay factor is also very important
for robust performance. Moreover, some state parameters such
as the residual energy considered in [118, 119] are hard to
acquire, which requires continually information exchanging
and causes overhead and latency.

Another essential issue is the lack of the performance
evaluation of RL-based schemes in the more realistic wireless
network platforms. Most of existing schemes above have
only been evaluated by simulation, without the validation of
correctness and feasibility in real. Especially, the scalability
of MAB algorithm in [121, 122] might be the main change
when facing the complexity of the real network topology.

D. RL for Transport Layer

The key function of the transport layer is to provide
congestion control in networks. The traditional transmission
control protocol (TCP) protocols like TCP Reno, are rule-
based and are suitable for some specific scenarios. However,
the existing congestion control standards cannot adapt to
network dynamics, and the inherent inflexibility makes them
unsuitable for a wide range of network scenarios in the next
generation networks. To overcome such shortcomings of TCP
congestion control schemes, researchers have used RL to
design intelligent and adaptive congestion control schemes.
Table V presents a comparison of these works.

Both [131–133] focus on RL based congestion control
with high throughput and low outage for high-speed mobile
networks. In [131], RL congestion controller (RLCC) scheme
is proposed by coupling the action-value prediction methods
and TD for action selection and policy improvement. RLCC
learns the optimal action to control congestion avoidance
based on a signal from an immediate reward evaluator. In
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TABLE V
SUMMARY OF RL APPLICATIONS IN TRANSPORT LAYER

Reference Learning Model Control Scheme Proof of Convergence Performances
[131] TD learning Centralized None • Throughput: 280 kbps; Cell loss rate: 10−8

[132] Q-learning Cooperative By simulation, 7 episodes • Throughput: 125 kpbs; Packet loss rate: 5 ∗ 10−9

[133] DQN Centralized By simulation, 8s • Real-time throughput: 975 KB/s, 262% of vegas
[134] Q-learning Centralized None • Average delivery ratio:82%, 178.3% of RRCC, 221.6% of SR
[135] Q-learning Centralized None • Maximum throughput: 1250 kbps, 198.4% of Flush

[136] Q-learning Centralized By simulation, 200s • Average throughput: 16 Mbps, 160% of NewReno;
• Average RTT: 120.0 ms, 94.1% of NewReno

[137] Actor-critic learning Centralized None • Mean throughput: 0.56 Mbps; Mean packet loss ratio: 5%

[138] DRL Centralized By simulation, 8s • Average throughput: 20.7 Mbps, 94.5% of BBR, 86.3% of Optimal
• Average latency: 41 ms, 67.2% of BBR, 128.1% of Optimal

[139] DDPG Centralized By simulation, 70s • Average total goodputs: 8.2Mbps, 193%-350% of wVegas
[140] RL Centralized By theory • Downloading time: 86% of Round-Robin
[141] Q-learning Distributed None • Throughput: 127% of default congestion control for MPTCP
[142] A3C Distributed By simulation, 40 steps • Mean FCT with low load: 80% of IW-10, 101% of SmartIW
[143] A3C Centralized By simulation, 26 steps • TCP response time: 95% of optimal; Throughput: 95% of optimal

contrast to [131], cooperative multi-agent congestion controller
(CMCC) is proposed in [132] by extending RL to n-agents
MDP stochastic game. CMCC consists of the same subsystems
as RLCC, however, the best actions are learned based on a
signal from a fuzzy reward evaluator utilizing game theory.
Whereas Cui et al. [133] aim at coping with frequent handover
from the perspective of transport layer, and propose Hd-TCP,
which is a DQN based congestion control algorithm. In Hd-
TCP framework, agent collects round-trip time (RTT), queue
delay, records last action and reward, counts packet loss, and
accordingly adjusts the window size. Different from previous
work, five actions are considered, which allows for finer
adjustment.

In [134–136], Q-learning based congestion control schemes
are presented for small scale problems. The authors in [134]
propose a RL framework to minimize a node’s congestion
in delay tolerant networks (DTN). Based on Q-learning the
framework observes environment and updates Q-values as
buffer occupancy, drop ratio and local congestion changes,
while using two existing action selection strategies: proba-
bilistic selection based on the Q-values, and Win or Learn
Fast selection. In [135], a congestion control scheme named
as eqCC is proposed for WSN by formulating the problem
as MDP. Q-learning based eqCC scheme adjusts the data
rate according to the queue length state at the gateway, QoS
and battery levels of sensors. The performance of eqCC is
compared with classic TCP and Flush. The results indicate that
eqCC achieves better energy efficiency and QoS performance
than other schemes in both high and low load cases. The
similar performance objective is considered in [136] with
throughput and latency, and QTCP is proposed by integrating
the Q-learning framework with existing TCP design. In con-
trast to the Reno-like TCP variants that require handcrafted
rule set, QTCP could gradually learn the effective strategies
to adjust the congestion window size in an online manner by
taking into account the following state parameters: the average
transmission interval of packets, the average receiving interval
of acknowledges (ACKs), and the average RTT. Most impor-
tantly, a Kanerva coding algorithm based on generalization is
applied to speed up the training process. As a consequence, the
proposed scheme is scalable for large complex state spaces.

Xu et al. [137] design a congestion control algorithm using

the actor-critic method, where the fuzzy neural network is used
to construct the actor and critic. Moreover, genetic algorithm
is adopted to optimize the network parameters of actor neural
network, which obtains Q-function values from the fuzzy
inference system and calculates the fitness of Q-function by
the varying of Q parameters. Each fuzzy rule is optimized
based on the genetic algorithm, and simulation results show
that this scheme can effectively avoid congestion by selecting
the optimal dropping probability.

Different from the previous works, Jay et al. [138] recently
investigate DRL based congestion control. The proposed
framework extends the existing performance-oriented conges-
tion control approach, and designs Custard (customized and
robust decision). The agent maps statistics vectors accounting
for performance measures such as packet loss rate and average
latency to variations in sending rate by using a fully connected
neural network.

Congestion control for multi-path TCP is investigated in
[139–141]. DRL-CC proposed in [139] uses a central agent
to control the congestion of all flows. According to the flow
rate, goodput, average and deviation of RTTs as well as the
congestion window size, the agent decides the operation on
congestion window for each flow, i.e., increasing, decreasing
or keeping the current window size. Whereas Zhang et al.
[140] propose an RL based scheduler for multi-path TCP
(ReLeS). ReLeS determines the subflow for each packet to
transmit on, according to the RTT and throughput mea-
surements. ReLeS adopts stacked LSTM to abstract features
from raw measurements and the overall LSTM Q-network is
asynchronously trained. A Q-learning based congestion control
algorithm called SmartCC is proposed for HetNets in [141],
which exploits the diversity of multiple TCP path. SmartCC
adopts an asynchronous training algorithm and makes online
decisions of congestion window size of each subflow for
senders according to the interval of two consecutive ACKs
and sending rate.

Xie et al. [142] focus on 5G MEC systems and propose a
A3C based online decision algorithm of initial window (IW),
with the objective of minimizing the flow completion time.
This algorithm adopts the hierarchical learning scheme, where
each MEC server acts as an sub-agent to compute the best IW
using local policy, and policy parameters are sent to central
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agent to update the global policy. In the learning framework,
histogram which is abstracted from raw observations is taken
as the state space. In addition, supervised learning using the
data collected online is also used to further improve the
performance. Joint IW and congestion control scheme (BBR,
Cubic, etc.) determination problem is addressed using A3C
in [143]. The considered system consists of a frontend server
and a brain server. Users are classified into different groups
according to network feature. The frontend server collects the
performance data such as RTT, throughput, and send these
data to the brain server, who performs A3C to determine the
IW and congestion control scheme for each group.

Discussions on RL Applications in Transport Layer: Ac-
cording to the analysis above, RL-based congestion control
schemes break the rule-based design concept in traditional
TCP protocols, which is promising to be a robust method
for congestion control in various scenarios of transport layer.
Various parameters are considered in the state space of these
RL applications, such as buffer status [131, 134, 137], queue
status [132], sending rate [131, 132], battery level [135],
RTT [133, 140, 143] and others. Nevertheless, though many
of these parameters are vital for the optimality of decision,
seldom works comprehensively consider them in modeling
network dynamics. Besides, considering that high-dimensional
state space results in difficulty in data processing, extracting
features from raw data seems to be a potential solution.
Comparing with the handcrafted abstracting approach in [142],
LSTM and other DNN tools in [140] are more promising.

Moreover, different optimization objectives are adopted in
these works, such as throughput [131, 132, 144], congestion
level [134], delay [144], which are important metrics for
congestion control. Therefore, multiple objectives are nec-
essary for RL application in transport layer, handling the
trade-offs between minimizing delay, maximizing throughput,
and minimizing packet loss, which is only considered in
[137, 138].

On the other hand, online bad decisions are critical issues. In
this regarding, the integration of RL based congestion control
schemes with existing schemes in transport layer is promising.
For instance, the network conditions change frequently, which
may greatly vary from the training conditions for RL methods,
then detecting the network condition change and falling back
to classical schemes seem to be potential methods.

E. RL for Application Layer

In the application layer, caching, multimedia transmission,
wireless localization as well as NFV are becoming hot issues
as users request more and heterogeneous traffic through wire-
less networks, location based services emerge and are provided
to a large number of network subscribers. Therefore, RL has
been widely used to design caching strategies, optimize the
multimedia transmission, enhance the positioning function,
and facilitate intelligent virtual network management. Table
VI presents the summary and comparison of RL applications
in the application layer.

1) Caching: Basu et al. [145] aim to design caching strate-
gies to adapt to the heterogeneous content delivery network

(CDN) traffic with bursty and non-stationary requests. A two-
level based time-to-live (TTL) caching scheme is proposed
to adapt the rare and unpopular content but suitably retaining
bursty, and frequently-accessed stationary traffic, respectively.

Different from [145], the authors in [146, 147] investigate
what and when to cache instead of caching duration for each
content. The objectives are maximizing the caching efficiency
which not only considers the hit rate of caching files, but
also the file switching cost. For instance, [146] considers both
local and global popularity, and uses two Markov processes
to model the popularity transition process. Since transition
probabilities of states are unavailable, Q-learning is applied to
find the optimal caching policy in a decentralized manner at
each SBS. Lin et al. [147] focus on the cooperation caching in
cellular networks with coordinated multipoint (CoMP), where
both storage and transmission cooperation can be utilized to
optimize the caching performance. The problem is formulated
as a MDP considering the practical time-varying content re-
quest pattern. Then Q-learning is utilized to select the caching
action of the BS, according to the popularity and request
distribution.

Unlike previous researches, Zhang et al. [148] consider
content placement delivery array and propose a double coded
caching scheme for ultra dense networks exploiting double
DQN. The agent learns from the experience and dynamically
selects the content to multicast and also the content to be
exchanged among the coded and uncoded content set, accord-
ing to the link status and file requests. Ning et al. [149]
investigate the caching resource allocation for MEC based
Internet of Vehicles. The agent resides in traffic controller
and uses DDPG to learn the optimal computation, caching,
bandwidth allocation of MEC servers to vehicles.

2) Multimedia Transmission: With the increasing traffic
volume of multimedia traffic spread through wireless net-
works, which includes entertainment video, surveillance video,
medical images and facial images, how to guarantee the QoS
or QoE with limited network resources should be considered
cautiously. Thus, lots of researchers have exploited RL algo-
rithms to optimize multimedia transmission. In the following,
we will discuss existing literature from different aspects. Some
papers study the single-agent optimization problem [150–153],
while others investigate the case when resource competition
exists among multiple agents [154].

[150–153] aim to find the optimal policies from a perspec-
tive of single agent. Mao et al. [150] deploy a bit rate adapter
at the client-side video player to optimize the user’s QoE. The
authors propose a novel RL framework to learn the adaptive
bit rate (ABR) policy. The playback buffer occupancy, actions
taken in the past and some raw observations of signals (e.g.,
throughput) are taken as the state of the ABR agent. States
are inputted to an actor-critic network to determine the action,
i.e., the bit rate for the next chunk. In addition, Huang et
al. [152] consider that the perceptual video quality is related
to not only bit rate, but also video properties, such as video
type, brightness and number of objects in video. Thus, a
quality awareness rate control (QARC) agent based on actor-
critic learning is designed for the sender. To solve the state
explosion problem, the QARC agent is implemented through
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TABLE VI
SUMMARY OF RL APPLICATIONS IN APPLICATION LAYER

Domain Reference Learning Model Proof of Convergence Performances
[145] Actor-critic learning By simulation, 2 hours • Cache size requirement: 44.5% and 25.4% of Fixed-TTL
[146] Q-learning By simulation, 3× 104 steps • Convergence speed: 2% of Q-learning
[147] Q-learning By simulation, 500 steps • Cache hit rate: 130% of random caching
[148] Double DQN By simulation, 100 episodes • The variance in the uniform case: 39% of DQN, 36% of random policy

Caching

[149] DDPG By simulation, 500 episodes • Profits: 141% of non-cooperative scheme
[150] Deep actor-critic learning None • Outperform ABR algorithms by 12% - 25%
[151] Deep actor-critic learning None • Quality: 0.25, 55.6% of Standard
[152] Actor-critic learning By simulation, 60 steps • Average quality: 104% - 109% of Greedy

[153] POMDP
Parametric policy learning By theory • PSNR: 53dB, 118% of Rate-distortion based power Minimization

Multimedia
Transmission

[154] Q-learning By simulation, 10s • Quality stability: 114% of mDASH, 195% of onlineLearner

Wireless
Localization

[155] DQN By simulation • Localization accuracy: 123% of supervised learning
[156] DQN By simulation, 106 steps • Mean location error: 64% of DRL
[157] Multi-agent RL By simulation, 1.5s • Mean location error: 75% of Client-based, 30% of Kalman Filter
[158] Multi-agent DQN By simulation, 40 episodes -

NFV

[159] Q-learning By theory • Energy utilization: 0.68, 170% of weightless swarm algorithm, 87% of optimal
[160] DRL By simulation, 500 episodes • Average service function chain delay: 22% of existing schemes
[161] Deep actor-critic learning By simulation, 80 steps • Utilization: 80% of DDQN, 82% of DDPG, 325% of Greedy
[162] Double DQN By simulation, 2100 steps • Throughput: 190% of Eigen decomposition, 102% of MSGAS
[163] DQN By simulation, 10 steps • Admission ratio: 80%
[164] DRL By simulation, 1000 episodes • Average revenue: 157% of DDPG, 125% of customized DDPG
[165] Q-learning By simulation, 1000 episodes • Average reward: 114% of random policy, 116% of particle swarm optimization

two sub-modules. One sub-module is used to predict the video
quality of the future frame, the results of which are fed to the
other sub-module together with the previous network status to
determine the bit rate of the next frame.

Joint power and optimal streaming rate control are inves-
tigated in [153] using RL. A two scale decision framework
is proposed, where the transmission power is adaptive to the
CSI and queue state information at the fast timescale, and
streaming rate is only adaptive to the queue state information
at the slow timescale. This optimization problem is formulated
as a POMDP, based on which singular perturbation is exploited
to obtain an asymptotically optimal solution with simplified
process. Parametric policy learning algorithm is further used
to find the optimal policy.

With the growing demands of HTTP adaptive streaming
systems, multiple players might compete for the shared re-
sources. To cope with this issue, Bentaleb et al. [154] use three
features i.e., display resolution, content type, and subscription
plan type to construct the virtual topology and cluster the
competing players. Then, for each cluster, the bit rate selection
problem is modeled as a POMDP, in which the environment
states contain statuses of both global network and local players
in the same cluster, rewards include the average perceptual
quality and penalties (i.e., startup delay, stall events and quality
oscillations), and the objective is to maximize the long-term
revenue by choosing bit rate for each cluster. An online
algorithm with value difference is proposed using Q-learning,
in which the optimal action is decided in each cluster in
parallel and then all clusters’ Q-values are centrally processed
to accelerate the convergence.

3) Wireless Localization: Location-aware services play an
important part in the development of smart cities. Mohammad
et al. [155] take the iBeacons’ RSSI as the input of a DRL
agent to identify indoor locations. The states of agent contain
RSSI measurements, current location as well as the distance
away from the target point. The reward is a function of the
distance, and action is eight directions to move. Since a large
number of data collected in this application is unlabeled, the

authors propose a semi-supervised DRL approach to solve
the problem. Specifically, the proposed semi-supervised DRL
applies a Gaussian inference network to estimate the label of
the unlabeled data before utilized in the DRL framework.

Li et al. [156] investigate wireless localization problem in a
gridding space system using DQN. Several location labels and
RSS features are assumed to be uniformly distributed in the
gridding space. According to the previous location and RSS,
the agent computes current location and chooses to stay or
move a grid towards one of the eight directions. If it moves to
a landmark point and has a matching RSS feature, a positive
reward would be achieved.

Carrera et al. [157] propose a particle filter-based RL
approach for robust wireless indoor localization, which is
termed as PFRL. PFRL adopts distributed learning framework,
and lightweight learning such as hidden Markov model based
zone prediction is performed at clients. The heavy learning
task, such as the particle filter takes zone prediction, move
detection and a floor plan component as the input, and outputs
high-precision position, is performed at the MEC server. Since
the RL based resampling is adopted, PFRL has high robustness
and data error tolerance.

Cooperative localization is investigated in [158]. Nodes
equipped with GPS and radar communicate and help with
each other to measure their relative or absolute locations. The
objective is to localize all nodes as soon as possible in a
distributed manner. This problem is formulated as a multi-
agent POMDP. Each link between two nodes is modeled
as an agent and decides whether to help measure according
to distance, the number of neighbors that need help. Then
the POMDP is solved by the multi-agent DQN and policy
gradient.

4) Network Function Virtualization: NFV [166] is the basic
enabler for virtual networks, which decouples network func-
tions from the proprietary hardware, allowing a set of virtual
network functions (VNFs) to be deployed on a shared pool of
resources. In this part, we present several RL applications in
NFV especially application layer problems.
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Specifically, Roig et al. [161] consider the management
and orchestration of resources occupied by VNFs in RAN,
and formulate the stochastic resource optimization problem
as a parameterized action MDP. To minimize the cost with
economic, latency and QoS, the authors propose a novel DRL
approach based on parameterized action twin deterministic
policy gradient, which leverages an actor-critic architecture
to provision resources to VNFs in an online manner. Besides,
Gu et al. [164] investigate the online VNF orchestration and
flow scheduling for network utility maximization. Different
from traditional heuristic solutions with many assumptions, the
authors apply optimization models such as inventing profiling-
exploration and dual replay buffer into DRL framework for the
problem. Li et al. [165] also study the VNF scheduling prob-
lem to minimize the make-span of all services while satisfying
end-to-end delay requirements. The authors first formulate the
problem as an NP-hard mixed integer linear program, and then
reformulate as an MDP problem with variable action set. With
a delay-aware reward function carefully designed, Q-learning
is utilized for obtaining the best scheduling policy.

On the other hand, Khezri et al. [163] focus on NFV
placement problem with the maximum number of admitted
services additionally considered. Based on DQN, the resource
demand and reliability requirement are modeled as states,
and the placements of network providers and servers are
modeled as actions. [162] also studies the VNF placement
problem in SDN/NFV-enabled networks, and formulates the
problem as a binary integer programming model. To minimize
the placement and running cost, a double DQN based VNF
placement algorithm is proposed for efficient solution.

Another important scenario for NFV is IoT. Since IoT
networks are ultra-dense with the explosive growth of IoT
devices, NFV with flexible network framework and efficient
resource management is promising for performance enhance-
ment in IoT networks. Especially, to combine VNFs based
on the logic of IoT applications, the service function chain
(SFC) needs to be embedded in IoT networks. However, the
embedding process is not trivial due to the dynamic nature
of IoT networks as well as abundance of IoT terminals. To
overcome this, [160] employs DRL to approach the unknown
NFV-enabled IoT environment model, which can allocate
computing and network resources to SFCs adaptively under
varying IoT conditions.

5) Discussions on RL Applications in Application Layer:
From the review above, the interaction thought of RL greatly
matches with the dynamics lying in the popularity of caching,
the various traffic of multimedia transmission, uncertainty of
localization as well as dynamics of virtual networks.

Content are usually cached at BSs with storage. Considering
the diverse popularity in different areas, BSs learn their own
caching policy according to local observations in a distributed
way as done in [146] is an intuitive approach. However, the
convergence and data collection are two critical issues. Since
global popularity should also be considered to achieve the
global optimality. Periodical acquirement of dynamic global
popularity increases data collection complexity and causes
extra signaling overhead. It shows in [146] that about 2000
iterations are required to converge to the optimal policy.

Moreover, since there are a lot of contents to be cached,
the dimension of state space would be extremely high, which
leads to the increased complexity in data collection/processing.
Hence DRL models as adopted in [148, 149] are more appro-
priate for in this case.

Meanwhile, RL has been used to optimize the multimedia
transmission based on various tasks, such as bit rate control
[150, 152–154]. The perceptual video quality in multimedia
transmission is highly related to both bit rate and video
properties. However, schemes in [150, 154] only care about the
bit rate, which can be further optimized with video properties
considered. Furthermore, the convergence speed is also an
open issue. As shown in [151], the RL based multimedia trans-
mission system performs poor video quality at the beginning
due to slow convergence, while the real network conditions
change frequently, which demands fast convergence. Hence,
integrating multimedia transmission with fast convergence RL
methods is the key to high-quality real-time video. On the
other hand, multimedia transmission involves multiple clients.
Considering the limited capability of data processing, multi-
agent RL based schemes such as [154] are quite appropriate
for user cooperation, from the point of optimality.

Wireless localization is usually coped with supervised learn-
ing with large volume of labeled data. [155, 156] provide
a promising solution to combine the RL with huge volume
of both labeled and unlabeled data. However, processing big
data and using DRL in these works pose great challenge for
mobile devices. Offloading the heavy learning tasks to the
MEC server [157] and cooperative learning [158] are more
appropriate approaches.

On the other hand, the implementation of virtual networks
with NFV faces the dynamic issues in resource allocation,
management, scheduling, and etc. Therefore, RL approaches
are commonly used to model the dynamic characteristics.
Especially, due to the complex system factors therein, powerful
RL methods like DRL are mostly utilized in such problems.
Moreover, the fast convergence for RL approaches reduces the
application-level response time without service disruptions.

V. CHALLENGES, OPEN ISSUES, AND FUTURE RESEARCH
TRENDS

From the layering perspective, the comprehensive review
above evidently demonstrates the powerful combination of RL
and wireless networks. Moreover, to facilitate the development
of this area, the challenges, open issues, as well as future
research trends are outlined as follows.

A. Challenges of Applying RL in Wireless Networks

1) Incomplete Environment Information: According to the
basic knowledge of RL in Section III, the performance of RL
methods is highly related to the extent of obtained environment
information. An accurate model of real world always brings
lots of benefits, which is, however, hard to be guaranteed in
wireless networks.

The environment modeling of wireless works usually em-
beds many fragile assumptions, and cannot fully describe the
dynamics therein. Besides, parameters about environment need
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to be available before making decisions, which is difficult
in many cases. Moreover, some environment information or
state parameters are hard to get. For example, the mobility
information of UE, which is quite important but generally
unknown at the BS when determining the handover action.
Such incomplete environment information usually leads to
errors in state parameters, which requires further extrapolation.
Although other powerful tools such as deep learning meth-
ods may help improve network parameters, the incomplete
information of wireless networks is still challenging for the
application of RL.

2) Convergence Rate: The convergence rate of RL is chal-
lenging when it comes to the online application. As we know,
the RL agents actively interact with the wireless environment
over several iterations, which eventually learns the optimal
policy. During the exploration procedure, agents would even
take the wrong actions that degrade the performance greatly.
However, both exploration time and wrong actions are not
acceptable in some wireless network scenarios like the vehicle-
to-anything (V2X) scenario, which demands ultra-reliable
communication.

The convergence rate related problems are also found in
both centralized and distributed RL frameworks. In the central-
ized case, the state parameters need to be estimated, collected,
processed at the central agent, which is time consuming and
requires extra signaling. As for the distributed case, wireless
networks are changing dramatically, users access and depart
network frequently. Therefore, the optimal policy should be
obtained quickly in the short residence time of users. For
example, in the mobility management case, agents at UEs need
to select the optimal associated BS along its trajectory. Hence,
how to overcome the slow convergence rate of RL in some
wireless network scenarios is challenging.

3) Gap between Simulation and Real World: The ultimate
objective of applying RL is to enable intelligent operation and
management for the real wireless networks. Nevertheless, most
of existing works only evaluate the proposed RL aided control
scheme in the manner of random data/model-based simulation,
which is far from the practical environment.

For instance, [167] uses RL to improve the performance
of interference alignment and content delivery. However, the
number of the candidate transmission pair is assumed to be
fixed, which is impossible for the dynamically changing wire-
less network. Hence, the proposed RL aided control schemes
are hard to implement in practical wireless networks.

Considering the high computation requirement and the
necessary modification to existing protocols, there is a large
gap between simulation and real world in applying RL to
wireless networks. On the other hand, the RL aided control
schemes have grown more sophisticated without confronting
real world problems, leaving them too fragile to operate
beyond deterministic and narrowly defined environments. Such
evaluation methods are quite challenging for the development
of RL applications.

B. Open Issues of Current Researches
1) Large Sate and Action Space: According to the review

before, the large number of network environment parameters,

as well as a great many of the configurable parameters in
wireless networks, lead to an extremely high dimension of
state-action space for RL. The large space then leads to slow
convergence rate, large computation cost and high complexity,
which becomes a serious issue.

Specifically, the involved environment variables in wireless
networks include the available channels, channel bandwidth,
channel quality, RSRP, RSSI, suffered interference in PHY
layer, congestion level, queue size, sliding window size, and
RTT setup in transport layer, etc. On the other hand, many state
variables carry the same information about the environment,
such as the channel quality and RSRP, which both implicitly
indicate the location of the users. Thus, how to comprehend
multiple state variables together and extract implicit features
directly from high-dimensional raw observations, is quite
necessary to be solved.

2) Balance between Self-Organization and Optimality:
In the multi-agent learning framework, the self-organization
and the optimality are the targets of user side and operator
side, respectively. Especially, in RL aided control schemes,
the self-organization enables the agent to autonomously learn
and make the decisions through trial-and-error in interactive
environments. On the other hand, the operator pursues the
optimality of network management.

Since the action taken by each agent would affect the
state of other agents, the iteration between agents could be
considered as a non-cooperative game. To achieve the goal
of self-organization, each agent adaptively changes its actions
according to the environment dynamics, and tries to learn a
stable policy that can improve its selfish utility. However, it is
well recognized that the cooperation among agents is neces-
sary to improve the optimality and convergence speed. Hence,
there tends to be a balance between the self-organization
(selfishness) and optimality (cooperation), and how to find the
balance for different problems in wireless networks is still an
open issue.

3) Transferring of Learned Knowledge: Due to fre-
quent/random arrivals and departures of users, wireless net-
work environment may dramatically change. Moreover, the
optimal policy in RL is usually obtained by a large number of
trials and errors. Thus, how to exploit the learned knowledge
from old scenarios to accelerate the learning process in the
new scenario, is a crucial problem.

For example, when applying multi-agent based RL for
wireless networks, each user is equipped with an agent to learn
in interactive environment. However, when a user leaves the
network, his learning experience will be lost, thus the newly
joining users have to learn from the very beginning. In this
case, it is necessary to transfer the learned knowledge from
existing users to the new users in order to help them adapt to
changing environments faster, meanwhile improve the global
network performance. Besides, central learning is necessary to
enable efficient transfer learning.

C. Future Research Trends

1) Integration with Low-Level Function Blocks: As can
be seen from Section III, most RL applications in wireless
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networks lie in the MAC layer and layers above, while using
RL to facilitate the design of intelligent low-level function
blocks such as modulation, beamforming and error correcting
coding is still less explored.

More efforts should be done to design more mature RL
enabled modulation function with an advanced feedback mech-
anism and improved reward definition. Besides, beamforming
weight calculation has always been a tough task, which highly
depends on the channel condition and the QoS requirements.
Though some studies have used RL to address such prob-
lems for mmWave band, the RL based beamforming weight
determination for the more general case is still untouched.
Moreover, error correcting code is crucial for the reliable
transmission over the radio links. Furthermore, computing
complexity has always been a key obstruction for the error
correcting coding in the wireless networks. The future works
may develop an RL aided coding function with both low
complexity and high accuracy.

2) Systematic Learning Solution and Cross-Layer Design:
Existing researches apply RL to solve diverse isolate control
problems in the wireless networks, and most only focus on
dedicated functionality. Whether it is possible to combine the
learning process of different functions together and propose a
systematic learning solution, remains an open issue.

On the other hand, most of existing studies only focus
on different individual layers in terms of RL applications.
However, it is crucial to consider cross-layer optimization to
achieve network utility maximization. For example, to improve
the long-term QoE of multimedia service, the RL agent can
jointly make the decision of the beamforming weights, modu-
lation and coding scheme, scheduling, resource allocation and
congestion control based on the collected information about
network environment across different layers.

3) Domain-specific RL Models: Although RL has been
exploited for various control problems in wireless networks,
most previous works directly use existing RL models in AI
area for solutions. Since these models initially are proposed
for AI problems, direct utilization may limit the performance.
Also, due to the distinct characteristics of wireless networks,
only part of RL models can be applied.

A helpful point is that, most problems of wireless networks
have long been investigated and some achievements are made.
In addition, these online control problems are conventionally
solved by the carefully hand-crafted algorithms with validated
performance in the real world environment. Therefore, a
promising aspect is to use the well-recognized knowledge
about the system dynamics and refer to these hand-crafted
algorithms, modify the RL model to make it more suitable for
the application in wireless networks.

4) Robust RL Models: As described before, the wireless
network environment is partially observed to the agent. Specif-
ically, in an RL framework, multiple network parameters act
as the input, many of which depend on the accurate estima-
tion and feedback from various nodes. Due to the limited
estimation capability and unpredictable link conditions, these
parameters may be not that precise and sometimes delayed.
In this case, robust RL models are in demand to enable the
input tolerance on the data errors or latency. Besides, since

deploying an RL framework in real devices is not cheap, a
robust RL model for various problems would attract much
attention in future research.

5) Mobile Edge Computing Empowered RL: An important
issue for RL applications in wireless networks is that, the
user nodes have limited computation resources, while RL may
bring much burden especially when the multi-agent learning
is adopted, which significantly hinders the implementation
of RL aided control schemes. On the other hand, mobile
edge computing, which provides various cloud resources (e.g.
computation and storage resources) closer to the user side for
computation offloading, becomes a hot topic.

The redundant computation resource at MEC server pro-
vides a great solution for applying RL in wireless networks.
For instance, in the multi-agent framework, the user device
could send its information to nearby MEC servers, where RL
methods are executed for the optimal policy. In this way, most
computation and energy costs are moved to MEC servers. It
can be envisioned that, the MEC empowered RL framework
is promising in this area.

VI. CONCLUSIONS

With the growing complexity of wireless network man-
agement and controlling, the methodology of controlling-by-
learning enabled by reinforcement learning has drawn great at-
tention in academia and industry in these years. This paper has
comprehensively reviewed the applications of reinforcement
learning to wireless networks from a layering perspective.
First, we have presented the fundamental knowledge and
advanced models of reinforcement learning in the context
of wireless networks. Moreover, how reinforcement learning
is tailored to address various controlling and management
problems in different protocol layers are analyzed detailedly.
Finally, we have highlighted the challenges and open issues
of applying reinforcement learning in wireless networks, and
also listed several potential directions for the future research
directions, through which we hope to help readers find some
interesting and promising topics to focus on.
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