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Abstract

Survival analysis, which estimates the probability of event occur-
rence over time from censored data, is fundamental in numerous
real-world applications, particularly in high-stakes domains such
as healthcare and risk assessment. Despite advances in numer-
ous survival models, quantifying the uncertainty of predictions
from these models remains underexplored and challenging. The
lack of reliable uncertainty quantification limits the interpretability
and trustworthiness of survival models, hindering their adoption
in clinical decision-making and other sensitive applications. To
bridge this gap, in this work, we introduce SurvUnc, a novel meta-
model based framework for post-hoc uncertainty quantification
for survival models. SurvUnc introduces an anchor-based learning
strategy that integrates concordance knowledge into meta-model
optimization, leveraging pairwise ranking performance to estimate
uncertainty effectively. Notably, our framework is model-agnostic,
ensuring compatibility with any survival model without requiring
modifications to its architecture or access to its internal param-
eters. Especially, we design a comprehensive evaluation pipeline
tailored to this critical yet overlooked problem. Through extensive
experiments on four publicly available benchmarking datasets and
five representative survival models, we demonstrate the superi-
ority of SurvUnc across multiple evaluation scenarios, including
selective prediction, misprediction detection, and out-of-domain
detection. Our results highlight the effectiveness of SurvUnc in
enhancing model interpretability and reliability, paving the way for
more trustworthy survival predictions in real-world applications.

CCS Concepts

« Mathematics of computing — Survival analysis; « Applied
computing — Health informatics; - Computing methodolo-
gies — Uncertainty quantification; Artificial intelligence.
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1 Introduction

Survival analysis, or equivalently time-to-event analysis, which
aims to estimate when an event of interest is likely to occur, has
received substantial attention from various fields, such as predict-
ing patient death or disease risk in healthcare, product lifespan
in manufacturing, and customer churn in finance [49]. Since the
event of interest is not always observed (e.g., many patients are
lost to follow-up), survival data are frequently right-censored (i.e.,
the event such as death occurs after the censoring) [8], making
survival analysis a more complex problem compared to traditional
regression and classification tasks.

Driven by the advancements of machine learning and deep learn-
ing in recent years, several models have been proposed for survival
analysis [52]. For example, RSF [22] adapts random forest for this
purpose. Built upon the linear Cox proportional hazard (CoxPH)
model [6], DeepSurv [25] and SurvTRACE [50] apply fully con-
nected networks and transformers to model the nonlinear relation-
ship between covariates/features and the hazard rate of an event.
DeepHit [30] and DSM [39] take a different approach by directly
modeling the event occurrence probability using neural networks.

Despite their advancements, these survival models are subject
to the inherent noise in the data and the lack of knowledge on the
optimal modeling approach, making them inapplicable for unseen
data in practice [11]. The lack of uncertainty quantification for sur-
vival models significantly reduces their reliability in risk-sensitive
applications such as healthcare [35, 36, 53]. While much progress
has been made in quantitatively measuring the reliability of a model
in prediction [47], most uncertainty quantification studies focus
on classification and regression tasks. Bayesian approaches, such
as Bayesian Neural Networks (BNNs) and Monte Carlo Dropout
(MC-Dropout) [14], have been explored for uncertainty estimation
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in these domains [36, 43]. Additionally, meta-models have been
developed to quantify classification uncertainty in a supervised
setting [44]. However, uncertainty quantification for survival mod-
els remains largely unexplored, presenting critical challenges that
need to be addressed:

o Survival Model-Agnostic Integration. The diversity of sur-
vival models requires a robust standalone uncertainty quantifi-
cation framework, where the latter is capable of integrating into
any model without modifications. For example, uncertainty quan-
tification methods with BNNs and MC-Dropout are incompatible
with survival models such as RSF [22]. Thus, model-agnostic in-
tegration is essential to accommodate the wide range of existing
and emerging survival models.

Absence of Ground-Truth Survival Curves. Survival curves

describe the survival probability of an event (e.g., death) not

occurring by a specific time. However, in real-world settings, the

“true” survival curves are unknown, and for censored samples,

the actual event times remain uncertain. This absence of ground

truth makes it infeasible to directly apply supervised uncertainty
quantification methods to survival models, posing a significant
challenge in reliability assessment.

e Lack of Standardized Evaluation Protocols. Despite the in-
creasing focus on uncertainty quantification, there is no uni-
versally accepted evaluation framework for assessing the qual-
ity of uncertainty estimates in survival models. Beyond the
methodological challenges in developing uncertainty quantifi-
cation methods, establishing robust and systematic evaluation
protocols remains an open problem.

To address the aforementioned challenges, we propose SurvUnc,
a post-hoc meta-model based uncertainty quantification framework
for survival models. More specifically, we develop a lightweight
meta-model that acts as an “observer” on top of any existing survival
model (base model). Sharing the same input covariates as the sur-
vival model, the meta-model is trained to estimate the uncertainty
of the prediction of the survival model, which requires neither
modifications to the survival model nor access to its architecture
and parameters. Especially, motivated by the classic concordance
idea in survival analysis [17], we design an anchor-based learning
strategy to address the absence of ground-truth survival curves in
meta-model optimization. Our strategy (i) selects a group of un-
censored samples as anchors; (ii) evaluates whether the survival
model correctly ranks the survival probabilities of samples relative
to these anchors; and (iii) incorporates the evaluation outcome
into the meta-model training to quantify the uncertainty of the
survival model’s predictions. Furthermore, we refine and adapt ex-
isting evaluation protocols from uncertainty quantification studies
in classification and regression to suit the survival analysis context,
ensuring a more standardized assessment of uncertainty estimation
in survival models.

In summary, our key contributions are as follows:

e We propose SurvUnc, a post-hoc meta-model based uncertainty
quantification framework for survival models. Notably, it re-
quires no modifications or access to the model’s parameters. To
the best of our knowledge, SurvUnc is the first model-agnostic
framework capable of quantifying the uncertainty of predictions
in any survival model.

Yu Liu, Weiyao Tao, Tong Xia, Simon Knight, and Tingting Zhu

e We develop an anchor-based learning strategy that leverages the
concordance concept of survival analysis to construct the meta-
model training set for optimization, thereby providing deeper
insights into understanding the uncertainty in survival analysis.

e We design systematic evaluation protocols to assess the quality
of quantified uncertainty in survival models, including selective
prediction, misprediction detection, and out-of-domain (OOD)
detection tasks. These protocols offer an evaluation reference for
future research in uncertainty estimation for survival analysis.

e We validate SurvUnc on multiple survival models and datasets.
Our extensive experiments demonstrate that SurvUnc signifi-
cantly outperforms baseline methods across various tasks, un-
derscoring its effectiveness and robustness in uncertainty quan-
tification for survival models.

2 Related Work

2.1 Survival Analysis

Survival analysis is concerned with modeling event occurrence in
the presence of censoring, and it primarily involves two interrelated
quantities: (i) hazard function, which represents the instantaneous
rate of event occurrence at a given time point, conditional on the
event not having occurred prior to that time; and (ii) survival func-
tion, (a.k.a. the survival curve), which denotes the probability that
the event has not occurred by a specific time. Survival probability
is determined by the cumulative hazard up to that time. Survival
models typically focus on estimating either the hazard function or
the survival function [52].

Traditionally, statistical methods have been widely explored for
survival analysis. Kaplan-Meier estimator [24] firstly defines the
survival function based on empirical estimation of the survival
data. CoxPH model [6] assumes that the log of the hazard is a linear
combination of covariates, and the ratio between the hazards of two
samples is constant. Furthermore, several machine learning meth-
ods have been adapted for survival analysis [49]. One of the most
representative examples is RSF [22], which extends the random
forest to survival analysis.

Owing to the ability to capture high-level non-linear interactions,
neural network-based deep learning models have gained popularity
in survival analysis [52]. Early models, such as the Farggi-Simon
model [12] and DeepSurv [25], replace the linear combination in
the Cox model with fully connected networks. Furthermore, re-
current neural networks and Transformers are also explored for
modeling hazard functions in DRSA [42] and SurvTRACE [50], re-
spectively. On the other hand, DeepHit [30] and DSM [39] directly
target the survival function using fully connected networks and
parametric distributions. A recent work, MOTOR [45] introduces a
Transformer-based foundation model pretrained on time-to-event
data for survival analysis. However, the uncertainty associated with
predictions from such survival models remains unquantified.

In addition, several Bayesian methods have been developed for
survival analysis. For instance, the Gaussian process is firstly incor-
porated into the hazard function for a semi-parametric Bayesian
model in [13], while DSA [38, 41] employs a deep latent variable
model within a Bayesian framework to analyze survival data. BNNs
[31,32,35] and deep Gaussian processes [1] further integrate neural
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network architectures with Bayesian techniques for survival predic-
tion. Although Bayesian methods inherently provide uncertainty
quantification through iterative sampling or posterior inference,
they are typically confined to probabilistic models and often strug-
gle with generalization or integration with other survival models.
This limitation can reduce their practical reliability in real-world
applications. Overall, accurately quantifying prediction uncertainty
in survival models remains a significant challenge.

2.2 Uncertainty Quantification

Uncertainty quantification aims to quantitatively measure the reli-
ability and confidence of a model’s predictions, and can be catego-
rized into intrinsic and post-hoc (extrinsic), depending on whether
uncertainty estimation is integrated within model training [44].

Intrinsic uncertainty quantification methods integrate uncer-
tainty estimation directly into the model learning process, often
leveraging Bayesian approaches to naturally generate uncertainty
estimates as part of their predictions [15]. For instance, various
studies employ BNNs with techniques such as variational inference
and Laplace approximation to quantify uncertainty in both classi-
fication and regression tasks [34, 40]. In addition, evidential deep
learning methods, which parameterize a Dirichlet distribution on
the neural network outputs, have been used to quantify uncertainty
in classification problems [37]. However, these methods are often
computationally intensive and based on strong underlying assump-
tions. Furthermore, intrinsic methods cannot directly quantify the
uncertainty in survival models.

In comparison, post-hoc uncertainty quantification methods sep-
arate the uncertainty estimation from the model prediction, without
affecting the model learning process. Prominent examples include
MC-Dropout! [14] and Deep Ensembles [29], widely used in various
domains [18]. MC-Dropout estimates uncertainty by calculating
the variance of multiple forward predictions with dropout layers
activated during inference. Deep Ensembles define uncertainty as
the prediction variance across multiple independent models trained
from different random initializations, while Hyper-batch Ensembles
[51] further consider different hyperparameters in the ensemble.
Another promising paradigm is to build auxiliary or meta-models
to quantify the uncertainty of the base model with respect to its
original task, as studied in classification [4, 10, 44] and regression
[54]. However, the effectiveness of these methods in survival analy-
sis remains unclear due to the unique challenges posed by censored
data and the absence of ground-truth survival curves, which are
fundamental to meta-model methods. Our work addresses this gap
by introducing a novel post-hoc uncertainty quantification method
specifically tailored for survival models.

3 Proposed Framework
3.1 Preliminaries & Problem Definition

3.1.1  Survival Analysis. Firstly, we define a survival dataset D =
{(xj, ti, 6;) }fil, where x; € RY is the set of covariates/features of an
individual; t; € R is the time to event or censoring as indicated by
the indicator §; = 1 or §; = 0, respectively. N refers to the number
of samples and d is the dimension of covariates.

IMC-Dropout requires a dropout layer to be designed in the quantified model.
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Moreover, the probability that an individual with covariates x
will experience the event at time t, i.e., the probability density
function of survival times, is denoted as p(t|x) = P(T=¢t|X =x).
Consequently, the survival function is represented as:

t
S(tlx) =P(T >t|X=x)=1 —'/0 p(z]x)dz, (1)

which signifies the probability that the event does not occur until
time t. The hazard function is defined as:
Pt <T<t+AtT 2t,X=x) p(tlx)
At T S(tx)’
which indicates the probability that the event will occur at time
t, given that the event has not occurred before. Consequently, the
survival model F(-) is developed to learn S(¢|x) and h(t|x) with
covariates x as input, based on the survival dataset D.

@)

bl = i,

3.1.2  Uncertainty Quantification. In the context of machine learn-
ing and deep learning, the total uncertainty encompasses two types
of uncertainty: (i) reducible epistemic uncertainty (a.k.a. model un-
certainty) caused by the model’s limited knowledge due to insuffi-
cient training data, e.g., unseen data samples; and (ii) irreducible
aleatoric uncertainty (a.k.a. data uncertainty) caused by the inherent
noise and stochastic nature in data [20]. Based on the preliminaries,
we formally define the problem of uncertainty quantification in
survival analysis as follows.

ProBLEM 1. Uncertainty Quantification in Survival Anal-
ysis. Given a survival model F(-) trained on a survival dataset
D, the uncertainty quantification problem is to learn a function
U(-) : R? - Rsy, such that based on F(-) and D, it produces
an uncertainty score that quantifies the predictive uncertainty of F(-)
for a new coming sample.

3.2 Framework Overview

Figure 1 illustrates an overview of our proposed framework, SurvUnc,
for the uncertainty quantification problem in survival analysis.
Specifically, we propose a meta-model based framework to quantify
the uncertainty of survival models in a post-hoc manner. Given a
pretrained survival model F(-) (e.g., neural network-based model,
or random forest-based model), we further develop a meta-model
U (-) to quantify its uncertainty. Notably, the meta-model shares
the same covariate input as the survival model, and only the pa-
rameters of the meta-model are optimized in the learning process.
In general, the architecture of the meta-model can be arbitrarily
chosen; in our experiments, we explore two different variants of
U(-), as shown in later experiments. To overcome the absence of
ground truth of survival curves for meta-model training, we design
an anchor-based learning strategy to construct a meta-model train-
ing set, D™t derived from the survival model training set  and
the pretrained survival model F(-), as illustrated in Figure 1(b).

3.3 Meta-Model Learning

To construct a labeled meta-model training set, we leverage the
concordance concept from survival analysis in the medical domain
[17] and pairwise ranking idea in information retrieval domain
[33]. The core idea in medical language is that a patient living
shorter should have a lower survival probability at any given time
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Table 1: Dataset statistics. “real” and “categorical” denote the number of real-valued and categorical covariates in the datasets,
respectively. Minimum, maximum, and mean values for event durations and censoring times are reported.

#Covariates Event Duration Censoring Time
Dataset | #Instances | #Events (%) | #Censored (%) . - -
(real, categorical) | min max mean | min max mean
FLCHAIN 6,524 1,962 (30.1%) 4,562 (69.9%) 7 (3, 4) 0 4998 21379 1 5166  4296.7
SUPPORT 8,873 6,036 (68.0%) 2,837 (32.0%) 14 (8, 6) 3 1944 205.4 344 2029  1059.8
SEER-BC 323,772 85,258 (26.3%) | 238,514 (73.7%) 18 (4, 14) 1 121 41.7 1 121 85.4
SAC3 100,000 62,798 (62.8%) 37,202 (37.2%) 49 (49, 0) 0.1 100 24.6 0.1 100 45.5

Anchors

Survival Model F( ) % N Sample X;

Random Forest %

(Tl >|p(n|x.>|1)<mx [ Teaio]

Covariates ®

v
Survival Model F(+) C*: j

vy - ¥
S(tlxy)  S(tlaf) s(elxd) - S(tlxf)
v L2 2N 2

Survival Curvels(l %)

I~

Time pmeta — {(xj'yjmcm)}

(b)

Label Generation for Training U(-)
ypew ey Iy < 66, 5(1) 2 5@ 1x4)
i 1y <)

=z

Figure 1: Illustration of our proposed framework SurvUnc.
(a) The pipeline of post-hoc meta-model based uncertainty
quantification for survival models, and (b) the anchor-based
learning strategy for meta-model optimization.

compared to a patient living longer. Therefore, the uncertainty
in a survival model’s predictions can be quantified by evaluating
its ability to correctly rank the survival probabilities of samples
relative to each other.

Intuitively, comparing a sample against some referenced points
enhances the quality of the quantified uncertainty. For efficiency
consideration, we design an anchor-based learning strategy. Fol-
lowing the literature we assume that censoring occurs completely
at random [30, 39]. Specifically, we randomly select K uncensored
samples from the survival model training set D as anchors, de-
noted by DA (x;?, t;?, 5]‘?=1)}f:1, For the j-th uncensored sample
(xj, tj, 65 = 1) € D, we treat it as a training instance for the meta-
model, and calculate its uncertainty label as follows:

et _ K1 (tj <t5 (tjlxj) 2 S(t]|xA)), "
’ P ]].(tj < t,f)

which measures the proportion of incorrectly ordered pairs by
the survival model F(-), resulting in an uncertainty score ranging
from 0 to 1 for the predicted sample. A higher uncertainty score
indicates a less reliable prediction. Here 1(-) is an indicator function
that returns 1 if the specified conditions are met and 0 otherwise.
S(tjlxj) and S(tj |x?) denote the survival probabilities estimated by

F(-) for samples with covariates x; and x? at time t;, respectively.

As a result, we construct the meta-model training set D™ =
{(x}, y}?eta)}?[zl with N’ labeled samples.

Algorithm 1: The learning procedure of SurvUnc

Input: Survival data D = {(x;, t;, 51)}1 1,
Pretrained survival model F(-); Anchor number K
Output: Uncertainty quantification model U(-)
Randomly sample K anchors from D, i.e., DA
Initialize the model U(-)
3 Dmeta — 0
for (xj,tj,Sj = 1) € D do
L Obtain label y;mta based on (3) and D4
Dmeta — Dmeta U {(xi, y;neta)}
Train the model U(-) with D™et2
Usage: u; = U(x;)

[

)

(S

<

Based on the constructed meta-model training set pmeta e ox-
plore two different architectures of the meta-model U(-) with sam-
ple covariates as input, including a multi-layer perceptron (MLP)
model and a random forest model, referred to as SurvUnc-MLP and
SurvUnc-RF, respectively. After training on D™, the trained
SurvUnc models provide uncertainty scores for the predictions
from the corresponding survival model. Algorithm 1 summarizes
the learning procedure of SurvUnc. Note that during inference, the
event or censoring time for a test sample is unknown, requiring
the meta-model U(+) to estimate predictive uncertainty solely from
the covariates.

4 Experiments

In this section, we show that our proposed SurvUnc framework
effectively quantifies uncertainty in survival models and is applica-
ble in different scenarios. Specifically, we conduct experiments to
answer the following questions:

¢ RQ1: How does SurvUnc perform w.r.t. total uncertainty quan-
tification, particularly in distinguishing between correctly and
incorrectly predicted samples, compared to existing methods?

e RQ2: How does SurvUnc perform w.r.t. epistemic uncertainty
quantification, particularly in detecting OOD data, when com-
pared to existing methods?

¢ RQ3: How do different hyperparameter settings, such as meta-
model structure and the number of anchors, affect the perfor-
mance of SurvUnc?

4.1 Experimental Settings

4.1.1 Datasets. We experiment with three real-world and one syn-
thetic, publicly available survival analysis datasets:
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o FLCHAIN is a study of the relationship between free light chains
and mortality in an elderly population [9].

e SUPPORT contains a dataset that aims to improve the care
for seriously ill patients by understanding their prognosis and
treatment preferences [5].

e SEER-BC is derived from the SEER database [21], which con-
tains survival information for oncology patients in the U.S. Fol-
lowing the processing steps in [50], we select breast cancer pa-
tients to create the SEER-BC dataset. For the later OOD detection
experiments, we curate a SEER-HD dataset, comprising the same
number of patients as SEER-BC but diagnosed with heart disease.

e SAC3 is a synthetic dataset from [26], which simulates survival
times by sampling from a combination of three hazard functions.
Thus, this dataset provides the ground-truth survival curves.

Table 1 presents the basic statistics of all datasets. For the SUPPORT
dataset, we retain the original training/test split and reserve 20% of
the training set for validation. For all other datasets, we randomly
split into training, validation, and test sets in a ratio of 6:2:2.

4.1.2  Survival Models. To evaluate the effectiveness as well as ro-
bustness of our proposed SurvUnc framework on survival models,
we select five representative survival models for uncertainty quan-
tification, including three deep learning models of DeepSurv [25],
DeepHit [30], DSM [39], one machine learning model of RSF [22],
and one Bayesian-based model of BNNSurv [31]. For each survival
model, we optimize hyperparameters so that the reported perfor-
mance on datasets is comparable to those published in the literature,
thereby validating the correctness of pretrained survival models.

4.1.3  Uncertainty Quantification Baselines. Given the lack of prior
studies on model-agnostic uncertainty quantification for survival
models, we adapt two widely used uncertainty quantification meth-
ods of MC-Dropout [14] and Deep Ensembles (Ensemble) [29]
to survival analysis. For MC-Dropout, we set the number of for-
ward passes to 100. For Ensemble, we train 10 survival models with
different random initializations. Note that the RSF model does not
support the dropout mechanism, making MC-Dropout incompatible
with it. Unlike MC-Dropout and Ensemble, which are general uncer-
tainty quantification methods applicable across models, BNNSurv
is a specialized Bayesian survival model that inherently estimates
uncertainty but cannot be integrated with other survival models
for uncertainty quantification.

4.1.4 Tasks & Metrics. As discussed before, standardized evalua-
tion protocols for uncertainty quantification methods with survival
models remain lacking. To address this, we extend existing evalua-
tion methodologies from uncertainty quantification studies to the
survival analysis domain, incorporating multiple tasks and metrics.

Selective prediction evaluates how well an uncertainty quan-
tification method differentiates between correct and incorrect pre-
dictions. A good uncertainty quantification method should improve
survival model performance by selectively discarding samples with
high uncertainty. To evaluate this, we use two widely adopted
survival analysis metrics.

e Time Dependent Concordance Index (Ctd). This metric mea-
sures the model discrimination power by comparing the relative
survival probabilities across all pairs of samples in the test set
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[2], defined as

i1 Loy 0 Lt <1, S(tilxi) < S(tilxj))

otd —
iy X 0 L < 1)

The range of C'dis [0,1], and a larger value indicates better
model prediction. C'9=0.5 corresponds to a random prediction.

e Integral Brier Score (IBS). This metric is an integral of the
Brier score at all time points, while the Brier score calculates the
mean squared error between predicted survival probability and
binary observation at a given time [27], defined as

Bs(t):%i[ (0= S(txi))® A=t 6 = 1) | (1= S(tlxi))* Ut <ti)

- &t 6(1)
where G(t) is the censoring survival function using Kaplan-
Meier estimator [24]. Unlike C'9, which relies on pairwise com-
parisons, IBS assesses each sample independently and provides
an overall measure of model accuracy, where lower values indi-
cate better performance. The range of IBS is [0, 1].

Misprediction detection examines whether uncertainty esti-
mates align with actual prediction errors. To assess this, we use the
following metric:

e Pearson Correlation Coefficient p. This metric measures the
linear correlation between the quantified uncertainty scores and
IBSs of test samples, i.e., to evaluate whether the uncertainty
quantification method can distinguish correctly and incorrectly
predicted samples by survival models. The range of p is [-1, 1],
while we expect a positive correlation (p > 0) here, i.e., samples
with larger uncertainty have larger IBS.

OOD detection evaluates the ability of uncertainty quantifica-
tion methods to distinguish in-distribution (IND) from OOD sam-
ples. We use the following two metrics:

e AUROC and AUPRC. We adopt the area under the receiver
operating curve (AUROC) and the area under the precision-recall
curve (AUPRC) to evaluate the performance in OOD detection
experiments. Specifically, IND test samples are labeled as the
negative class, while OOD samples are labeled as the positive
class [44]. Both metrics are in the range of [0, 1], and a higher
value indicates better performance.

4.1.5 Implementation Details. For the SurvUnc-RF method, the hy-
perparameters n_estimators, min_samples_leaf, min_samples_split
are uniformly set to 100, 5 and 10, respectively, across all survival
models and datasets. Similarly, for the SurvUnc-MLP method, the
learning rate and the hidden layers are simply set to 0.001 and [32,
32], respectively. The number of anchors is usually set to 50 for
robust performance. All methods undergo 100 bootstrap resampling
iterations on the test set, with both the mean value and standard
deviation reported. We also conduct the Wilcoxon signed-rank test
to confirm the statistical significance of our results. All experiments
were run on an RTX 6000 GPU with 32GB RAM. The implementa-
tion is done in PyTorch, and training the SurvUnc framework with
a pretrained survival model on the largest SEER-BC dataset takes
less than 5 minutes, making it efficient enough for deployment. The

I,
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Table 2: C'9 of survival models under different discarding percentages (10%, 30%, 50%), determined by different uncertainty
quantification (UQ) methods across datasets. The best results are in bold, and the last row of each group shows relative

improvement compared with the best baseline by 100 runs of experiments. p-value< 0.001 is true for all results without *.

Survival FLCHAIN SUPPORT SEER-BC SAC3
UQ Methods
Models 10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%
MC-Dropout 0.782 0.745  0.685 | 0.600 0.576 0.563 | 0.857 0.846 0.832 | 0.772 0.778  0.793
Ensemble 0.786 0.755  0.710 | 0.607 0.598 0.576 | 0.863 0.857 0.842 | 0.783 0.795 0.807
DeepSurv SurvUnc-RF 0.856 0.907 0.941 | 0.635 0.690 0.757 | 0.904 0.938 0.961 | 0.792 0.822  0.855
SurvUnc-MLP 0.839 0.894 0935 | 0.637 0.695 0.762 | 0.904 0.938 0.961 | 0.797 0.830 0.862
Improv. 8.9% 20.1% 32.5% | 4.9% 16.2%  32.3% | 4.8% 9.5% 14.1% 1.8% 4.4% 6.8%
MC-Dropout 0.784 0.762  0.733 | 0.648  0.657 0.656 | 0.908 0.937 0953 | 0.797 0.811 0.836
Ensemble 0.855 0902 0.934 | 0.637 0.637 0.637 | 0.896 0923 0944 | 0.805 0.822 0.842
DeepHit SurvUnc-RF | 0.855" 0.908 0.940 | 0.639 0.664" 0.693 | 0.913 0.945 0.961 | 0.811 0.838 0.866
SurvUnc-MLP | 0.855* 0.909 0.940 | 0.639 0.660* 0.692 | 0.914 0.945 0.961 | 0.817 0.845 0.876
Improv. 0.0% 0.8% 0.6% -1.4% 1.1% 5.6% 0.7% 0.9% 0.8% 1.5% 2.8% 4.0%
MC-Dropout 0.780 0.741  0.687 | 0.613 0.614 0.613 | 0.866 0.854 0.832 | 0.793 0.776  0.770
Ensemble 0.787 0.755  0.715 | 0.616 0.605 0.581 | 0.872 0.868 0.854 | 0.802 0.813  0.828
DSM SurvUnc-RF 0.854 0.907 0.941 | 0.640 0.685 0.725 | 0.910 0.943 0.960 | 0.813 0.837 0.862
SurvUnc-MLP | 0.852  0.906 0.940 | 0.641 0.685 0.731 | 0.910 0.943 00959 | 0.818 0.844 0.871
Improv. 8.5% 20.1% 31.6% | 4.1% 11.6%  19.2% | 4.4% 8.6% 12.4% | 2.0% 3.8% 5.2%
MC-Dropout - - - - - - - - - - - -
RSF Ensemble 0.790 0.777  0.745 | 0.648 0.662 0.684 | 0.878 0.874 0.863 | 0.649 0.663  0.677
SurvUnc-RF 0.840 0.897 0.933 | 0.663 0.708 0.750 | 0.908 0.941 0959 | 0.658 0.692 0.738
SurvUnc-MLP 0.820 0.854 0.892 | 0.656 0.689 0.721 | 0.913 0.943 0.960 | 0.653 0.685 0.731
Improv. 6.3%  154% 25.2% | 2.3% 6.9% 9.6% | 40% 79% 112% | 14% 44%  9.0%
Bayesian 0.773 0.732  0.670 | 0.623 0.648 0.687 | 0.847 0.836 0.805 | 0.719 0.740 0.771
BNNSurv | SurvUnc-RF 0.848 0.902 0.936 | 0.650 0.701 0.764 | 0.891 0.932 0.955 | 0.727 0.765 0.808
SurvUnc-MLP 0.843 0.899 0.934 | 0.648 0.699 0.760 | 0.893 0.932 0.955 | 0.727 0.767 0.815
Improv. 9.7% 232% 397% | 4.3% 8.2% 11.2% | 5.4% 11.5% 18.6% 1.1% 3.6% 5.7%

implementation code and dataset are available at the given link?.
Details on the experimental settings can be found in Appendix A.

4.2 Selective Prediction (RQ1)

To investigate the effectiveness of total uncertainty quantification,
we first conduct the selective prediction experiments [48, 55]. Specif-
ically, we discard a portion of test samples by their uncertainty
scores and then compute evaluation metrics on the remaining data.
To better reflect real-world scenarios where testing samples have
not yet been censored, we discard only uncensored samples, and sub-
sequent analyses also focus on uncensored ones. It is expected that
the performance will improve as more high-uncertainty samples are
discarded. This evaluation is essential in realistic scenarios, where
low-uncertainty predictions are retained, while high-uncertainty
(less reliable) predictions are flagged for expert inspection.

Table 2 presents the selective prediction results for ctd across
five survival models, evaluated at different discarding percentages
(10%, 30%, 50%). Since BNNSurv inherently provides uncertainty es-
timation, we exclude MC-Dropout and Ensemble implementations
for this model. Across all survival models, datasets and discarding

Zhttps://github.com/liuyuaa/SurvUnc

percentages, our proposed SurvUnc framework generally outper-
forms the baselines with an average improvement of over 8%, which
demonstrates the effectiveness of the meta-model based uncertainty
quantification framework and the anchor-based learning strategy.
Especially, our approach aligns with the core objective of survival
analysis, i.e., maintaining correct risk ordering, whose uncertainty
scores better reflect this clinical need by focusing on ranking re-
liability. In comparison, traditional methods focus on predictive
variability, which do not account for the time-dependent nature
of survival predictions. This leads to two main issues including
that they may flag samples with high variance but correct rankings
as “uncertain” and they often miss samples with small variance
but incorrect relative rankings. Notably, the relatively weak per-
formance of BNNSurv’s inherent uncertainty estimation suggests
that Bayesian methods may struggle to capture meaningful un-
certainty scores in survival analysis. The marginal improvement
observed with DeepHit could be explained by its use of ranking loss,
which also leverages the concordance concept, thereby making MC-
Dropout and Ensemble methods based on its output more effective.
Additionally, SurvUnc-RF and SurvUnc-MLP demonstrate compa-
rable performance across different survival models and datasets,
further validating the robustness and generalizability of SurvUnc.
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Figure 2: Ct of four survival models of (a) DeepSuryv, (b) DeepHit, (c) DSM and (d) RSF on SEER-BC dataset with different
percentages of samples discarded according to uncertainty scores from different UQ methods. A consistent upward trend is
expected as the percentage of discarded samples increases. Error bars are omitted for better visualization.

Table 3: Misprediction detection results, i.e., Pearson correlation coefficient between uncertainty scores and IBSs of samples.

Datasets FLCHAIN SUPPORT SEER-BC SAC3
UQ Methods [DeepSurv DeepHit DSM RSF |DeepSurv DeepHit DSM  RSF [DeepSurv DeepHit DSM  RSF |[DeepSurv DeepHit DSM  RSF
MC-Dropout | -0.674  -0.042 -0.579 - -0.299 0.431 -0.123 - -0.293 0.442 -0.644 - -0.111 -0.157 -0.329 -
Ensemble -0.361 0.099 -0.467 -0.258| -0.109 0.511 -0.277 0.203| -0.168 0.391 -0.209-0.264| -0.036  -0.017 -0.085 0.129
SurvUnc-RF | 0.688  0.084 0.718 0.687| 0.657  0.590 0.516 0.544| 0.683  0.331 0.698 0.607| 0.426 0.315 0.342 0.436
SurvUnc-MLP| 0.590 0.053 0.700 0.352| 0.652 0.509 0.468 0.405| 0.671 0.323 0.677 0.666| 0.638 0.510 0.554 0.391
Figure 2 shows the performance comparison with fine-grained ;g 00688 ;g 0= 0657

discarding percentages on the largest dataset, SEER-BC. We ob-
serve that the performance of both SurvUnc-RF and SurvUnc-MLP
improves as the discarding percentage increases, indicating that
predictions become more reliable as high-uncertainty samples are
excluded, consistent with the expectation of selective prediction
experiments. However, for baselines quantifying the uncertainty of
DeepSurv, DSM and RSF (see Figure 2(a), (c) and (d)), the results are
opposite, suggesting that these baselines fail to provide meaning-
ful uncertainty quantification for these survival models. We also
conduct the experiments using the IBS metric, which yields similar
conclusions for most results (see Appendix B).

4.3 Misprediction Detection (RQ1)

We conduct the misprediction detection experiments to identify
the correctly and incorrectly predicted samples using quantified
uncertainty scores [44], where the mispredicted samples are viewed
as in-distribution hard samples for survival models. Table 3 sum-
marizes the Pearson correlation coefficients between the IBSs and
quantified uncertainty scores from different uncertainty quantifica-
tion methods for each survival model across four datasets. Results
with BNNSurve are provided in Appendix B. As observed, both
SurvUnc-RF and SurvUnc-MLP achieve significantly higher and
consistently positive correlations across all survival models and
datasets, demonstrating their reliability in uncertainty quantifica-
tion. In comparison, the performance of baselines is inconsistent,
and several negative or weak correlation results are notable. The
results indicate that traditional uncertainty quantification meth-
ods like MC-Dropout and Ensemble struggle to extend effectively
to survival analysis, further demonstrating the effectiveness and
importance of SurvUnc for survival analysis.

To further analyze the effectiveness of total uncertainty quan-
tification, Figure 3 presents a comparison between predicted uncer-
tainty scores and IBSs for the DeepSurv model using SurvUnc-RF
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Figure 3: Predicted uncertainty scores versus IBSs from
DeepSurv quantified by SurvUnc-RF across samples on (a)
FLCHAIN, (b) SUPPORT, (c) SEER-BC and (d) SAC3 datasets.

on four datasets. The scatter plots show a clear positive correlation
between quantified uncertainty and prediction performance. No-
tably, despite the different prediction distributions of IBSs across
the four datasets, Our SurvUnc framework can effectively differen-
tiate between relatively hard and easy in-distribution samples by
assigning accurate uncertainty scores for each dataset.

As the absence of ground-truth survival curves poses a signif-
icant challenge to uncertainty quantification for survival models,
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Table 4: OOD detection comparison with AUROC and AUPRC on the SEER dataset. Since the Bayesian-based model BNNSurv
inherently provides uncertainty estimates and cannot be integrated with other survival models, the corresponding columns are

left blank.
Models DeepSurv DeepHit DSM RSF BNNSurv
UQ Methods | AUROC AUPRC | AUROC AUPRC | AUROC AUPRC | AUROC AUPRC | AUROC AUPRC
MC-Dropout 0.358 0.398 0.524 0.527 0.445 0.455 - - - -
Ensemble 0.493 0.481 0.499 0.516 0.558 0.559 0.516 0.514 - -
Bayesian - - - - - - - - 0.483 0.500
SurvUnc-RF 0.621 0.581 0.631 0.574 0.638 0.581 0.625 0.577 0.627 0.627
SurvUnc-MLP 0.638 0.604 0.657 0.599 0.667 0.624 0.643 0.577 0.636 0.634
1.0 —O— 0.062/GT dataset. The SEER-HD dataset includes the same number of uncen-
{O>_ g:ggéﬁ; sored patients as the SEER-BC dataset but comprises patients with
208 {<>F gggg;sﬁ a different condition, specifically heart disease. For age at diagnosis,
3 1 0.069/P SEER-BC patients’ mean age is 60.52 (SD: 15.13) compared to SEER-
8 06 g:ggﬁ HD patients with 74.84 (SD: 10.40). For time-to-event distribution,
% 0.942/GT SEER-BC patients’ mean duration is 41.67 (SD: 29.91), compared
% o —A— g:ggng to SEER-HD patients with 55.44 (SD: 33.34). These differences are
3, A 0936 statistically significant (p<0.001) under Wilcoxon rank-sum test.
0.0 4 Breaset Cancer Breaset Cancer
0 20 40 60 80 100 Heart Disease (OOD) Heart Disease (O0D)
Time

Figure 4: Survival curve comparison of high-uncertainty
and low-uncertainty samples on SAC3 dataset, quantified
by SurvUnc-RF on DeepSurv. “GT” (with solid lines) and “P”
(with dashed lines) denote “Ground Truth” and “Predicted”,
respectively, and the values in legend are uncertainty scores.

we introduce the synthetic SAC3 dataset with ground-truth sur-
vival curves available for validation. Given a pretrained DeepSurv
model on the SAC3 dataset, we select the three samples with the
highest uncertainty and the three with the lowest uncertainty, as
ordered by SurvUnc-REF, for visualization. As shown in Figure 4, the
predicted survival curves (in dashed lines with cold colors) for low-
uncertainty samples closely match the ground-truth survival curves
(in solid lines with cold colors). In contrast, for high-uncertainty
samples, there is a marked discrepancy between the predicted and
ground-truth survival curves. Our expanded analysis confirms that
samples with high uncertainty predictions generally exhibit longer
survival times compared to those with low uncertainty. The reason
is current survival models tend to accumulate prediction errors
when estimating long-term survival patterns, resulting in higher
uncertainty estimates. These results further highlight the effective-
ness of SurvUnc in quantifying total uncertainty associated with
survival curves.

4.4 OOD Detection (RQ2)

In addition to the quantification of total uncertainty, the quantifica-
tion of epistemic uncertainty is emphasized in reliable deployment
to detect OOD data [44, 54]. Here, we conduct several ODD detec-
tion experiments to validate SurvUnc. As mentioned, we develop
the SEER-HD dataset as the OOD counterpart to the SEER-BC

0.4 0.6
Uncertainty Score

0.0 0.2 0.8 X oo 0.2

0.4 0
Uncertainty Score

(a) SurvUnc-RF (b) SurvUnc-MLP

Breaset Cancer
Heart Disease (OOD)

Breaset Cancer
Heart Disease (OOD)

0
000 005 010 015 020 025 0.30
Uncertainty Score

0
000 005 010 015 020 025
Uncertainty Score

(c) MC-Dropout (d) Ensemble

Figure 5: Uncertainty score distribution comparison of Deep-
Surv between IND (BC) and OOD (HD) samples from SEER
dataset, with uncertainty scores from (a) SurvUnC-RF, (b)
SurvUnc-MLP, (c) MC-Dropout and (d) Ensemble.

Firstly, we investigate whether the OOD data can be identified
from the uncertainty score distribution. Based on DeepSurv, Fig-
ure 5 compares the uncertainty score distributions of both datasets
across different quantification methods. The findings suggest that
both SurvUnc-RF (Figure 5(a)) and SurvUnc-MLP (Figure 5(b)) can
generally sense the OOD and IND data differently. Notably, the
uncertainty score distribution for OOD data (shown in pink) is
right-shifted in comparison to that of IND data (shown in blue),
indicating higher uncertainty for more OOD samples. However,
Ensemble (Figure 5(d)) fails to distinguish between the two distri-
butions, as they appear nearly identical. For MC-Dropout, IND data
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is generally quantified with even higher uncertainty scores than
OOD data, highlighting its limitations in OOD detection.

Furthermore, we provide a quantitative evaluation of the OOD
detection task in Table 4. By using uncertainty scores as logits to
classify IND and OOD samples, SurvUnc demonstrates a significant
performance improvement over baseline methods across all survival
models. In particular, SurvUnc-MLP shows notable enhancements,
achieving an 19.5% -31.7% increase in AUROC and an 11.6%-26.8%
improvement in AUPRC. This epistemic uncertainty quantification
capability can be attributed to the anchor-based learning strategy,
which successfully infuses in-domain knowledge into the meta-
model learning process.

4.5 Hyperparameter Study (RQ3)

Our proposed SurvUnc framework consists of two important hy-
perparameters, i.e., the meta-model structure and the number of
anchors. In terms of the meta-model structure, we explore the
random forest and MLP in former experiments, where both meta-
models achieve consistently better performance than baselines with
robustness achieved.

We investigate the impact of varying the number of anchors
on selective prediction performance (C'), as shown in Figure 6.
Additional results with SurvUnc-MLP, provided in Appendix B,
exhibit similar trends. The anchor-based learning strategy suggests
that increasing the number of anchors can enhance the robustness
of label calculation for the meta-model training set construction,
thereby improving performance. For each discarding percentage,
the performance stabilizes when using 10 or more anchors®. This in-
dicates that the proposed SurvUnc framework can achieve efficient
performance with a relatively small number of anchors.
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Figure 6: Varying anchor number K on selective prediction
performance of SurvUnc-RF with DeepSurv on SEER-BC.

5 Conclusion

In this paper, we address the novel challenge of uncertainty quan-
tification in survival analysis and propose SurvUnc, a meta-model
based framework that incorporates an anchor-based learning strat-
egy. We establish systematic evaluation protocols to assess un-
certainty quantification methods on survival models. Extensive

3The slight variations are due to randomness in training.
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experiments conducted across multiple datasets and survival mod-
els demonstrate the effectiveness and robustness of SurvUnc in
uncertainty quantification. Furthermore, its model-agnostic design
ensures compatibility with a wide range of survival models, offering
valuable insights into uncertainty quantification for survival analy-
sis. Future work will explore uncertainty quantification for survival
analysis with competing events and time-varying covariates, as
well as evaluate SurvUnc in the context of foundation model-based
survival analysis [16, 23].
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A Experiment Setup
A.1 Survival Model Details

To quantify the uncertainty for survival models, we first pretrain
several survival models to be quantified. Specifically, the implemen-
tations of DeepSurv [25] and DeepHit [30] are sourced from pycox
package. The implementation of RSF is from scikit-survival
package?, and the implementation of DSM is from auton_survival
package®. The implementation of BNNSurv is from bnnsurv pack-
age®. We summarize the hyperparameter settings of such models in
Table 5-8. Detailed implementation codes are provided in the anony-
mous link. Since our primary focus is on uncertainty quantification
rather than survival prediction, we tune the hyperparameters of
the survival models to match the performance levels reported in
existing works.

Table 5: Hyperparameters for DeepSurv model.

Dataset | learning rate | dropout | hidden layers
FLCHAIN 0.01 0.1 [32]
SUPPORT 0.1 0.1 [32]
SEER-BC 0.01 0.1 [32]

SAC3 0.01 0.1 [32]

4https://scikit-survival. readthedocs.io/en/latest/index.html
Shttps://autonlab.org/auton-survival/
®https://github.com/thecml/UE-BNNSurv


https://seer.cancer.gov/data/
https://seer.cancer.gov/data/
https://doi.org/10.1214/08-aoas169
https://scikit-survival.readthedocs.io/en/latest/index.html
https://autonlab.org/auton-survival/
https://github.com/thecml/UE-BNNSurv
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Table 6: Hyperparameters for DeepHit model. dj;, is deter-

mined by the dataset covariate dimensions. Table 9: Performance comparison of survival models with

reported results in literature (Lit.).

Dataset | learning rate | dropout | hidden layers
FLCHAIN 0.001 0.1 [3din, 5din, 3din] Model | From FLCHAIN SUPPORT
SUPPORT 0.005 0.1 [3din, 5din, 3din] C-index IBS C-index IBS
SEER-BC 0.001 0.1 (3di,, 5di, 3din] DeepHit | Lit | 07-080 0.09-013 [ 0.56-0.64 0.20-0.23
SAC3 0.001 0.1 [3din, 5din,3din] Ours 0.797 0.125 0.626 0.209
DeepSurv Lit. 0.79-0.80  0.09-0.10 | 0.57-0.61 0.19-0.21
Ours 0.798 0.101 0.606 0.195
Table 7: Hyperparameters for DSM model. RSE Lit. | 0.77-0.82 0.09-0.10 | 0.61-0.63 0.18-0.21
Dataset | learning rate | Distribution, No. | hidden layers Ours 0.795 0.100 0.631 0.189
FLCHAIN 0.005 Weibull, 4 [32, 32] DSM Lit. 0.79-0.80  0.10-0.11 | 0.60-0.61 0.20-0.21
SUPPORT 0.005 Weibull, 6 [32, 32] Ours 0.799 0.102 0.610 0.197
SEER-BC 0.005 Weibull, 6 [32, 32]
SAC3 0.005 Weibull, 10 [32, 32, 32]

Table 8: Hyperparameters for RSF model.

In addition, the Brier score is know to be imperfect in survival
analysis since it approximates the ground truth survival curve as a
step function that begins at 1 and then immediately becomes 0 at the
time to event. Thus, we compute the absolute difference between

Dataset |n_estimators|min_samples_split| min_samples_leaf
FLCHAIN 100 20 5 predicted median survival (min{¢|S(¢|x) < 0.5}) and actual event
SUPPORT 100 20 5 times for uncensored patients in selective prediction on SEER-BC
SEER-BC 100 20 5 and SUPPORT, as shown in Table 10. Our proposed SurvUnc still
SAC3 20 20 5 achieves the best performance.

A.2 Baseline Details

For each testing sample, MC-Dropout quantifies uncertainty by
activating dropout layers in the survival models during inference
and calculating the maximum standard deviation of predicted sur-

Table 10: Absolute difference between predicted median
survival and actual event times of DeepSurv under differ-
ent discarding percentages (10%, 30%, 50%), determined by
the SurvUnc framework with different UQ methods across
datasets.

vival probabilities across time steps over 100 forward passes. For Datasets SUPPORT SEER-BC

the Ensemble method, we train the survival model with 10 different UQ Methods 10% 30% 50% 10% 30% 50%
random initializations and use the maximum standard deviation MC-Dropout | 289.50 320.36 323.45 | 41.21 44.18 47.22
of predicted survival probabilities across time steps from the 10 Ensemble 282.52 299.62 314.78 | 39.64 39.73 41.29
models as the uncertainty measure. It’s worth noting that we also SurvUnc-RF | 242.70 203.24 166.85 | 36.29 28.39 21.75
explored alternative approaches, such as calculating the mean stan- SurvUnc-MLP | 243.22 203.77 169.99 | 36.40 27.79 21.81

dard deviation and the mean Euclidean distance between predicted
survival probability time vectors to assess the discrepancy among
multiple predictions for the same sample. However, these alterna-
tives performed relatively worse compared to using the maximum
standard deviation.

B Additional Experiment Results
B.1 Survival Model Validation

In Table 9, we compare the performance of our implemented sur-
vival models with the reported performance on FLACHAIN and
SUPPORT datasets from existing works. The results are sourced
from papers [7, 25, 26, 28, 30, 39, 46, 56]. Due to variations in dataset
splits, the reported performance in the literature is not exactly the
same. To account for this, we present the available performance
range for comparison.

B.2 Additional Results on Selective Prediction

Table 13 is a supplemented table for Table 2. We also report the
IBS comparison in Table 14 and Figure 7. Except the results with
DeepHit model, similar trends to C' can be observed for IBS, which
further demonstrate the superiority of SurvUnc framework.

B.3 Additional Results on Misprediction

We present the misprediction results of BNNSurv model in Table 11.
It can be observed our proposed SurvUnc framework outperforms
the inherent uncertainty estimation in Bayesian-based survival
model, BNNSurv. Besides, the comparison between predicted uncer-
tainty scores and IBSs for the DeepSurv model using MC-Dropout
and Ensemble are shown in Figure 8 and Figure 9, respectively.
Similar to selective prediction experiments, we also present mis-
prediction results with the absolute difference between predicted
median survival and actual event times for uncensored patients, as
shown in Table 15.

B.4 Hyperparameter Study

For the impact of anchor number to the uncertainty quantification
in Figure 6, we further present its impact with IBS in Figure 10(a).
Moreover, the corresponding studies for SurvUnc-MLP are pre-
sented in Figure 10(b) and Figure 10(c) for Ctd and IBS, respectively.
The results demonstrate that the SurvUnc framework is robust with
respect to the number of anchors, allowing for flexible selection.
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Table 11: Misprediction detection results with BNNSurv, i.e.,
Pearson correlation coefficient between uncertainty scores
and IBSs of samples.

Datasets FLCHAIN | SUPPORT | SEER-BC | SAC3
Bayesian -0.426 0.321 -0.680 0.254
SurvUnc-RF 0.440 0.776 0.669 0.542
SurvUnc-MLP 0.410 0.749 0.629 0.619

B.5 Case Study

To validate the robustness of the proposed SurvUnc framework, we
also evaluate two state-of-the-art models TabPFN [19] and TabNet
[3] as meta models with selective prediction, as shown in Table|12.
While TabPFN achieves marginally better results, the improvements

Yu Liu, Weiyao Tao, Tong Xia, Simon Knight, and Tingting Zhu

are minimal considering the substantial computational and imple-
mentation overhead.

Table 12: C'4 of DeepSurv under different discarding percent-
ages (10%, 30%, 50%), determined by the SurvUnc framework
with different meta models across datasets.

Datasets SUPPORT SEER-BC
Meta Models | 10% 30% 50% 10% 30%  50%
RF 0.635 0.690 0.757 | 0.904 0.938 0.961
MLP 0.637 0.695 0.762 | 0.904 0.938 0.961
TabNet 0.639 0.695 0.762 | 0.904 0.938 0.961
TabPFN 0.638 0701 0.768 | 0.903 0.934 0.959
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Table 13: C'4 of survival models under different discarding percentages (10%, 30%, 50%), determined by different uncertainty
quantification methods across datasets. The best results are in bold. The last row of each group shows relative improvement
compared with the best baseline by 100 runs of experiments. p-value< 0.001 is true for all results without *.

Survival FLCHAIN SUPPORT SEER-BC SAC3

UQ Method
Models QMethods — 0050 | 10%  30%  50% | 10%  30% 50% | 10%  30%  50%
0.782 0.745 0.685 0.600 0.576 0.563 0.857 0.846 0.832 0.772 0.778 0.793

MC-Dropout
+0.048  +0.061  +0.081 | +0.038  +0.040  +0.048 | +0.040  +0.051  +0.065 | +0.034  =0.040  +0.042
0.786 0.755 0.710 0.607 0.598 0.576 0.863 0.857 0.842 0.783 0.795 0.807

DeepSurv Ensemble
+0.047  £0.050  +0.074 | +0.038  +0.040  +0.048 | +0.041 +0.050  +0.067 | +0.033  =£0.035  +0.040
0.856 0.907 0.941 | 0.635 0.690 0.757 | 0.904 0.938 0.961 | 0.792 0.822 0.855

SurvUnc-RF

+£0.036  £0.028  +0.020 | +0.036  +0.040  +0.039 | +0.028  +0.020  +0.015 | +0.031  +0.032  +0.035
0.839  0.894 0.935 | 0.637 0.695 0.762 | 0.904 0.938 0.961 | 0.797 0.830 0.862
+0.042  +0.034  +0.026 | +0.037  +0.041  +0.041 | +0.029  +0.020  +0.014 | +0.032  +0.033  +0.030
Improv. 89%  201% 32.5% | 4.9% 16.2%  323% | 4.8% 9.5% 14.1% | 1.8% 4.4% 6.8%
0.784  0.762  0.733 | 0.648 0.657  0.656 | 0.908 0.937 0.953 | 0.797 0811 0.836
+0.046  £0.057  +0.075 | +0.033  +0.040  +0.046 | +0.028  +0.019  +0.018 | +0.035  +0.036  +0.034
0.855 0.902 0.934 | 0.637  0.637 0.637 | 0.896 0.923 0.944 | 0.805 0.822  0.842
+0.035  +0.027  +0.022 | +0.034  +0.038  +0.047 | +0.033  +0.029  +0.023 | +0.033  +0.030  +0.034
0.855" 0.908 0.940 | 0.639 0.664" 0.693 | 0.913 0.945 0.961 | 0.811 0.838  0.866
+0.036  +0.027  +0.020 | +0.032  +0.041  +0.047 | +0.027  +0.018  +0.015 | +0.031  +0.035  +0.036
0.855 0.909 0.940 | 0.639 0.660" 0.692 | 0.914 0.945 0.961 | 0.817 0.845 0.876
+0.035  £0.027  +0.020 | +0.033  +0.040  +0.045 | +0.027  +0.018  +0.014 | +0.031  +0.031  +0.031
Improv. 0.0% 0.8% 0.6% | -1.4% 1.1% 5.6% 0.7% 09%  0.8% 1.5% 2.8%  4.0%
0.780  0.741 0.687 | 0.613  0.614 0.613 | 0.866 0.854 0.832 | 0.793 0.776  0.770

SurvUnc-MLP

MC-Dropout
DeepHit Ensemble
SurvUnc-RF

SurvUnc-MLP

MC-Dropout
+0.049 +0.062 +0.079 +0.035 +0.041 +0.049 +0.037 +0.045 +0.057 +0.033 +0.040 +0.051
0.787 0.755 0.715 0.616 0.605 0.581 0.872 0.868 0.854 0.802 0.813 0.828
DSM Ensemble
+0.047 +0.059 +0.075 +0.036 +0.044 +0.054 +0.036 +0.043 +0.058 +0.034 +0.037 +0.035
0.854 0.907 0.941 | 0.640 0.685 0.725 | 0.910 0.943 0.960 | 0.813 0.837 0.862
SurvUnc-RF

£0.038  £0.026  +0.020 | +0.035  +0.041  +0.044 | +0.027  +0.017  +0.013 | +0.030  +0.033  +0.035
0.852 0.906 0940 | 0.641 0.685 0.731 | 0.910 0.943 0.959 | 0.818 0.844 0.871
£0.038  £0.028  +0.020 | +0.034  +0.039  +0.043 | +0.027  +0.018  +0.014 | +0.029  +0.031  +0.031

Improv. 8.5% 20.1% 31.6% | 4.1% 11.6% 19.2% | 4.4% 8.6% 12.4% | 2.0% 3.8% 5.2%
MC-Dropout

SurvUnc-MLP

0.790 0.777 0.745 0.648 0.662 0.684 0.878 0.874 0.863 0.649 0.663 0.677

Ensemble
RSF £0.049  £0.062  +0.079 | +0.037  +0.043  +0.043 | +0.034  +0.042  £0.057 | +0.043  +0.045  £0.050
0.840 0.897 0.933 | 0.663 0.708 0.750 | 0.908 0.941 0.959 | 0.658 0.692 0.738
+£0.044  £0.029  +0.023 | +0.037  +0.037  +0.041 | +0.026 +0.019  +0.015 | +0.044 +0.048  +0.053
0.820 0.854 0.892 0.656 0.689 0.721 0.913 0.943 0.960 | 0.653 0.685 0.731
+£0.044  £0.043  +0.041 | +0.036  +0.038  +0.040 | +0.026 +0.019  +0.014 | +0.045 +0.050  +0.053
Improv. 6.3% 154% 25.2% 2.3% 6.9% 9.6% 4.0% 7.9% 11.2% 1.4% 4.4% 9.0%
0.773 0.732 0.670 0.623 0.648 0.687 0.847 0.836 0.805 0.719 0.740 0.771
£0.049  £0.063  +0.082 | +0.036  +0.039  +0.044 | +0.044  +0.055 +0.076 | +0.037  +0.040  +0.043
BNNSurv SurvUnc-RF 0.848 0.902 0.936 | 0.650 0.701 0.764 | 0.891 0.932 0.955 | 0.727 0.765 0.808
+£0.039  £0.029  +0.023 | +0.033  +0.037  +0.038 | +0.034  +0.022  +0.016 | +0.036  +0.034  +0.037
0.843 0.899 0.934 0.648 0.699 0.760 | 0.893 0.932 0.955 | 0.727 0.767 0.815
£0.040  £0.030  +0.023 | +0.034  +0.037  +0.038 | +0.033  +0.023  +0.016 | +0.036  +0.037  +0.038
Improv. 9.7% 23.2% 39.7% 4.3% 8.2% 11.2% 5.4% 11.5% 18.6% 1.1% 3.6% 5.7%

SurvUnc-RF

SurvUnc-MLP

Bayesian

SurvUnc-MLP
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Table 14: IBS of survival models under different discarding percentages (10%, 30%, 50%), determined by different uncertainty
quantification methods across datasets. The best results are in bold. The last row of each group shows relative improvement
compared with the best baseline by 100 runs of experiments. p-value< 0.001 is true for all results without *.

Survival FLCHAIN SUPPORT SEER-BC SAC3

h
Models | V@ Methods i— o % | 0% 30% 50% | 10%  30% 50% | 10% 30%  50%
0.268 0.302 0.344 0.151 0.164 0.169 0.240 0.259 0.282 0.120 0.123 0.122
MC-Dropout
+0.038 +0.046 +0.057 +0.010 +0.010 +0.009 +0.042 +0.047 +0.057 +0.014 +0.016 +0.017
0.265 0.289 0.318 0.147 0.154 0.161 0.232 0.242 0.257 0.115 0.115 0.119
DeepSurv Ensemble
+0.037  +£0.043  +0.051 | +0.009  +0.009  +0.010 | +0.040  +0.048 +0.058 | +0.014 =0.017  +0.022
0.219 0.184 0.152 | 0.134 0.118 0.100 0.200 0.160 0.134 0.104 0.090 0.080
SurvUnc-RF

+0.032 +0.033 +0.029 +0.009 +0.010 +0.012 +0.038 +0.029 +0.027 +0.013  +0.012  +0.014
0.226 0.189 0.161 | 0.134 0.118 0.100 | 0.198 0.159 0.134 | 0.098 0.077 0.062
+0.034 +0.033 +0.032 +0.009 +0.011 +0.012 +0.039 +0.030 +0.026 +0.012  +0.011  +0.011
Improv. 17.4%  36.3%  52.2% 8.8% 23.4% 379% | 14.7% 343% 47.9% | 14.8% 33.0% 47.9%
0.300 0.295 0.305 | 0.158 0.153 0.150 0.279  0.262 0.240 | 0.123 0.125 0.125
+0.039 +0.046 +0.057 +0.005 +0.005 +0.006 +0.030 +0.029 +0.029 +0.008  +0.008  +0.009
0.294 0.298 0.300 | 0.158 0.151 0.146 0.280 0.262 0.242 0.119 0.120 0.120
+0.033 +0.034 +0.038 +0.005 +0.005 +0.006 +0.030 +0.030 +0.031 +0.008  +0.009  +0.009
0.296*  0.298* 0.303* | 0.159 0.152* 0.143 | 0.278° 0.269  0.271 0.115 0.109 0.102
+0.034 +0.038 +0.044 +0.005 +0.006 +0.007 +0.029 +0.025 +0.028 +0.008  +0.009  +0.010
0.299*  0.300* 0.303* | 0.160 0.152* 0.145 | 0.276* 0.267 0.269 | 0.112 0.101 0.092
+0.035 +0.039 +0.040 +0.005 +0.006 +0.007 +0.029 +0.025 +0.026 +0.008  +0.009  +0.010
Improv. -0.7% -1.0% -1.0% | -0.6% -0.7% 2.1% 1.1% -1.9% -121% | 59% 15.8% 23.3%
0.260 0.298 0.339 | 0.150 0.145 0.143 0.238 0.269  0.320 0.124 0.139  0.147

SurvUnc-MLP

MC-Dropout
DeepHit Ensemble
SurvUnc-RF

SurvUnc-MLP

MC-Dropout
+0.038 +0.046 +0.054 +0.009 +0.010 +0.011 +0.046 +0.058 +0.070 +0.017  +0.018 +0.019
0.255 0.280 0.312 0.147 0.155 0.161 0.223 0.230 0.243 0.116 0.117 0.120
DSM Ensemble
+0.035 +0.042 +0.056 +0.010 +0.012 +0.014 +0.045 +0.054 +0.068 +0.017  +0.020 +0.022
0.208 0.172 0.143 | 0.135 0.118 0.103 | 0.190 0.147 0.132 0.104 0.090 0.081
SurvUnc-RF

+0.030 +0.027 +0.023 | +0.010 +0.011 +0.013 +0.041 +0.030  +0.028 +0.015  +0.016  +0.017
0.211 0.175 0.144 | 0.135 0.120  0.107 | 0.190 0.149 0.132 | 0.095 0.075 0.064
+0.032 +0.029 +0.024 | +0.010 +0.011 +0.013 +0.040 +0.029  £0.027 +0.014  +£0.012  £0.012

SurvUnc-MLP

Improv. 18.4% 38.6% 54.2% 8.2% 18.6% 28.0% 14.8% 36.1% 45.7% | 18.1% 359% 46.7%
MC-Dropout - - - - - - - - - - - -
0.254 0.261 0.281 0.145 0.136 0.130 0.217 0.225 0.243 0.144 0.142 0.138
Ensemble

RSF £0.039  +0.046  +0.053 | +0.011  +0.012  +0.014 | *0.040  +0.050  +0.062 | +0.010 +0.012  +0.013
0.220 0.178 0.145 | 0.136 0.121 0.111 | 0.189  0.152 0.127 | 0.139 0.128 0.118
£0.037  £0.032  £0.026 | +0.010  £0.010  +0.013 | £0.036  +0.030  +0.025 | +0.010 +0.011  +0.012
0.239 0216  0.191 | 0.139  0.127 0.120 | 0.180 0.146 0.127 | 0.141 0.131 0.120
£0.038  +0.042  +0.044 | +0.010  +0.012  +0.013 | £0.037  +0.027  +0.025 | +0.011 +0.011  +0.012
Improv. 13.4% 31.8% 484% | 6.2% 11.0% 14.6% | 17.1% 351% 47.7% | 3.5% 9.9% 14.5%
0.327 0.348 0375 | 0.144 0.137 0.127 | 0.268 0.297 0.345 | 0.150 0.144 0.133
+0.044  +0.054  £0.065 | +0.009  £0.010  +0.013 | +0.047  +0.059  +0.080 | +0.015 +0.018  +0.023
BNNSurv SurvUnc-RF 0.289 0.266 0.253 | 0.133 0.113 0.095 | 0229 0.179 0.154 | 0.139 0.121 0.105

£0.038  +0.038  +0.036 | +0.008  £0.009  +0.009 | +0.043  +0.032  +0.029 | +0.013 +0.012  0.013
0.292  0.268 0.251 | 0.133 0.114 0.095 | 0.225 0.178 0.152 | 0.137 0.114 0.095
£0.040  +0.036  +0.035 | +0.008  +0.009  +0.010 | *0.042  +0.032  +0.027 | +0.013 +0.011  +0.012
Improv. 11.6% 23.6% 33.1% | 7.6% 0.175% 252% | 16.0% 40.1% 559% | 8.7% 20.8% 28.6%

SurvUnc-RF

SurvUnc-MLP

Bayesian

SurvUnc-MLP




SurvUnc: A Meta-Model Based Uncertainty Quantification Framework for Survival Analysis KDD ’25, August 3-7, 2025, Toronto, ON, Canada

0.40 MC-Dropout MC-Dropout 0.401 - Ensemble
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(a) DeepSurv (b) DeepHit (c) DSM (d) RSF

Figure 7: IBS of four survival models of (a) DeepSurv, (b) DeepHit, (c¢) DSM and (d) RSF on SEER-BC dataset with different
percentages of samples discarded according to uncertainty scores from different uncertainty quantification methods.
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Figure 8: Predicted uncertainty scores versus IBSs from DeepSurv quantified by MC-Dropout across samples on (a) FLCHAIN,
(b) SUPPORT, (c) SEER-BC and (d) SAC3 datasets.
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Figure 9: Predicted uncertainty scores versus IBSs from DeepSurv quantified by Ensemble across samples on (a) FLCHAIN, (b)
SUPPORT, (c) SEER-BC and (d) SAC3 datasets.
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Figure 10: Varying anchor number K on selective prediction performance (a) IBS: SurvUnc-REF, (b) Ct4: SurvUnc-MLP and (c)
IBS: SurvUnc-MLP with DeepSurv on SEER-BC.
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Table 15: Misprediction detection results, i.e., Pearson correlation coefficient between uncertainty scores and the absolute
difference between predicted median survival and actual event times of samples.

Datasets SUPPORT SEER-BC
UQ Methods | DeepSurv DeepHit DSM  RSF | DeepSurv DeepHit DSM  RSF
MC-Dropout -0.136 -0.097  -0.008 - -0.245 0.209 -0.677 -
Ensemble -0.030 -0.130 -0.209  0.150 -0.076 0.267 -0.079  -0.120
SurvUnc-RF 0.479 0.028 0.415 0.503 0.643 0.027 0.626  0.536
SurvUnc-MLP 0.450 0.012 0.370  0.373 0.647 0.032 0.625  0.586
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