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Abstract
Survival analysis, which estimates the probability of event occur-

rence over time from censored data, is fundamental in numerous

real-world applications, particularly in high-stakes domains such

as healthcare and risk assessment. Despite advances in numer-

ous survival models, quantifying the uncertainty of predictions

from these models remains underexplored and challenging. The

lack of reliable uncertainty quantification limits the interpretability

and trustworthiness of survival models, hindering their adoption

in clinical decision-making and other sensitive applications. To

bridge this gap, in this work, we introduce SurvUnc, a novel meta-

model based framework for post-hoc uncertainty quantification

for survival models. SurvUnc introduces an anchor-based learning

strategy that integrates concordance knowledge into meta-model

optimization, leveraging pairwise ranking performance to estimate

uncertainty effectively. Notably, our framework is model-agnostic,

ensuring compatibility with any survival model without requiring

modifications to its architecture or access to its internal param-

eters. Especially, we design a comprehensive evaluation pipeline

tailored to this critical yet overlooked problem. Through extensive

experiments on four publicly available benchmarking datasets and

five representative survival models, we demonstrate the superi-

ority of SurvUnc across multiple evaluation scenarios, including

selective prediction, misprediction detection, and out-of-domain

detection. Our results highlight the effectiveness of SurvUnc in

enhancing model interpretability and reliability, paving the way for

more trustworthy survival predictions in real-world applications.

CCS Concepts
•Mathematics of computing→ Survival analysis; • Applied
computing→ Health informatics; • Computing methodolo-
gies→ Uncertainty quantification; Artificial intelligence.

∗
Corresponding author.

This work is licensed under a Creative Commons Attribution 4.0 International License.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1454-2/2025/08

https://doi.org/10.1145/3711896.3737140

Keywords
Survival analysis, uncertainty quantification, meta model, out-of-

domain detection

ACM Reference Format:
Yu Liu, Weiyao Tao, Tong Xia, Simon Knight, and Tingting Zhu. 2025.

SurvUnc: A Meta-Model Based Uncertainty Quantification Framework for

Survival Analysis. In Proceedings of the 31st ACM SIGKDD Conference on
Knowledge Discovery and Data Mining V.2 (KDD ’25), August 3–7, 2025,
Toronto, ON, Canada. ACM, New York, NY, USA, 16 pages. https://doi.org/

10.1145/3711896.3737140

1 Introduction
Survival analysis, or equivalently time-to-event analysis, which

aims to estimate when an event of interest is likely to occur, has

received substantial attention from various fields, such as predict-

ing patient death or disease risk in healthcare, product lifespan

in manufacturing, and customer churn in finance [49]. Since the

event of interest is not always observed (e.g., many patients are

lost to follow-up), survival data are frequently right-censored (i.e.,

the event such as death occurs after the censoring) [8], making

survival analysis a more complex problem compared to traditional

regression and classification tasks.

Driven by the advancements of machine learning and deep learn-

ing in recent years, several models have been proposed for survival

analysis [52]. For example, RSF [22] adapts random forest for this

purpose. Built upon the linear Cox proportional hazard (CoxPH)

model [6], DeepSurv [25] and SurvTRACE [50] apply fully con-

nected networks and transformers to model the nonlinear relation-

ship between covariates/features and the hazard rate of an event.

DeepHit [30] and DSM [39] take a different approach by directly

modeling the event occurrence probability using neural networks.

Despite their advancements, these survival models are subject

to the inherent noise in the data and the lack of knowledge on the

optimal modeling approach, making them inapplicable for unseen

data in practice [11]. The lack of uncertainty quantification for sur-

vival models significantly reduces their reliability in risk-sensitive

applications such as healthcare [35, 36, 53]. While much progress

has been made in quantitatively measuring the reliability of a model

in prediction [47], most uncertainty quantification studies focus

on classification and regression tasks. Bayesian approaches, such

as Bayesian Neural Networks (BNNs) and Monte Carlo Dropout

(MC-Dropout) [14], have been explored for uncertainty estimation
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in these domains [36, 43]. Additionally, meta-models have been

developed to quantify classification uncertainty in a supervised

setting [44]. However, uncertainty quantification for survival mod-

els remains largely unexplored, presenting critical challenges that

need to be addressed:

• Survival Model-Agnostic Integration. The diversity of sur-

vival models requires a robust standalone uncertainty quantifi-

cation framework, where the latter is capable of integrating into

anymodel without modifications. For example, uncertainty quan-

tification methods with BNNs and MC-Dropout are incompatible

with survival models such as RSF [22]. Thus, model-agnostic in-

tegration is essential to accommodate the wide range of existing

and emerging survival models.

• Absence of Ground-Truth Survival Curves. Survival curves
describe the survival probability of an event (e.g., death) not

occurring by a specific time. However, in real-world settings, the

“true” survival curves are unknown, and for censored samples,

the actual event times remain uncertain. This absence of ground

truth makes it infeasible to directly apply supervised uncertainty

quantification methods to survival models, posing a significant

challenge in reliability assessment.

• Lack of Standardized Evaluation Protocols. Despite the in-
creasing focus on uncertainty quantification, there is no uni-

versally accepted evaluation framework for assessing the qual-

ity of uncertainty estimates in survival models. Beyond the

methodological challenges in developing uncertainty quantifi-

cation methods, establishing robust and systematic evaluation

protocols remains an open problem.

To address the aforementioned challenges, we propose SurvUnc,
a post-hoc meta-model based uncertainty quantification framework

for survival models. More specifically, we develop a lightweight

meta-model that acts as an “observer” on top of any existing survival

model (base model). Sharing the same input covariates as the sur-

vival model, the meta-model is trained to estimate the uncertainty

of the prediction of the survival model, which requires neither

modifications to the survival model nor access to its architecture

and parameters. Especially, motivated by the classic concordance

idea in survival analysis [17], we design an anchor-based learning

strategy to address the absence of ground-truth survival curves in

meta-model optimization. Our strategy (i) selects a group of un-

censored samples as anchors; (ii) evaluates whether the survival

model correctly ranks the survival probabilities of samples relative

to these anchors; and (iii) incorporates the evaluation outcome

into the meta-model training to quantify the uncertainty of the

survival model’s predictions. Furthermore, we refine and adapt ex-

isting evaluation protocols from uncertainty quantification studies

in classification and regression to suit the survival analysis context,

ensuring a more standardized assessment of uncertainty estimation

in survival models.

In summary, our key contributions are as follows:

• We propose SurvUnc, a post-hoc meta-model based uncertainty

quantification framework for survival models. Notably, it re-

quires no modifications or access to the model’s parameters. To

the best of our knowledge, SurvUnc is the first model-agnostic

framework capable of quantifying the uncertainty of predictions

in any survival model.

• We develop an anchor-based learning strategy that leverages the

concordance concept of survival analysis to construct the meta-

model training set for optimization, thereby providing deeper

insights into understanding the uncertainty in survival analysis.

• We design systematic evaluation protocols to assess the quality

of quantified uncertainty in survival models, including selective

prediction, misprediction detection, and out-of-domain (OOD)

detection tasks. These protocols offer an evaluation reference for

future research in uncertainty estimation for survival analysis.

• We validate SurvUnc on multiple survival models and datasets.

Our extensive experiments demonstrate that SurvUnc signifi-

cantly outperforms baseline methods across various tasks, un-

derscoring its effectiveness and robustness in uncertainty quan-

tification for survival models.

2 Related Work
2.1 Survival Analysis
Survival analysis is concerned with modeling event occurrence in

the presence of censoring, and it primarily involves two interrelated

quantities: (i) hazard function, which represents the instantaneous

rate of event occurrence at a given time point, conditional on the

event not having occurred prior to that time; and (ii) survival func-
tion, (a.k.a. the survival curve), which denotes the probability that

the event has not occurred by a specific time. Survival probability

is determined by the cumulative hazard up to that time. Survival

models typically focus on estimating either the hazard function or

the survival function [52].

Traditionally, statistical methods have been widely explored for

survival analysis. Kaplan-Meier estimator [24] firstly defines the

survival function based on empirical estimation of the survival

data. CoxPH model [6] assumes that the log of the hazard is a linear

combination of covariates, and the ratio between the hazards of two

samples is constant. Furthermore, several machine learning meth-

ods have been adapted for survival analysis [49]. One of the most

representative examples is RSF [22], which extends the random

forest to survival analysis.

Owing to the ability to capture high-level non-linear interactions,

neural network-based deep learning models have gained popularity

in survival analysis [52]. Early models, such as the Farggi-Simon

model [12] and DeepSurv [25], replace the linear combination in

the Cox model with fully connected networks. Furthermore, re-

current neural networks and Transformers are also explored for

modeling hazard functions in DRSA [42] and SurvTRACE [50], re-

spectively. On the other hand, DeepHit [30] and DSM [39] directly

target the survival function using fully connected networks and

parametric distributions. A recent work, MOTOR [45] introduces a

Transformer-based foundation model pretrained on time-to-event

data for survival analysis. However, the uncertainty associated with

predictions from such survival models remains unquantified.

In addition, several Bayesian methods have been developed for

survival analysis. For instance, the Gaussian process is firstly incor-

porated into the hazard function for a semi-parametric Bayesian

model in [13], while DSA [38, 41] employs a deep latent variable

model within a Bayesian framework to analyze survival data. BNNs

[31, 32, 35] and deep Gaussian processes [1] further integrate neural
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network architectures with Bayesian techniques for survival predic-

tion. Although Bayesian methods inherently provide uncertainty

quantification through iterative sampling or posterior inference,

they are typically confined to probabilistic models and often strug-

gle with generalization or integration with other survival models.

This limitation can reduce their practical reliability in real-world

applications. Overall, accurately quantifying prediction uncertainty

in survival models remains a significant challenge.

2.2 Uncertainty Quantification
Uncertainty quantification aims to quantitatively measure the reli-

ability and confidence of a model’s predictions, and can be catego-

rized into intrinsic and post-hoc (extrinsic), depending on whether

uncertainty estimation is integrated within model training [44].

Intrinsic uncertainty quantification methods integrate uncer-

tainty estimation directly into the model learning process, often

leveraging Bayesian approaches to naturally generate uncertainty

estimates as part of their predictions [15]. For instance, various

studies employ BNNs with techniques such as variational inference

and Laplace approximation to quantify uncertainty in both classi-

fication and regression tasks [34, 40]. In addition, evidential deep

learning methods, which parameterize a Dirichlet distribution on

the neural network outputs, have been used to quantify uncertainty

in classification problems [37]. However, these methods are often

computationally intensive and based on strong underlying assump-

tions. Furthermore, intrinsic methods cannot directly quantify the

uncertainty in survival models.

In comparison, post-hoc uncertainty quantification methods sep-

arate the uncertainty estimation from the model prediction, without

affecting the model learning process. Prominent examples include

MC-Dropout
1
[14] and Deep Ensembles [29], widely used in various

domains [18]. MC-Dropout estimates uncertainty by calculating

the variance of multiple forward predictions with dropout layers

activated during inference. Deep Ensembles define uncertainty as

the prediction variance across multiple independent models trained

from different random initializations, while Hyper-batch Ensembles

[51] further consider different hyperparameters in the ensemble.

Another promising paradigm is to build auxiliary or meta-models

to quantify the uncertainty of the base model with respect to its

original task, as studied in classification [4, 10, 44] and regression

[54]. However, the effectiveness of these methods in survival analy-

sis remains unclear due to the unique challenges posed by censored

data and the absence of ground-truth survival curves, which are

fundamental to meta-model methods. Our work addresses this gap

by introducing a novel post-hoc uncertainty quantification method

specifically tailored for survival models.

3 Proposed Framework
3.1 Preliminaries & Problem Definition
3.1.1 Survival Analysis. Firstly, we define a survival dataset D =

{(𝒙𝑖 , 𝑡𝑖 , 𝛿𝑖 )}𝑁𝑖=1, where 𝒙𝑖 ∈ R
𝑑
is the set of covariates/features of an

individual; 𝑡𝑖 ∈ R+ is the time to event or censoring as indicated by

the indicator 𝛿𝑖 = 1 or 𝛿𝑖 = 0, respectively. 𝑁 refers to the number

of samples and 𝑑 is the dimension of covariates.

1
MC-Dropout requires a dropout layer to be designed in the quantified model.

Moreover, the probability that an individual with covariates 𝒙
will experience the event at time 𝑡 , i.e., the probability density

function of survival times, is denoted as 𝑝 (𝑡 |𝒙) = P(𝑇 = 𝑡 |𝑿 = 𝒙).
Consequently, the survival function is represented as:

𝑆 (𝑡 |𝒙) = P(𝑇 > 𝑡 |𝑿 = 𝒙) = 1 −
∫ 𝑡

0

𝑝 (𝑧 |𝒙)d𝑧, (1)

which signifies the probability that the event does not occur until

time 𝑡 . The hazard function is defined as:

ℎ(𝑡 |𝒙) = lim

Δ𝑡→0

P(𝑡 ≤ 𝑇 < 𝑡 + Δ𝑡 |𝑇 ≥ 𝑡,𝑿 = 𝒙)
Δ𝑡

=
𝑝 (𝑡 |𝒙)
𝑆 (𝑡 |𝒙) , (2)

which indicates the probability that the event will occur at time

𝑡 , given that the event has not occurred before. Consequently, the

survival model 𝐹 (·) is developed to learn 𝑆 (𝑡 |𝒙) and ℎ(𝑡 |𝒙) with
covariates 𝒙 as input, based on the survival dataset D.

3.1.2 Uncertainty Quantification. In the context of machine learn-

ing and deep learning, the total uncertainty encompasses two types

of uncertainty: (i) reducible epistemic uncertainty (a.k.a. model un-

certainty) caused by the model’s limited knowledge due to insuffi-

cient training data, e.g., unseen data samples; and (ii) irreducible

aleatoric uncertainty (a.k.a. data uncertainty) caused by the inherent

noise and stochastic nature in data [20]. Based on the preliminaries,

we formally define the problem of uncertainty quantification in

survival analysis as follows.

Problem 1. Uncertainty Quantification in Survival Anal-
ysis. Given a survival model 𝐹 (·) trained on a survival dataset
D, the uncertainty quantification problem is to learn a function
𝑈 (·) : R𝑑 → R≥0, such that based on 𝐹 (·) and D, it produces
an uncertainty score that quantifies the predictive uncertainty of 𝐹 (·)
for a new coming sample.

3.2 Framework Overview
Figure 1 illustrates an overview of our proposed framework, SurvUnc,

for the uncertainty quantification problem in survival analysis.

Specifically, we propose a meta-model based framework to quantify

the uncertainty of survival models in a post-hoc manner. Given a

pretrained survival model 𝐹 (·) (e.g., neural network-based model,

or random forest-based model), we further develop a meta-model

𝑈 (·) to quantify its uncertainty. Notably, the meta-model shares

the same covariate input as the survival model, and only the pa-

rameters of the meta-model are optimized in the learning process.

In general, the architecture of the meta-model can be arbitrarily

chosen; in our experiments, we explore two different variants of

𝑈 (·), as shown in later experiments. To overcome the absence of

ground truth of survival curves for meta-model training, we design

an anchor-based learning strategy to construct a meta-model train-

ing set, Dmeta
, derived from the survival model training set D and

the pretrained survival model 𝐹 (·), as illustrated in Figure 1(b).

3.3 Meta-Model Learning
To construct a labeled meta-model training set, we leverage the

concordance concept from survival analysis in the medical domain

[17] and pairwise ranking idea in information retrieval domain

[33]. The core idea in medical language is that a patient living

shorter should have a lower survival probability at any given time
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Table 1: Dataset statistics. “real” and “categorical” denote the number of real-valued and categorical covariates in the datasets,
respectively. Minimum, maximum, and mean values for event durations and censoring times are reported.

Dataset #Instances #Events (%) #Censored (%)
#Covariates

(real, categorical)

Event Duration Censoring Time
min max mean min max mean

FLCHAIN 6,524 1,962 (30.1%) 4,562 (69.9%) 7 (3, 4) 0 4998 2137.9 1 5166 4296.7

SUPPORT 8,873 6,036 (68.0%) 2,837 (32.0%) 14 (8, 6) 3 1944 205.4 344 2029 1059.8

SEER-BC 323,772 85,258 (26.3%) 238,514 (73.7%) 18 (4, 14) 1 121 41.7 1 121 85.4

SAC3 100,000 62,798 (62.8%) 37,202 (37.2%) 49 (49, 0) 0.1 100 24.6 0.1 100 45.5

…

or
…

Random Forest

Survival Model

C
ov

ar
ia

te
s

Meta Model 
Survival Curve

Uncertainty Score

…

Sample Anchors

…

Survival Model

…

…

Label Generation for Training 

…

(a) (b)

Figure 1: Illustration of our proposed framework SurvUnc.
(a) The pipeline of post-hoc meta-model based uncertainty
quantification for survival models, and (b) the anchor-based
learning strategy for meta-model optimization.

compared to a patient living longer. Therefore, the uncertainty

in a survival model’s predictions can be quantified by evaluating

its ability to correctly rank the survival probabilities of samples

relative to each other.

Intuitively, comparing a sample against some referenced points

enhances the quality of the quantified uncertainty. For efficiency

consideration, we design an anchor-based learning strategy. Fol-

lowing the literature we assume that censoring occurs completely

at random [30, 39]. Specifically, we randomly select 𝐾 uncensored

samples from the survival model training set D as anchors, de-

noted byD𝐴={(𝒙𝐴
𝑘
, 𝑡𝐴
𝑘
, 𝛿𝐴
𝑘
=1)}𝐾

𝑘=1
. For the 𝑗-th uncensored sample

(𝒙 𝑗 , 𝑡 𝑗 , 𝛿 𝑗 = 1) ∈ D, we treat it as a training instance for the meta-

model, and calculate its uncertainty label as follows:

𝑦meta

𝑗 =

∑𝐾
𝑘=1

1

(
𝑡 𝑗 < 𝑡

𝐴
𝑘
, 𝑆

(
𝑡 𝑗 |𝒙 𝑗

)
≥ 𝑆

(
𝑡 𝑗 |𝒙𝐴𝑘

))
∑𝐾
𝑘=1

1

(
𝑡 𝑗 < 𝑡

𝐴
𝑘

) , (3)

which measures the proportion of incorrectly ordered pairs by

the survival model 𝐹 (·), resulting in an uncertainty score ranging

from 0 to 1 for the predicted sample. A higher uncertainty score

indicates a less reliable prediction. Here1(·) is an indicator function
that returns 1 if the specified conditions are met and 0 otherwise.

𝑆 (𝑡 𝑗 |𝒙 𝑗 ) and 𝑆 (𝑡 𝑗 |𝒙𝐴𝑘 ) denote the survival probabilities estimated by

𝐹 (·) for samples with covariates 𝒙 𝑗 and 𝒙𝐴𝑘 at time 𝑡 𝑗 , respectively.

As a result, we construct the meta-model training set Dmeta =

{(𝒙 𝑗 , 𝑦meta

𝑗
)}𝑁 ′
𝑗=1

with 𝑁 ′ labeled samples.

Algorithm 1: The learning procedure of SurvUnc

Input: Survival data D = {(𝒙𝑖 , 𝑡𝑖 , 𝛿𝑖 )}𝑁𝑖=1;
Pretrained survival model 𝐹 (·); Anchor number 𝐾

Output: Uncertainty quantification model𝑈 (·)
1 Randomly sample 𝐾 anchors from D, i.e., D𝐴
2 Initialize the model𝑈 (·)
3 Dmeta ← ∅
4 for (𝒙 𝑗 , 𝑡 𝑗 , 𝛿 𝑗 = 1) ∈ D do
5 Obtain label 𝑦meta

𝑖
based on (3) and D𝐴

6 Dmeta ← Dmeta ∪ {(𝒙𝑖 , 𝑦meta

𝑖
)}

7 Train the model𝑈 (·) with Dmeta

Usage: 𝑢𝑖 = 𝑈 (𝒙𝑖 )

Based on the constructed meta-model training set Dmeta
, we ex-

plore two different architectures of the meta-model 𝑈 (·) with sam-

ple covariates as input, including a multi-layer perceptron (MLP)

model and a random forest model, referred to as SurvUnc-MLP and

SurvUnc-RF, respectively. After training on Dmeta
, the trained

SurvUnc models provide uncertainty scores for the predictions

from the corresponding survival model. Algorithm 1 summarizes

the learning procedure of SurvUnc. Note that during inference, the

event or censoring time for a test sample is unknown, requiring

the meta-model𝑈 (·) to estimate predictive uncertainty solely from

the covariates.

4 Experiments
In this section, we show that our proposed SurvUnc framework

effectively quantifies uncertainty in survival models and is applica-

ble in different scenarios. Specifically, we conduct experiments to

answer the following questions:

• RQ1: How does SurvUnc perform w.r.t. total uncertainty quan-

tification, particularly in distinguishing between correctly and

incorrectly predicted samples, compared to existing methods?

• RQ2: How does SurvUnc perform w.r.t. epistemic uncertainty

quantification, particularly in detecting OOD data, when com-

pared to existing methods?

• RQ3: How do different hyperparameter settings, such as meta-

model structure and the number of anchors, affect the perfor-

mance of SurvUnc?

4.1 Experimental Settings
4.1.1 Datasets. We experiment with three real-world and one syn-

thetic, publicly available survival analysis datasets:



SurvUnc: A Meta-Model Based UncertaintyQuantification Framework for Survival Analysis KDD ’25, August 3–7, 2025, Toronto, ON, Canada

• FLCHAIN is a study of the relationship between free light chains

and mortality in an elderly population [9].

• SUPPORT contains a dataset that aims to improve the care

for seriously ill patients by understanding their prognosis and

treatment preferences [5].

• SEER-BC is derived from the SEER database [21], which con-

tains survival information for oncology patients in the U.S. Fol-

lowing the processing steps in [50], we select breast cancer pa-

tients to create the SEER-BC dataset. For the later OOD detection

experiments, we curate a SEER-HD dataset, comprising the same

number of patients as SEER-BC but diagnosed with heart disease.

• SAC3 is a synthetic dataset from [26], which simulates survival

times by sampling from a combination of three hazard functions.

Thus, this dataset provides the ground-truth survival curves.

Table 1 presents the basic statistics of all datasets. For the SUPPORT

dataset, we retain the original training/test split and reserve 20% of

the training set for validation. For all other datasets, we randomly

split into training, validation, and test sets in a ratio of 6:2:2.

4.1.2 Survival Models. To evaluate the effectiveness as well as ro-

bustness of our proposed SurvUnc framework on survival models,

we select five representative survival models for uncertainty quan-

tification, including three deep learning models of DeepSurv [25],

DeepHit [30], DSM [39], one machine learning model of RSF [22],

and one Bayesian-based model of BNNSurv [31]. For each survival

model, we optimize hyperparameters so that the reported perfor-

mance on datasets is comparable to those published in the literature,

thereby validating the correctness of pretrained survival models.

4.1.3 Uncertainty Quantification Baselines. Given the lack of prior

studies on model-agnostic uncertainty quantification for survival

models, we adapt two widely used uncertainty quantification meth-

ods of MC-Dropout [14] and Deep Ensembles (Ensemble) [29]
to survival analysis. For MC-Dropout, we set the number of for-

ward passes to 100. For Ensemble, we train 10 survival models with

different random initializations. Note that the RSF model does not

support the dropout mechanism, makingMC-Dropout incompatible

with it. Unlike MC-Dropout and Ensemble, which are general uncer-

tainty quantification methods applicable across models, BNNSurv

is a specialized Bayesian survival model that inherently estimates

uncertainty but cannot be integrated with other survival models

for uncertainty quantification.

4.1.4 Tasks & Metrics. As discussed before, standardized evalua-

tion protocols for uncertainty quantification methods with survival

models remain lacking. To address this, we extend existing evalua-

tion methodologies from uncertainty quantification studies to the

survival analysis domain, incorporating multiple tasks and metrics.

Selective prediction evaluates how well an uncertainty quan-

tification method differentiates between correct and incorrect pre-

dictions. A good uncertainty quantification method should improve

survival model performance by selectively discarding samples with

high uncertainty. To evaluate this, we use two widely adopted

survival analysis metrics.

• Time Dependent Concordance Index (𝐶td). This metric mea-

sures the model discrimination power by comparing the relative

survival probabilities across all pairs of samples in the test set

[2], defined as

𝐶td =

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝛿𝑖 · 1

(
𝑡𝑖 < 𝑡 𝑗 , 𝑆 (𝑡𝑖 |𝒙𝑖 ) < 𝑆 (𝑡𝑖 |𝒙 𝑗 )

)∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝛿𝑖 · 1

(
𝑡𝑖 < 𝑡 𝑗

) .

The range of 𝐶td
is [0, 1], and a larger value indicates better

model prediction. 𝐶td
=0.5 corresponds to a random prediction.

• Integral Brier Score (IBS). This metric is an integral of the

Brier score at all time points, while the Brier score calculates the

mean squared error between predicted survival probability and

binary observation at a given time [27], defined as

𝐵𝑆 (𝑡)= 1

𝑛

𝑛∑︁
𝑖=1

[ (0 − 𝑆 (𝑡 |𝒙𝑖 ))
2 ·1(𝑡 ≥ 𝑡𝑖 , 𝛿𝑖 = 1)
𝐺 (𝑡𝑖 )

+ (1 − 𝑆 (𝑡 |𝒙𝑖 ))
2 ·1(𝑡 < 𝑡𝑖 )

𝐺 (𝑡)
],

where 𝐺 (𝑡) is the censoring survival function using Kaplan-

Meier estimator [24]. Unlike 𝐶td
, which relies on pairwise com-

parisons, IBS assesses each sample independently and provides

an overall measure of model accuracy, where lower values indi-

cate better performance. The range of IBS is [0, 1].

Misprediction detection examines whether uncertainty esti-

mates align with actual prediction errors. To assess this, we use the

following metric:

• Pearson Correlation Coefficient 𝜌 . This metric measures the

linear correlation between the quantified uncertainty scores and

IBSs of test samples, i.e., to evaluate whether the uncertainty

quantification method can distinguish correctly and incorrectly

predicted samples by survival models. The range of 𝜌 is [-1, 1],

while we expect a positive correlation (𝜌 ≥ 0) here, i.e., samples

with larger uncertainty have larger IBS.

OOD detection evaluates the ability of uncertainty quantifica-

tion methods to distinguish in-distribution (IND) from OOD sam-

ples. We use the following two metrics:

• AUROC and AUPRC. We adopt the area under the receiver

operating curve (AUROC) and the area under the precision-recall

curve (AUPRC) to evaluate the performance in OOD detection

experiments. Specifically, IND test samples are labeled as the

negative class, while OOD samples are labeled as the positive

class [44]. Both metrics are in the range of [0, 1], and a higher

value indicates better performance.

4.1.5 Implementation Details. For the SurvUnc-RF method, the hy-

perparameters n_estimators, min_samples_leaf, min_samples_split

are uniformly set to 100, 5 and 10, respectively, across all survival

models and datasets. Similarly, for the SurvUnc-MLP method, the

learning rate and the hidden layers are simply set to 0.001 and [32,

32], respectively. The number of anchors is usually set to 50 for

robust performance. All methods undergo 100 bootstrap resampling

iterations on the test set, with both the mean value and standard

deviation reported. We also conduct the Wilcoxon signed-rank test

to confirm the statistical significance of our results. All experiments

were run on an RTX 6000 GPU with 32GB RAM. The implementa-

tion is done in PyTorch, and training the SurvUnc framework with

a pretrained survival model on the largest SEER-BC dataset takes

less than 5 minutes, making it efficient enough for deployment. The
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Table 2: 𝐶td of survival models under different discarding percentages (10%, 30%, 50%), determined by different uncertainty
quantification (UQ) methods across datasets. The best results are in bold, and the last row of each group shows relative
improvement compared with the best baseline by 100 runs of experiments. 𝑝-value< 0.001 is true for all results without ∗.

Survival
Models UQ Methods

FLCHAIN SUPPORT SEER-BC SAC3
10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

DeepSurv

MC-Dropout 0.782 0.745 0.685 0.600 0.576 0.563 0.857 0.846 0.832 0.772 0.778 0.793

Ensemble 0.786 0.755 0.710 0.607 0.598 0.576 0.863 0.857 0.842 0.783 0.795 0.807

SurvUnc-RF 0.856 0.907 0.941 0.635 0.690 0.757 0.904 0.938 0.961 0.792 0.822 0.855

SurvUnc-MLP 0.839 0.894 0.935 0.637 0.695 0.762 0.904 0.938 0.961 0.797 0.830 0.862
Improv. 8.9% 20.1% 32.5% 4.9% 16.2% 32.3% 4.8% 9.5% 14.1% 1.8% 4.4% 6.8%

DeepHit

MC-Dropout 0.784 0.762 0.733 0.648 0.657 0.656 0.908 0.937 0.953 0.797 0.811 0.836

Ensemble 0.855 0.902 0.934 0.637 0.637 0.637 0.896 0.923 0.944 0.805 0.822 0.842

SurvUnc-RF 0.855∗ 0.908 0.940 0.639 0.664∗ 0.693 0.913 0.945 0.961 0.811 0.838 0.866

SurvUnc-MLP 0.855∗ 0.909 0.940 0.639 0.660
∗

0.692 0.914 0.945 0.961 0.817 0.845 0.876
Improv. 0.0% 0.8% 0.6% -1.4% 1.1% 5.6% 0.7% 0.9% 0.8% 1.5% 2.8% 4.0%

DSM

MC-Dropout 0.780 0.741 0.687 0.613 0.614 0.613 0.866 0.854 0.832 0.793 0.776 0.770

Ensemble 0.787 0.755 0.715 0.616 0.605 0.581 0.872 0.868 0.854 0.802 0.813 0.828

SurvUnc-RF 0.854 0.907 0.941 0.640 0.685 0.725 0.910 0.943 0.960 0.813 0.837 0.862

SurvUnc-MLP 0.852 0.906 0.940 0.641 0.685 0.731 0.910 0.943 0.959 0.818 0.844 0.871
Improv. 8.5% 20.1% 31.6% 4.1% 11.6% 19.2% 4.4% 8.6% 12.4% 2.0% 3.8% 5.2%

RSF

MC-Dropout - - - - - - - - - - - -

Ensemble 0.790 0.777 0.745 0.648 0.662 0.684 0.878 0.874 0.863 0.649 0.663 0.677

SurvUnc-RF 0.840 0.897 0.933 0.663 0.708 0.750 0.908 0.941 0.959 0.658 0.692 0.738
SurvUnc-MLP 0.820 0.854 0.892 0.656 0.689 0.721 0.913 0.943 0.960 0.653 0.685 0.731

Improv. 6.3% 15.4% 25.2% 2.3% 6.9% 9.6% 4.0% 7.9% 11.2% 1.4% 4.4% 9.0%

BNNSurv

Bayesian 0.773 0.732 0.670 0.623 0.648 0.687 0.847 0.836 0.805 0.719 0.740 0.771

SurvUnc-RF 0.848 0.902 0.936 0.650 0.701 0.764 0.891 0.932 0.955 0.727 0.765 0.808

SurvUnc-MLP 0.843 0.899 0.934 0.648 0.699 0.760 0.893 0.932 0.955 0.727 0.767 0.815
Improv. 9.7% 23.2% 39.7% 4.3% 8.2% 11.2% 5.4% 11.5% 18.6% 1.1% 3.6% 5.7%

implementation code and dataset are available at the given link
2
.

Details on the experimental settings can be found in Appendix A.

4.2 Selective Prediction (RQ1)
To investigate the effectiveness of total uncertainty quantification,

we first conduct the selective prediction experiments [48, 55]. Specif-

ically, we discard a portion of test samples by their uncertainty

scores and then compute evaluation metrics on the remaining data.

To better reflect real-world scenarios where testing samples have

not yet been censored, we discard only uncensored samples, and sub-

sequent analyses also focus on uncensored ones. It is expected that

the performance will improve as more high-uncertainty samples are

discarded. This evaluation is essential in realistic scenarios, where

low-uncertainty predictions are retained, while high-uncertainty

(less reliable) predictions are flagged for expert inspection.

Table 2 presents the selective prediction results for 𝐶td
across

five survival models, evaluated at different discarding percentages

(10%, 30%, 50%). Since BNNSurv inherently provides uncertainty es-

timation, we exclude MC-Dropout and Ensemble implementations

for this model. Across all survival models, datasets and discarding

2
https://github.com/liuyuaa/SurvUnc

percentages, our proposed SurvUnc framework generally outper-

forms the baselines with an average improvement of over 8%, which

demonstrates the effectiveness of the meta-model based uncertainty

quantification framework and the anchor-based learning strategy.

Especially, our approach aligns with the core objective of survival

analysis, i.e., maintaining correct risk ordering, whose uncertainty

scores better reflect this clinical need by focusing on ranking re-

liability. In comparison, traditional methods focus on predictive

variability, which do not account for the time-dependent nature

of survival predictions. This leads to two main issues including

that they may flag samples with high variance but correct rankings

as “uncertain” and they often miss samples with small variance

but incorrect relative rankings. Notably, the relatively weak per-

formance of BNNSurv’s inherent uncertainty estimation suggests

that Bayesian methods may struggle to capture meaningful un-

certainty scores in survival analysis. The marginal improvement

observed with DeepHit could be explained by its use of ranking loss,

which also leverages the concordance concept, thereby making MC-

Dropout and Ensemble methods based on its output more effective.

Additionally, SurvUnc-RF and SurvUnc-MLP demonstrate compa-

rable performance across different survival models and datasets,

further validating the robustness and generalizability of SurvUnc.

https://github.com/liuyuaa/SurvUnc
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(a) DeepSurv (b) DeepHit (c) DSM (d) RSF

Figure 2: 𝐶td of four survival models of (a) DeepSurv, (b) DeepHit, (c) DSM and (d) RSF on SEER-BC dataset with different
percentages of samples discarded according to uncertainty scores from different UQ methods. A consistent upward trend is
expected as the percentage of discarded samples increases. Error bars are omitted for better visualization.

Table 3: Misprediction detection results, i.e., Pearson correlation coefficient between uncertainty scores and IBSs of samples.

Datasets FLCHAIN SUPPORT SEER-BC SAC3
UQ Methods DeepSurv DeepHit DSM RSF DeepSurv DeepHit DSM RSF DeepSurv DeepHit DSM RSF DeepSurv DeepHit DSM RSF

MC-Dropout -0.674 -0.042 -0.579 - -0.299 0.431 -0.123 - -0.293 0.442 -0.644 - -0.111 -0.157 -0.329 -

Ensemble -0.361 0.099 -0.467 -0.258 -0.109 0.511 -0.277 0.203 -0.168 0.391 -0.209 -0.264 -0.036 -0.017 -0.085 0.129

SurvUnc-RF 0.688 0.084 0.718 0.687 0.657 0.590 0.516 0.544 0.683 0.331 0.698 0.607 0.426 0.315 0.342 0.436
SurvUnc-MLP 0.590 0.053 0.700 0.352 0.652 0.509 0.468 0.405 0.671 0.323 0.677 0.666 0.638 0.510 0.554 0.391

Figure 2 shows the performance comparison with fine-grained

discarding percentages on the largest dataset, SEER-BC. We ob-

serve that the performance of both SurvUnc-RF and SurvUnc-MLP

improves as the discarding percentage increases, indicating that

predictions become more reliable as high-uncertainty samples are

excluded, consistent with the expectation of selective prediction

experiments. However, for baselines quantifying the uncertainty of

DeepSurv, DSM and RSF (see Figure 2(a), (c) and (d)), the results are

opposite, suggesting that these baselines fail to provide meaning-

ful uncertainty quantification for these survival models. We also

conduct the experiments using the IBS metric, which yields similar

conclusions for most results (see Appendix B).

4.3 Misprediction Detection (RQ1)
We conduct the misprediction detection experiments to identify

the correctly and incorrectly predicted samples using quantified

uncertainty scores [44], where the mispredicted samples are viewed

as in-distribution hard samples for survival models. Table 3 sum-

marizes the Pearson correlation coefficients between the IBSs and

quantified uncertainty scores from different uncertainty quantifica-

tion methods for each survival model across four datasets. Results

with BNNSurve are provided in Appendix B. As observed, both

SurvUnc-RF and SurvUnc-MLP achieve significantly higher and

consistently positive correlations across all survival models and

datasets, demonstrating their reliability in uncertainty quantifica-

tion. In comparison, the performance of baselines is inconsistent,

and several negative or weak correlation results are notable. The

results indicate that traditional uncertainty quantification meth-

ods like MC-Dropout and Ensemble struggle to extend effectively

to survival analysis, further demonstrating the effectiveness and

importance of SurvUnc for survival analysis.

To further analyze the effectiveness of total uncertainty quan-

tification, Figure 3 presents a comparison between predicted uncer-

tainty scores and IBSs for the DeepSurv model using SurvUnc-RF

(a) FLCHAIN (b) SUPPORT

(c) SEER-BC (d) SAC3

Figure 3: Predicted uncertainty scores versus IBSs from
DeepSurv quantified by SurvUnc-RF across samples on (a)
FLCHAIN, (b) SUPPORT, (c) SEER-BC and (d) SAC3 datasets.

on four datasets. The scatter plots show a clear positive correlation

between quantified uncertainty and prediction performance. No-

tably, despite the different prediction distributions of IBSs across

the four datasets, Our SurvUnc framework can effectively differen-

tiate between relatively hard and easy in-distribution samples by

assigning accurate uncertainty scores for each dataset.

As the absence of ground-truth survival curves poses a signif-

icant challenge to uncertainty quantification for survival models,
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Table 4: OOD detection comparison with AUROC and AUPRC on the SEER dataset. Since the Bayesian-based model BNNSurv
inherently provides uncertainty estimates and cannot be integrated with other survival models, the corresponding columns are
left blank.

Models DeepSurv DeepHit DSM RSF BNNSurv
UQ Methods AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC AUROC AUPRC

MC-Dropout 0.358 0.398 0.524 0.527 0.445 0.455 - - - -

Ensemble 0.493 0.481 0.499 0.516 0.558 0.559 0.516 0.514 - -

Bayesian - - - - - - - - 0.483 0.500

SurvUnc-RF 0.621 0.581 0.631 0.574 0.638 0.581 0.625 0.577 0.627 0.627

SurvUnc-MLP 0.638 0.604 0.657 0.599 0.667 0.624 0.643 0.577 0.636 0.634

Figure 4: Survival curve comparison of high-uncertainty
and low-uncertainty samples on SAC3 dataset, quantified
by SurvUnc-RF on DeepSurv. “GT” (with solid lines) and “P”
(with dashed lines) denote “Ground Truth” and “Predicted”,
respectively, and the values in legend are uncertainty scores.

we introduce the synthetic SAC3 dataset with ground-truth sur-

vival curves available for validation. Given a pretrained DeepSurv

model on the SAC3 dataset, we select the three samples with the

highest uncertainty and the three with the lowest uncertainty, as

ordered by SurvUnc-RF, for visualization. As shown in Figure 4, the

predicted survival curves (in dashed lines with cold colors) for low-

uncertainty samples closely match the ground-truth survival curves

(in solid lines with cold colors). In contrast, for high-uncertainty

samples, there is a marked discrepancy between the predicted and

ground-truth survival curves. Our expanded analysis confirms that

samples with high uncertainty predictions generally exhibit longer

survival times compared to those with low uncertainty. The reason

is current survival models tend to accumulate prediction errors

when estimating long-term survival patterns, resulting in higher

uncertainty estimates. These results further highlight the effective-

ness of SurvUnc in quantifying total uncertainty associated with

survival curves.

4.4 OOD Detection (RQ2)
In addition to the quantification of total uncertainty, the quantifica-

tion of epistemic uncertainty is emphasized in reliable deployment

to detect OOD data [44, 54]. Here, we conduct several ODD detec-

tion experiments to validate SurvUnc. As mentioned, we develop

the SEER-HD dataset as the OOD counterpart to the SEER-BC

dataset. The SEER-HD dataset includes the same number of uncen-

sored patients as the SEER-BC dataset but comprises patients with

a different condition, specifically heart disease. For age at diagnosis,

SEER-BC patients’ mean age is 60.52 (SD: 15.13) compared to SEER-

HD patients with 74.84 (SD: 10.40). For time-to-event distribution,

SEER-BC patients’ mean duration is 41.67 (SD: 29.91), compared

to SEER-HD patients with 55.44 (SD: 33.34). These differences are

statistically significant (p<0.001) under Wilcoxon rank-sum test.

(a) SurvUnc-RF (b) SurvUnc-MLP

(c) MC-Dropout (d) Ensemble

Figure 5: Uncertainty score distribution comparison of Deep-
Surv between IND (BC) and OOD (HD) samples from SEER
dataset, with uncertainty scores from (a) SurvUnC-RF, (b)
SurvUnc-MLP, (c) MC-Dropout and (d) Ensemble.

Firstly, we investigate whether the OOD data can be identified

from the uncertainty score distribution. Based on DeepSurv, Fig-

ure 5 compares the uncertainty score distributions of both datasets

across different quantification methods. The findings suggest that

both SurvUnc-RF (Figure 5(a)) and SurvUnc-MLP (Figure 5(b)) can

generally sense the OOD and IND data differently. Notably, the

uncertainty score distribution for OOD data (shown in pink) is

right-shifted in comparison to that of IND data (shown in blue),

indicating higher uncertainty for more OOD samples. However,

Ensemble (Figure 5(d)) fails to distinguish between the two distri-

butions, as they appear nearly identical. For MC-Dropout, IND data
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is generally quantified with even higher uncertainty scores than

OOD data, highlighting its limitations in OOD detection.

Furthermore, we provide a quantitative evaluation of the OOD

detection task in Table 4. By using uncertainty scores as logits to

classify IND and OOD samples, SurvUnc demonstrates a significant

performance improvement over baselinemethods across all survival

models. In particular, SurvUnc-MLP shows notable enhancements,

achieving an 19.5% -31.7% increase in AUROC and an 11.6%-26.8%

improvement in AUPRC. This epistemic uncertainty quantification

capability can be attributed to the anchor-based learning strategy,

which successfully infuses in-domain knowledge into the meta-

model learning process.

4.5 Hyperparameter Study (RQ3)
Our proposed SurvUnc framework consists of two important hy-

perparameters, i.e., the meta-model structure and the number of

anchors. In terms of the meta-model structure, we explore the

random forest and MLP in former experiments, where both meta-

models achieve consistently better performance than baselines with

robustness achieved.

We investigate the impact of varying the number of anchors

on selective prediction performance (𝐶td
), as shown in Figure 6.

Additional results with SurvUnc-MLP, provided in Appendix B,

exhibit similar trends. The anchor-based learning strategy suggests

that increasing the number of anchors can enhance the robustness

of label calculation for the meta-model training set construction,

thereby improving performance. For each discarding percentage,

the performance stabilizes when using 10 or more anchors
3
. This in-

dicates that the proposed SurvUnc framework can achieve efficient

performance with a relatively small number of anchors.

Figure 6: Varying anchor number 𝐾 on selective prediction
performance of SurvUnc-RF with DeepSurv on SEER-BC.

5 Conclusion
In this paper, we address the novel challenge of uncertainty quan-

tification in survival analysis and propose SurvUnc, a meta-model

based framework that incorporates an anchor-based learning strat-

egy. We establish systematic evaluation protocols to assess un-

certainty quantification methods on survival models. Extensive

3
The slight variations are due to randomness in training.

experiments conducted across multiple datasets and survival mod-

els demonstrate the effectiveness and robustness of SurvUnc in

uncertainty quantification. Furthermore, its model-agnostic design

ensures compatibility with a wide range of survival models, offering

valuable insights into uncertainty quantification for survival analy-

sis. Future work will explore uncertainty quantification for survival

analysis with competing events and time-varying covariates, as

well as evaluate SurvUnc in the context of foundation model-based

survival analysis [16, 23].
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A Experiment Setup
A.1 Survival Model Details
To quantify the uncertainty for survival models, we first pretrain

several survival models to be quantified. Specifically, the implemen-

tations of DeepSurv [25] and DeepHit [30] are sourced from pycox
package. The implementation of RSF is from scikit-survival
package

4
, and the implementation of DSM is from auton_survival

package
5
. The implementation of BNNSurv is from bnnsurv pack-

age
6
. We summarize the hyperparameter settings of such models in

Table 5-8. Detailed implementation codes are provided in the anony-

mous link. Since our primary focus is on uncertainty quantification

rather than survival prediction, we tune the hyperparameters of

the survival models to match the performance levels reported in

existing works.

Table 5: Hyperparameters for DeepSurv model.

Dataset learning rate dropout hidden layers
FLCHAIN 0.01 0.1 [32]

SUPPORT 0.1 0.1 [32]

SEER-BC 0.01 0.1 [32]

SAC3 0.01 0.1 [32]

4
https://scikit-survival.readthedocs.io/en/latest/index.html

5
https://autonlab.org/auton-survival/

6
https://github.com/thecml/UE-BNNSurv

https://seer.cancer.gov/data/
https://seer.cancer.gov/data/
https://doi.org/10.1214/08-aoas169
https://scikit-survival.readthedocs.io/en/latest/index.html
https://autonlab.org/auton-survival/
https://github.com/thecml/UE-BNNSurv
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Table 6: Hyperparameters for DeepHit model. 𝑑in is deter-
mined by the dataset covariate dimensions.

Dataset learning rate dropout hidden layers
FLCHAIN 0.001 0.1 [3𝑑in, 5𝑑in, 3𝑑in]

SUPPORT 0.005 0.1 [3𝑑in, 5𝑑in, 3𝑑in]

SEER-BC 0.001 0.1 [3𝑑in, 5𝑑in, 3𝑑in]

SAC3 0.001 0.1 [3𝑑in, 5𝑑in,3𝑑in]

Table 7: Hyperparameters for DSM model.

Dataset learning rate Distribution, No. hidden layers
FLCHAIN 0.005 Weibull, 4 [32, 32]

SUPPORT 0.005 Weibull, 6 [32, 32]

SEER-BC 0.005 Weibull, 6 [32, 32]

SAC3 0.005 Weibull, 10 [32, 32, 32]

Table 8: Hyperparameters for RSF model.

Dataset n_estimators min_samples_split min_samples_leaf
FLCHAIN 100 20 5

SUPPORT 100 20 5

SEER-BC 100 20 5

SAC3 20 20 5

A.2 Baseline Details
For each testing sample, MC-Dropout quantifies uncertainty by

activating dropout layers in the survival models during inference

and calculating the maximum standard deviation of predicted sur-

vival probabilities across time steps over 100 forward passes. For

the Ensemble method, we train the survival model with 10 different

random initializations and use the maximum standard deviation

of predicted survival probabilities across time steps from the 10

models as the uncertainty measure. It’s worth noting that we also

explored alternative approaches, such as calculating the mean stan-

dard deviation and the mean Euclidean distance between predicted

survival probability time vectors to assess the discrepancy among

multiple predictions for the same sample. However, these alterna-

tives performed relatively worse compared to using the maximum

standard deviation.

B Additional Experiment Results
B.1 Survival Model Validation
In Table 9, we compare the performance of our implemented sur-

vival models with the reported performance on FLACHAIN and

SUPPORT datasets from existing works. The results are sourced

from papers [7, 25, 26, 28, 30, 39, 46, 56]. Due to variations in dataset

splits, the reported performance in the literature is not exactly the

same. To account for this, we present the available performance

range for comparison.

B.2 Additional Results on Selective Prediction
Table 13 is a supplemented table for Table 2. We also report the

IBS comparison in Table 14 and Figure 7. Except the results with

DeepHit model, similar trends to𝐶td
can be observed for IBS, which

further demonstrate the superiority of SurvUnc framework.

Table 9: Performance comparison of survival models with
reported results in literature (Lit.).

Model From FLCHAIN SUPPORT
C-index IBS C-index IBS

DeepHit

Lit. 0.79-0.80 0.09-0.13 0.56-0.64 0.20-0.23

Ours 0.797 0.125 0.626 0.209

DeepSurv

Lit. 0.79-0.80 0.09-0.10 0.57-0.61 0.19-0.21

Ours 0.798 0.101 0.606 0.195

RSF

Lit. 0.77-0.82 0.09-0.10 0.61-0.63 0.18-0.21

Ours 0.795 0.100 0.631 0.189

DSM

Lit. 0.79-0.80 0.10-0.11 0.60-0.61 0.20-0.21

Ours 0.799 0.102 0.610 0.197

In addition, the Brier score is know to be imperfect in survival

analysis since it approximates the ground truth survival curve as a

step function that begins at 1 and then immediately becomes 0 at the

time to event. Thus, we compute the absolute difference between

predicted median survival (min{𝑡 |𝑆 (𝑡 |𝒙) ≤ 0.5}) and actual event

times for uncensored patients in selective prediction on SEER-BC

and SUPPORT, as shown in Table 10. Our proposed SurvUnc still

achieves the best performance.

Table 10: Absolute difference between predicted median
survival and actual event times of DeepSurv under differ-
ent discarding percentages (10%, 30%, 50%), determined by
the SurvUnc framework with different UQ methods across
datasets.

Datasets SUPPORT SEER-BC
UQ Methods 10% 30% 50% 10% 30% 50%

MC-Dropout 289.50 320.36 323.45 41.21 44.18 47.22

Ensemble 282.52 299.62 314.78 39.64 39.73 41.29

SurvUnc-RF 242.70 203.24 166.85 36.29 28.39 21.75

SurvUnc-MLP 243.22 203.77 169.99 36.40 27.79 21.81

B.3 Additional Results on Misprediction
We present the misprediction results of BNNSurv model in Table 11.

It can be observed our proposed SurvUnc framework outperforms

the inherent uncertainty estimation in Bayesian-based survival

model, BNNSurv. Besides, the comparison between predicted uncer-

tainty scores and IBSs for the DeepSurv model using MC-Dropout

and Ensemble are shown in Figure 8 and Figure 9, respectively.

Similar to selective prediction experiments, we also present mis-

prediction results with the absolute difference between predicted

median survival and actual event times for uncensored patients, as

shown in Table 15.

B.4 Hyperparameter Study
For the impact of anchor number to the uncertainty quantification

in Figure 6, we further present its impact with IBS in Figure 10(a).

Moreover, the corresponding studies for SurvUnc-MLP are pre-

sented in Figure 10(b) and Figure 10(c) for𝐶td
and IBS, respectively.

The results demonstrate that the SurvUnc framework is robust with

respect to the number of anchors, allowing for flexible selection.
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Table 11: Misprediction detection results with BNNSurv, i.e.,
Pearson correlation coefficient between uncertainty scores
and IBSs of samples.

Datasets FLCHAIN SUPPORT SEER-BC SAC3
Bayesian -0.426 0.321 -0.680 0.254

SurvUnc-RF 0.440 0.776 0.669 0.542

SurvUnc-MLP 0.410 0.749 0.629 0.619

B.5 Case Study
To validate the robustness of the proposed SurvUnc framework, we

also evaluate two state-of-the-art models TabPFN [19] and TabNet

[3] as meta models with selective prediction, as shown in Table|12.

While TabPFN achieves marginally better results, the improvements

are minimal considering the substantial computational and imple-

mentation overhead.

Table 12:𝐶td of DeepSurv under different discarding percent-
ages (10%, 30%, 50%), determined by the SurvUnc framework
with different meta models across datasets.

Datasets SUPPORT SEER-BC
Meta Models 10% 30% 50% 10% 30% 50%

RF 0.635 0.690 0.757 0.904 0.938 0.961

MLP 0.637 0.695 0.762 0.904 0.938 0.961

TabNet 0.639 0.695 0.762 0.904 0.938 0.961

TabPFN 0.638 0701 0.768 0.903 0.934 0.959
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Table 13: 𝐶td of survival models under different discarding percentages (10%, 30%, 50%), determined by different uncertainty
quantification methods across datasets. The best results are in bold. The last row of each group shows relative improvement
compared with the best baseline by 100 runs of experiments. 𝑝-value< 0.001 is true for all results without ∗.

Survival
Models UQ Methods FLCHAIN SUPPORT SEER-BC SAC3

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

DeepSurv

MC-Dropout

0.782

±0.048
0.745

±0.061
0.685

±0.081
0.600

±0.038
0.576

±0.040
0.563

±0.048
0.857

±0.040
0.846

±0.051
0.832

±0.065
0.772

±0.034
0.778

±0.040
0.793

±0.042

Ensemble

0.786

±0.047
0.755

±0.059
0.710

±0.074
0.607

±0.038
0.598

±0.040
0.576

±0.048
0.863

±0.041
0.857

±0.050
0.842

±0.067
0.783

±0.033
0.795

±0.035
0.807

±0.040

SurvUnc-RF

0.856
±0.036

0.907
±0.028

0.941
±0.020

0.635

±0.036
0.690

±0.040
0.757

±0.039
0.904
±0.028

0.938
±0.020

0.961
±0.015

0.792

±0.031
0.822

±0.032
0.855

±0.035

SurvUnc-MLP

0.839

±0.042
0.894

±0.034
0.935

±0.026
0.637
±0.037

0.695
±0.041

0.762
±0.041

0.904
±0.029

0.938
±0.020

0.961
±0.014

0.797
±0.032

0.830
±0.033

0.862
±0.030

Improv. 8.9% 20.1% 32.5% 4.9% 16.2% 32.3% 4.8% 9.5% 14.1% 1.8% 4.4% 6.8%

DeepHit

MC-Dropout

0.784

±0.046
0.762

±0.057
0.733

±0.075
0.648
±0.033

0.657

±0.040
0.656

±0.046
0.908

±0.028
0.937

±0.019
0.953

±0.018
0.797

±0.035
0.811

±0.036
0.836

±0.034

Ensemble

0.855
±0.035

0.902

±0.027
0.934

±0.022
0.637

±0.034
0.637

±0.038
0.637

±0.047
0.896

±0.033
0.923

±0.029
0.944

±0.023
0.805

±0.033
0.822

±0.030
0.842

±0.034

SurvUnc-RF

0.855∗

±0.036
0.908

±0.027
0.940
±0.020

0.639

±0.032
0.664∗

±0.041
0.693
±0.047

0.913

±0.027
0.945
±0.018

0.961
±0.015

0.811

±0.031
0.838

±0.035
0.866

±0.036

SurvUnc-MLP

0.855∗

±0.035
0.909
±0.027

0.940
±0.020

0.639

±0.033
0.660

∗

±0.040
0.692

±0.045
0.914
±0.027

0.945
±0.018

0.961
±0.014

0.817
±0.031

0.845
±0.031

0.876
±0.031

Improv. 0.0% 0.8% 0.6% -1.4% 1.1% 5.6% 0.7% 0.9% 0.8% 1.5% 2.8% 4.0%

DSM

MC-Dropout

0.780

±0.049
0.741

±0.062
0.687

±0.079
0.613

±0.035
0.614

±0.041
0.613

±0.049
0.866

±0.037
0.854

±0.045
0.832

±0.057
0.793

±0.033
0.776

±0.040
0.770

±0.051

Ensemble

0.787

±0.047
0.755

±0.059
0.715

±0.075
0.616

±0.036
0.605

±0.044
0.581

±0.054
0.872

±0.036
0.868

±0.043
0.854

±0.058
0.802

±0.034
0.813

±0.037
0.828

±0.035

SurvUnc-RF

0.854
±0.038

0.907
±0.026

0.941
±0.020

0.640

±0.035
0.685
±0.041

0.725

±0.044
0.910
±0.027

0.943
±0.017

0.960
±0.013

0.813

±0.030
0.837

±0.033
0.862

±0.035

SurvUnc-MLP

0.852

±0.038
0.906

±0.028
0.940

±0.020
0.641
±0.034

0.685
±0.039

0.731
±0.043

0.910
±0.027

0.943
±0.018

0.959

±0.014
0.818
±0.029

0.844
±0.031

0.871
±0.031

Improv. 8.5% 20.1% 31.6% 4.1% 11.6% 19.2% 4.4% 8.6% 12.4% 2.0% 3.8% 5.2%

RSF

MC-Dropout - - - - - - - - - - - -

Ensemble

0.790

±0.049
0.777

±0.062
0.745

±0.079
0.648

±0.037
0.662

±0.043
0.684

±0.043
0.878

±0.034
0.874

±0.042
0.863

±0.057
0.649

±0.043
0.663

±0.045
0.677

±0.050

SurvUnc-RF

0.840
±0.044

0.897
±0.029

0.933
±0.023

0.663
±0.037

0.708
±0.037

0.750
±0.041

0.908

±0.026
0.941

±0.019
0.959

±0.015
0.658
±0.044

0.692
±0.048

0.738
±0.053

SurvUnc-MLP

0.820

±0.044
0.854

±0.043
0.892

±0.041
0.656

±0.036
0.689

±0.038
0.721

±0.040
0.913
±0.026

0.943
±0.019

0.960
±0.014

0.653

±0.045
0.685

±0.050
0.731

±0.053
Improv. 6.3% 15.4% 25.2% 2.3% 6.9% 9.6% 4.0% 7.9% 11.2% 1.4% 4.4% 9.0%

BNNSurv

Bayesian

0.773
±0.049

0.732

±0.063
0.670

±0.082
0.623

±0.036
0.648

±0.039
0.687

±0.044
0.847

±0.044
0.836

±0.055
0.805

±0.076
0.719

±0.037
0.740

±0.040
0.771

±0.043

SurvUnc-RF

0.848
±0.039

0.902
±0.029

0.936
±0.023

0.650
±0.033

0.701
±0.037

0.764
±0.038

0.891

±0.034
0.932
±0.022

0.955
±0.016

0.727
±0.036

0.765

±0.034
0.808

±0.037

SurvUnc-MLP

0.843

±0.040
0.899

±0.030
0.934

±0.023
0.648

±0.034
0.699

±0.037
0.760

±0.038
0.893
±0.033

0.932
±0.023

0.955
±0.016

0.727
±0.036

0.767
±0.037

0.815
±0.038

Improv. 9.7% 23.2% 39.7% 4.3% 8.2% 11.2% 5.4% 11.5% 18.6% 1.1% 3.6% 5.7%
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Table 14: IBS of survival models under different discarding percentages (10%, 30%, 50%), determined by different uncertainty
quantification methods across datasets. The best results are in bold. The last row of each group shows relative improvement
compared with the best baseline by 100 runs of experiments. 𝑝-value< 0.001 is true for all results without ∗.

Survival
Models UQ Methods FLCHAIN SUPPORT SEER-BC SAC3

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

DeepSurv

MC-Dropout

0.268

±0.038
0.302

±0.046
0.344

±0.057
0.151

±0.010
0.164

±0.010
0.169

±0.009
0.240

±0.042
0.259

±0.047
0.282

±0.057
0.120

±0.014
0.123

±0.016
0.122

±0.017

Ensemble

0.265

±0.037
0.289

±0.043
0.318

±0.051
0.147

±0.009
0.154

±0.009
0.161

±0.010
0.232

±0.040
0.242

±0.048
0.257

±0.058
0.115

±0.014
0.115

±0.017
0.119

±0.022

SurvUnc-RF

0.219
±0.032

0.184
±0.033

0.152
±0.029

0.134
±0.009

0.118
±0.010

0.100
±0.012

0.200

±0.038
0.160

±0.029
0.134
±0.027

0.104

±0.013
0.090

±0.012
0.080

±0.014

SurvUnc-MLP

0.226

±0.034
0.189

±0.033
0.161

±0.032
0.134
±0.009

0.118
±0.011

0.100
±0.012

0.198
±0.039

0.159
±0.030

0.134
±0.026

0.098
±0.012

0.077
±0.011

0.062
±0.011

Improv. 17.4% 36.3% 52.2% 8.8% 23.4% 37.9% 14.7% 34.3% 47.9% 14.8% 33.0% 47.9%

DeepHit

MC-Dropout

0.300

±0.039
0.295
±0.046

0.305

±0.057
0.158
±0.005

0.153

±0.005
0.150

±0.006
0.279

±0.030
0.262
±0.029

0.240
±0.029

0.123

±0.008
0.125

±0.008
0.125

±0.009

Ensemble

0.294
±0.033

0.298

±0.034
0.300
±0.038

0.158
±0.005

0.151
±0.005

0.146

±0.006
0.280

±0.030
0.262
±0.030

0.242

±0.031
0.119

±0.008
0.120

±0.009
0.120

±0.009

SurvUnc-RF

0.296
∗

±0.034
0.298

∗

±0.038
0.303

∗

±0.044
0.159

±0.005
0.152

∗

±0.006
0.143
±0.007

0.278
∗

±0.029
0.269

±0.025
0.271

±0.028
0.115

±0.008
0.109

±0.009
0.102

±0.010

SurvUnc-MLP

0.299
∗

±0.035
0.300

∗

±0.039
0.303

∗

±0.040
0.160

±0.005
0.152

∗

±0.006
0.145

±0.007
0.276∗

±0.029
0.267

±0.025
0.269

±0.026
0.112
±0.008

0.101
±0.009

0.092
±0.010

Improv. -0.7% -1.0% -1.0% -0.6% -0.7% 2.1% 1.1% -1.9% -12.1% 5.9% 15.8% 23.3%

DSM

MC-Dropout

0.260

±0.038
0.298

±0.046
0.339

±0.054
0.150

±0.009
0.145

±0.010
0.143

±0.011
0.238

±0.046
0.269

±0.058
0.320

±0.070
0.124

±0.017
0.139

±0.018
0.147

±0.019

Ensemble

0.255

±0.035
0.280

±0.042
0.312

±0.056
0.147

±0.010
0.155

±0.012
0.161

±0.014
0.223

±0.045
0.230

±0.054
0.243

±0.068
0.116

±0.017
0.117

±0.020
0.120

±0.022

SurvUnc-RF

0.208
±0.030

0.172
±0.027

0.143
±0.023

0.135
±0.010

0.118
±0.011

0.103
±0.013

0.190
±0.041

0.147
±0.030

0.132
±0.028

0.104

±0.015
0.090

±0.016
0.081

±0.017

SurvUnc-MLP

0.211

±0.032
0.175

±0.029
0.144

±0.024
0.135
±0.010

0.120

±0.011
0.107

±0.013
0.190
±0.040

0.149

±0.029
0.132
±0.027

0.095
±0.014

0.075
±0.012

0.064
±0.012

Improv. 18.4% 38.6% 54.2% 8.2% 18.6% 28.0% 14.8% 36.1% 45.7% 18.1% 35.9% 46.7%

RSF

MC-Dropout - - - - - - - - - - - -

Ensemble

0.254

±0.039
0.261

±0.046
0.281

±0.053
0.145

±0.011
0.136

±0.012
0.130

±0.014
0.217

±0.040
0.225

±0.050
0.243

±0.062
0.144

±0.010
0.142

±0.012
0.138

±0.013

SurvUnc-RF

0.220
±0.037

0.178
±0.032

0.145
±0.026

0.136
±0.010

0.121
±0.010

0.111
±0.013

0.189

±0.036
0.152

±0.030
0.127
±0.025

0.139
±0.010

0.128
±0.011

0.118
±0.012

SurvUnc-MLP

0.239

±0.038
0.216

±0.042
0.191

±0.044
0.139

±0.010
0.127

±0.012
0.120

±0.013
0.180
±0.037

0.146
±0.027

0.127
±0.025

0.141

±0.011
0.131

±0.011
0.120

±0.012
Improv. 13.4% 31.8% 48.4% 6.2% 11.0% 14.6% 17.1% 35.1% 47.7% 3.5% 9.9% 14.5%

BNNSurv

Bayesian

0.327

±0.044
0.348

±0.054
0.375

±0.065
0.144

±0.009
0.137

±0.010
0.127

±0.013
0.268

±0.047
0.297

±0.059
0.345

±0.080
0.150

±0.015
0.144

±0.018
0.133

±0.023

SurvUnc-RF

0.289
±0.038

0.266
±0.038

0.253

±0.036
0.133
±0.008

0.113
±0.009

0.095
±0.009

0.229

±0.043
0.179

±0.032
0.154

±0.029
0.139

±0.013
0.121

±0.012
0.105

±0.013

SurvUnc-MLP

0.292

±0.040
0.268

±0.036
0.251
±0.035

0.133
±0.008

0.114

±0.009
0.095
±0.010

0.225
±0.042

0.178
±0.032

0.152
±0.027

0.137
±0.013

0.114
±0.011

0.095
±0.012

Improv. 11.6% 23.6% 33.1% 7.6% 0.175% 25.2% 16.0% 40.1% 55.9% 8.7% 20.8% 28.6%
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(a) DeepSurv (b) DeepHit (c) DSM (d) RSF

Figure 7: IBS of four survival models of (a) DeepSurv, (b) DeepHit, (c) DSM and (d) RSF on SEER-BC dataset with different
percentages of samples discarded according to uncertainty scores from different uncertainty quantification methods.

(a) FLCHAIN (b) SUPPORT (c) SEER-BC (d) SAC3

Figure 8: Predicted uncertainty scores versus IBSs from DeepSurv quantified by MC-Dropout across samples on (a) FLCHAIN,
(b) SUPPORT, (c) SEER-BC and (d) SAC3 datasets.

(a) FLCHAIN (b) SUPPORT (c) SEER-BC (d) SAC3

Figure 9: Predicted uncertainty scores versus IBSs from DeepSurv quantified by Ensemble across samples on (a) FLCHAIN, (b)
SUPPORT, (c) SEER-BC and (d) SAC3 datasets.

(a) SurvUnc-RF (IBS) (b) SurvUnc-MLP (𝐶td) (c) SurvUnc-MLP (IBS)

Figure 10: Varying anchor number 𝐾 on selective prediction performance (a) IBS: SurvUnc-RF, (b) 𝐶td: SurvUnc-MLP and (c)
IBS: SurvUnc-MLP with DeepSurv on SEER-BC.
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Table 15: Misprediction detection results, i.e., Pearson correlation coefficient between uncertainty scores and the absolute
difference between predicted median survival and actual event times of samples.

Datasets SUPPORT SEER-BC
UQ Methods DeepSurv DeepHit DSM RSF DeepSurv DeepHit DSM RSF

MC-Dropout -0.136 -0.097 -0.008 - -0.245 0.209 -0.677 -

Ensemble -0.030 -0.130 -0.209 0.150 -0.076 0.267 -0.079 -0.120

SurvUnc-RF 0.479 0.028 0.415 0.503 0.643 0.027 0.626 0.536

SurvUnc-MLP 0.450 0.012 0.370 0.373 0.647 0.032 0.625 0.586
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