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Abstract

The rise of foundation models, particularly
large language models like ChatGPT, has rev-
olutionized natural language processing and
demonstrated remarkable generalization across
numerous healthcare applications. Building on
this success, foundation models for time series
forecasting have emerged, offering new oppor-
tunities by leveraging pretraining on large-scale
datasets. However, existing time series founda-
tion models are pretrained with minimal clini-
cal data, and their potentials for continuously
recorded clinical time series, such as vital signs,
remain largely under-explored. This motivates
our endeavor to integrate time series founda-
tion models with vital sign data to address crit-
ical clinical challenges, particularly in predict-
ing patient deterioration. Through an exten-
sive evaluation of various settings and configu-
rations of these models, alongside comparisons
with conventional forecasting models, we high-
light the significant opportunities for improve-
ment in developing clinically useful time series
forecasting models. In a word, the “ChatGPT”
moment for time series foundation models, in
the typical clinical domain, is yet to come.
Keywords: Time series forecasting, vital sign,
clinical deterioration, foundation models

Data and Code Availability We use the fol-
lowing data: (1) the eICU collaborative research
database (Pollard et al., 2018), (2) the MIMIC-III
waveform database (Johnson et al., 2016), which are
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both available on the PhysioNet (Goldberger et al.,
2000). Details for dataset processing and code im-
plementation are provided in Appendix A and Ap-
pendix B, respectively.

Institutional Review Board (IRB) This re-
search does not require IRB approval.

1. Introduction

Vital signs are the simplest, and probably the most
important medical information collected from pa-
tients in varied phases of healthcare delivery, from
hospitals to community settings (Kellett and Sebat,
2017). They act as the major components of existing
established early warning score (EWS) systems, and
recent advances have demonstrated significant capa-
bilities in predicting adverse clinical events with these
vital signs (Al-Shwaheen et al., 2022; Topol, 2024).
The acquisition of vital signs in clinical practice is
undergoing a paradigm shift, transiting from infre-
quent, intermittent routine observations to continu-
ous data streaming, enabled by sophisticated bedside
monitors in intensive care units (ICU) and poten-
tially wearable devices beyond ICU (Shamout et al.,
2019; Gu et al., 2023). Such high-frequency, long-
term vital-sign time series allow a holistic under-
standing of patient health trajectories (Harutyunyan
et al., 2019), as well as provide actionable insights
for timely recognition/intervention of patient deteri-
oration (Clifton et al., 2012). Among these, one of
the fundamental tasks, is to develop preventive so-
lutions based on predictive modeling and forecasting
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Figure 1: Tllustration of our proposed pipeline integrating Time Series (Foundation) Models with vital sign
forecasting, in healthcare settings. With the continuous acquisition of vital signs, we leverage the
historical time series as input for the task of vital sign forecasting. Different time series forecasting
models, including statistical methods, conventional deep learning models, and foundation models
are applied. The forecasted vital sign values are, subsequently, investigated in relation to their
predictive accuracy for clinical deterioration events.

of these vital-sign time series (Forkan et al., 2017;
da Silva et al., 2021; Topol, 2024).

On the other hand, recent advances in deep learn-
ing, especially transformer architectures and self-
supervised learning paradigms, are transforming the
realm of time series analysis (Liang et al., 2024; Wang
et al., 2024b). In particular, inspired by the remark-
able success of large language models (LLMs) in nat-
ural language processing area, a series of time series
foundation models (TSFMs) are emerging as powerful
tools for time series forecasting (Das et al., 2023; Ra-
sul et al., 2024; Woo et al., 2024; Ansari et al., 2024;
Gao et al., 2024). These TSFMs have demonstrated
superior forecasting performance in a variety of do-
mains (e.g., traffic, weather, finance), even achieving
satisfactory performance in a zero-shot manner. Such
superiority positions them as promising candidates
for healthcare applications in vital sign forecasting
and patient outcome prediction.

In fact, most TSFMs are pretrained on minimal
or even no clinical vital sign data (refer to Appendix
Table A2). Despite their impressive performance in
a wide range of non-clinical benchmarks (Das et al.,
2023; Rasul et al., 2024; Woo et al., 2024; Ansari
et al., 2024), their potential usage in clinical vital sign

forecasting and associated performance measurement
are not investigated yet. Clinical vital sign data, with
its unique properties such as variability across pa-
tients and instability of patient conditions, presents
novel challenges that may affect model performance
(Afshar et al., 2021). There remains a lack of clear
insights into what factors drive the effectiveness of
TSFMs in clinical contexts and how these models can
be optimized for real-world healthcare applications.
In this paper, we take a step forward, and aim to
look into the following three key research questions
concerning the application of TSFMs in clinical vital
sign forecasting:
Model Development and Evaluation. How can
time series forecasting models be developed and eval-
uated in the context of clinical vital signs, and what
are the key metrics for this evaluation? By integrat-
ing time series forecasting approaches with contin-
uous vital sign monitoring (Figure 1), we present a
novel endeavor to systematically investigate its po-
tential applications in healthcare, particularly for pa-
tient deterioration prediction.
Foundation versus Conventional Models. How
is the performance of TSFMs in clinical vital sign
forecasting, compared to conventional time series

402



ARE TIME SERIES FOUNDATION MODELS READY FORVITAL SIGN FORECASTING IN HEALTHCARE?

forecasting models? We performed a series of experi-
ments comparing a wide spectrum of methodologies,
to gain insights into the effective utilization of these
models (Section 4.1).

Attributing Factors of TSFMs. What factors in-
fluence the performance of TSFMs and conventional
models when applied to clinical vital sign data? We
looked into several critical issues, regarding dura-
tion of historical windows (Section 4.2), multi-/uni-
variate settings (Section 4.3), computing efficiency
(Section 4.6), generalization capability (Section 4.5),
that are related to practical clinical use.

2. Related Work

Time Series Forecasting. Time series forecast-
ing is a well-studied task, with considerable re-
search efforts dedicated to model development and
dataset/benchmark curation (Benidis et al., 2022).
The advancements of deep learning have enabled the
evolution of models from traditional statistical meth-
ods to deep architectures, allowing to automatically
capture the complex temporal dependencies from raw
data. Despite the success of these models in bench-
marks across various non-clinical data domains, their
practical application in the clinical domain, typically
for vital sign forecasting, remains under-explored.
There are, in fact, several fundamental differences
that limits the direct generalization of these method-
ologies. Most time series forecasting pipelines are de-
veloped based on temporal data split, evaluated using
straightforward quantitative measures, such as mean
average errors. It remains open how to incorporate
clinical perspective into such forecasting pipeline.

Time Series Foundation Models. Foundation
models (FMs) typically benefit from pretraining on
large-scale datasets in self-supervised learning man-
ners. Their generalization capability across a wide
spectrum of data domains and tasks, even via zero-
shot learning, has been highlighted (Liang et al.,
2024). Particularly, in the realm of time series, the
development of foundation models has primarily fo-
cused on the generalization of forecasting capability
across different data domains. Nevertheless, these
models (Das et al., 2023; Rasul et al., 2024; Woo
et al., 2024; Ansari et al., 2024; Gao et al., 2024)
differ in several key aspects of their design, includ-
ing whether they handle uni- or multivariate inputs,
the length of context windows, and whether they in-
corporate probabilistic inference (refer to Appendix

Table A2). These settings, along with their actual
performance, are crucial in selecting appropriate FMs
for clinical vital sign forecasting, an area that has yet
to be systematically investigated.

Physiological Trajectory Predictive Modeling.
Continuous modeling of individual physiological tra-
jectories, such as vital signs, is important for early
detection and prediction of potential deterioration,
especially for critically ill patients. Several data ana-
lytic approaches, including unsupervised novelty de-
tection (Clifton et al., 2012) and end-to-end deep
learning (Forkan et al., 2017; Shamout et al., 2019),
have been developed to predict impending clinical de-
teriorations. In general clinical practice, such as the
National Early Warning Score version 2 (NEWS2)
in the UK and the Modified Early Warning Score
(MEWS) in the USA, we oversee changes in vi-
tal signs as key indicators of health conditions.
Such EWS systems reflect physiological deterioration
based on well-established clinical practices, and have
been widely applied in medical care, especially in in-
tensive care (Gerry et al., 2024; Henry et al., 2015).
In this sense, by predicting vital sign changes in the
future, vital sign forecasting offers the potential to
timely predict upcoming physiological decompensa-
tions and beyond (Sundrani et al., 2023). However,
although the integration of vital sign forecasting with
clinical outcome prediction is conceptually elegant,
the validation pipeline and potential performance of
these models, incorporating clinical insights, have yet
to be explored.

3. Benchmarks and Tasks
3.1. Task Settings

Typically, for a time series forecasting task, as illus-
trated in Figure 2, the objective is to predict future
values over a horizon length of P, based on the input
historical window, with a window length of H. In
practice, we set H and P as 6 and 3 hours, following
the suggestions from clinicians. The impact of H is
further discussed in Section 4.2.

To assess the performance of the predicted time
series over the future P-hour horizon, two groups of
evaluation metrics are employed as below.

3.1.1. GENERAL TIME SERIES METRICS

In line with general time series forecasting set-
tings, we leverage a series of quantitative measure-
ments, including Mean Average Error (MAE) and

403



ARE TIME SERIES FOUNDATION MODELS READY FORVITAL SIGN FORECASTING IN HEALTHCARE?

]
i
1
(T l‘
Nyl
. s/ \ | 1
_____________ .li:r,’_\'_ = = Uy yital
7 (kA :
/ ‘|| Normal
v 1 Range
_________________ Jvital
Prediction Window P
A
Y H Y S
6hrs " 2hrs e 1hr—
Historical Window, H " Gap Window, G ' Target Window, T

Figure 2: Ilustration of our task settings.

Mean Squared Error (MSE). These have been widely
adopted in benchmarking non-clinical data, measur-
ing the numerical distances between forecasted values
against ground truth.

3.1.2. CLINICAL DETERIORATION METRICS

Our further objective is to associate the predicted
time series with relevant clinical outcomes. To en-
sure that the forecasted values are not only numer-
ically accurate but also clinically meaningful, we go
beyond the general time series forecasting metrics.
We propose two additional validation protocols to as-
sess the practical utility of the forecasted values, in
clinical settings.

In this context, we introduce another variable, the
target window T', as described in Figure 2. This is
defined as the last 1 hours within the prediction win-
dow P. We aim to determine whether this target win-
dow, with a gap window of G between the historical
window H, would effectively capture the changes of
patient physiological trajectories, particularly those
related to acute deteriorations. In practice, we intro-
duce the following two subtasks to assess such clini-
cal relevance, with further discussion available in Ap-
pendix Section C.

Physiological decompensation prediction.
Aiming at the target window, we investigate whether
the forecasted vital sign values can indicate the
actual future deviations from normal physiological
ranges. These deviations are associated with varied
forms of physiological instability as listed in Table 1.
In practice, we define such deviation as persist
abnormality within the target window 7. In this
setting, we select samples whose historical windows
do not present over-1 hour persistent abnormalities
as normal-history samples, and assess whether these
forecasted vital sign values can predict the normal-

ity /abnormality in the upcoming target window of
these normal-history samples.

In detail, regarding the abnormality of vital signs,
we defined those abnormalities as the persistent de-
viations outside the normal range, as outlined in Ta-
ble 1. Let z}*8! represent the values of the vital sign
vital (vital € {HR,RR,SBP,DBP,Sp02}) at time
step 4, then the abnormality target y is defined as
below,

y = I min xvital S uvital
oy e ()
vital

—+1 max x . < lViml) s
(iE(O,T] H+G+i

lvital vital

where and u are the lower and upper bounds
of the normal range of corresponding vital sign.

Table 1: Normal ranges of vital signs.
Vital Sign ‘ Condition ‘ Values
‘ Tachycardia ‘ HR>100

Heart Rate
| Bradycardia | HR<60
Blood | Hypertension | SBP>120 or DBP>80
Pressure

‘ Hypotension ‘ SBP <90 or DBP<60
Respiratory ‘ Tachypena ‘ RR>18

Rate ‘ Bradypena ‘ RR<12

Sp02 | | SpO2<96

Hypoxia

Early warning score change prediction. On
the other hand, we leverage a validated composite
measure for patient decompensation (Sundrani et al.,
2023), NEWS2. By aggregating the corresponding
scores associated with available vital sign values, we
aim to investigate the efficacy of the forecasted val-
ues in actual detection of EWS changes. In prac-
tice, we focus on the average values of the last 1
hour of the historical window, as well as the last 1
hour of the prediction window (i.e. target window).
The NEWS2 score is calculated based on the aver-
age vital sign values within the window of interest,
considering only the available vital sign types. We
define three types of outcomes based on comparisons
with the last 1 hour of the historical window: wun-
changed, elevated, reduced. This evaluation protocol
allows evaluating the capability of the forecasted val-
ues to reflect changes in the NEWS2 score.

By only considering HR, SBP, RR, and SpO2, the
EWS score NEWS2 is defined as below,

EWS _ ~-HR ~SBP —-RR -SpO2
f (wta:tb) - NEWSQ(th:tbva:ta:tbva:ta:tbv:l: )7

ta:ity (2)
~vital

where &}'7" is the mean value of time series of cor-
responding vital sign from ¢, (exclusively) to t.
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Accordingly, the target of early warning score
change is defined as below,

1 if fEVS (@, ) > VS (@egity),
2 if fEWS(mto:tl) < fEWS(th:tg)):

3)

{0 iV (@ygty) = VS (@rgue),s
y =

where, in our task settings, toc = H — 1,t1 = H,
and to = T+ G, t3 = T+ P, aiming to detect changes
between the last 1 hour of the historical window and
the last 1 hour of the prediction window.

3.2. Dataset Curation

Dataset preparation. We derived high-frequency
multi-parameter vital-sign time series from two pub-
lic open-source clinical databases, namely the eICU
collaborative research database (Pollard et al., 2018)
and the MIMIC-IIT waveform database (Johnson
et al., 2016). They provide long-term continuous nu-
meric recordings of multi-parameter vital signs. We
focus on five typical types of vital signs including
heart rate (HR), systolic blood pressure (SBP), di-
astolic blood pressure (DBP), respiratory rate (RR),
and oxygen saturation (SpO2).

All recordings were resampled to the same fre-
quency by calculating the median values every 5-
minute interval. Subsequently, we extracted seg-
ments of length (H+P) from the long-term record-
ings, using a sliding window step of 2 hours. Seg-
ments with more than 1 hour of consecutive missing
data were filtered out, and the remaining data was
imputed using forward filling, with median values ap-
plied where forward filling was not feasible. The de-
tails of the curated datasets are available in Table 2.

Table 2: Dataset statistics.

Dataset ‘ #Patient ‘ #Sample ‘ Frequency
eICU ‘ 6,199 ‘ 95,420 ‘

5 Minute

MIMIC-III 1,089 18,163 5 Minute

Data split. We further randomly split each dataset,
subject-wise, into train/validation/test subsets by
6:2:2, without subject overlap. It should be noted
that, our settings, differ from the generic temporal
split setting, which divides each time series into train-
ing, validation, and test subsets in chronological or-
der. We argue that such setting may not fully ex-
amine the practical utility of time series forecasting
in healthcare, as the ability to generalize to unseen,
novel patients is crucial.

3.3. Experimental Settings

We adopted four open-sourced TSFMs, includ-
ing TimesFM (Das et al, 2023), Chronos
(small/base/large) (Ansari et al., 2024), Moirai
(small/base/large) (Woo et al., 2024), and Lag-
Llama (Rasul et al., 2024), whose configurations are
varied in multiple aspects, as listed in Table A2 of
the Appendix.

In particular, these FMs take varied forms of input
time series, either multivariate or univariate only. For
a fair comparison, we adopted the univariate setting
for all methods and reported their performance on
each type of vital signs accordingly. Please refer to
Section 4.3 for further discussion related to univariate
and multivariate settings. In particular, for FMs, we
tested two different types of implementations, zero-
shot and full fine-tuning. For zero-shot learning,
all four approaches were implemented with their offi-
cially pretrained models, whereas for full fine-tuning,
we followed the official fine-tuning implementations
of Chronos, Moirai, and Lag-Llama in this study.

On the other hand, to provide a deeper under-
standing of the performance of time series fore-
casting models, especially in comparison to tradi-
tional approaches, we developed a series of conven-
tional models trained from scratch for benchmark-
ing purposes. These include ARIMA (Box et al.,
2015), GRU (Cho et al., 2014), PatchTST (Nie
et al., 2023), Crossformer (Zhang and Yan,
2023), iTransformer (Liu et al.,, 2024), and
TimeMixer (Wang et al., 2024a).

4. Results and Discussions

4.1. Quantitative performance comparison

Following the previous stated experiment settings,
we reported the results of MAE (general metrics),
Macro-F1 of vital sign related physiological decom-
pensation prediction (clinical metrics), and Macro-F1
of EWS change prediction (clinical metrics) in Ta-
bles 3, 4 and 5. The results of other metrics are
available in Tables A3, A4 and A5 of the Appendix.
e Numeric performance between train-from-scratch
conventional methods, zero-shot of foundation mod-
els, and full fine-tuning of foundation models. In
terms of MAE, it is demonstrated in Table 3 that the
zero-shot performance of most TSFMs is not compet-
itive with even the trained-from-scratch performance
of most conventional methods.

On the other hand, we observed consistent per-
formance improvements, in terms of MAE, follow-
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Table 3: Vital sign forecasting performance measured with Mean Absolute Error (MAE). Bold indicates
the best result, and Underline indicates the second best result in each group.

Setting Methods ‘ eICU ‘ MIMIC-TT
| HR SBP DBP RR SpO2| HR SBP DBP RR SpO2
ARIMA 4588 10465 4.982 2.620 1.326 | 4.466 11.058 5560 2.483  1.263
Trainine  GRU 4.462 10.010 4.733 2.492 1.251 | 4.331 10.722 5.328 2.364 1.180
- g PatchTST 4479  10.044 4744 2513 1256 | 4.351 10760 5.372 2.388  1.200
S °t ,, Crossformer 4482 9.974 4737 2513  1.289 | 4.382 10.744 5.328 2.390 1.215
crate  Transformer | 4.480 10.042 4766 2502 1.253 | 4.371  10.779 5406 2.376  1.202
TimeMixer 4.479 10027 4748 2503 1256 | 4.376  10.791 5373  2.38  1.210
TimesFM 5228 11.393 5.326 2765 1.512 | 4.973  11.992 5.900 2.583  1.442

Chronos-Small | 4.807 11.130 5.181 2.668 1.374 | 4.609 11.962 5.884 2.555 1.354
Chronos-Base 4.821 11.356  5.256  2.732 1.393 | 4.667 12.082 5.900 2.542 1.334
Zero- Chronos-Large | 4.857 11.244 5.244 2.729 1372 | 4.621 12.040 5.887 2.551 1.332
Shot Moirai-Small 5.355 12,141  5.737 2816 1.563 | 5.259 12971 6.497 2.703  1.528
Moirai-Base 4.880 11.310 5.296 2.672 1.367 | 4.753 12.109 6.038 2.550 1.316
Moirai-Large 5.069 11453 5.381 2.671 1431 | 4.934 12259 6.109 2.556  1.378
Lag-Llama 7.365 13.022  6.125 2.879  2.848 | 6.877 13.425 6.609 2.715  2.740

Chronos-Small | 4.547 10.270 4.833 2.509 1.309 | 4.424 10.933 5.454 2.400 1.229
Chronos-Base 4.546 10.265 4.829 2.509 1.304 | 4.424 11.009 5446 2.411 1.220

Full Chronos-Large | 4.586 10.234 4.844 2.614 1.310 | 4.436 10.960 5.443 2414 1.229
Fine- Moirai-Small 4.958 10.716  5.079 2.606 1.382 | 4.681 11.531 5.783  2.487 1.264
Tuning Moirai-Base 4.835 10.629  5.002 2.561 1.292 | 4.825 12.162 5.686  2.452 1.234
Moirai-Large 4.985 10.601 5.024  2.607 1.358 4.784 11.678  5.744  2.446  1.229
Lag-Llama 5970 11.259 5427 2.558 1.570 | 5.297 12.145 6.020 2.463  2.719

Table 4: Physiological decompensation detection performance measured with macro-F1. Bold indicates the
best result, and Underline indicates the second best result in each group.

Setting Methods ‘ elCU ‘ MIMIC-IIT
| HR SBP DBP RR SpO2| HR SBP DBP RR SpO2
ARIMA 0.638 0581 0.568 0.547 0571 | 0.620 0.520 0.557 0.590  0.566
Traini GRU 0.621 0.602 0.609 0.555 0.598 | 0.581 0.560 0.569 0.615 0.617
fammg PatchTST 0.607 0.607 0.623 0.543 0.585 | 0.532 0.595 0.579 0.571 0.578
sci(;?éh Crossformer 0.617 0.593 0.614 0.560 0.564 | 0.588 0.535 0.566 0.609 0.607
iTransformer | 0.625 0.593 0.614 0.557 0.596 | 0.598 0.561 0.576  0.607  0.587
TimeMixer 0.632  0.593 0.614 0.553 0.561 | 0.596 0.545 0.580 0.605 0.568
TimesFM 0.578 0.570 0.544 0.534 0519 | 0.533 0.596 0.564 0.560  0.497

Chronos-Small | 0.613 0.573 0.604 0.551  0.512 0.59 0.552  0.570 0.563 0.538
Chronos-Base 0.613 0.567 0.599 0.542 0.518 | 0.635 0.561 0.573 0.565 0.540
Zero- Chronos-Large | 0.604 0.563 0.606 0.548 0.506 | 0.620 0.580 0.550 0.565 0.512
Shot Moirai-Small 0.573 0.556 0.546 0.564 0.543 | 0.528 0.526 0.544 0.538  0.543
Moirai-Base 0.568 0.553 0.584 0.570 0.548 | 0.562 0.550 0.558 0.544 0.575
Moirai-Large 0.569 0.554 0.568 0.561 0.498 | 0.561 0.507 0.548 0.529 0.515
Lag-Llama 0.491 0494 0510 0.517 0499 | 0.493 0.483 0.504 0.516  0.492

Chronos-Small | 0.599 0.585 0.606 0.569 0.513 | 0.585 0.540 0.527 0.564 0.494
Chronos-Base 0.604 0.574 0.611 0.570 0.516 | 0.580 0.547 0.546 0.586 0.496
Full Chronos-Large | 0.630 0.586 0.611 0.555 0.516 0.565 0.570 0.561 0.574 0.505
Fine- Moirai-Small 0.583 0.537 0.556 0.577 0.542 | 0.543 0.509 0.524 0.557  0.507

Tuning Moirai-Base 0.516  0.532 0.579 0.563 0.558 | 0.533 0.496 0.531 0.529 0.514
Moirai-Large 0.535 0.545 0.522 0.553 0.512 | 0.518 0.497 0.536 0.535 0.513
Lag-Llama 0.532  0.577 0.557 0.544 0.504 | 0.553 0.497 0.556  0.555 ~ 0.192
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ing the full fine-tuning of all TSFMs, although they
still slightly fall behind the conventional methods, as
shown in Table 3. This suggests that TSFMs pre-
trained on non-clinical datasets may struggle to mas-
ter the transfer capability to clinical datasets, likely
due to the inherent differences in time series charac-
teristics across these domains.

e General time series metrics versus clinical deteri-
oration related metrics. Despite the strong numer-
ical accuracy of some models in general time series
metrics, these models performed poorly in detecting
abnormal clinical values as indicated in Table 4, high-
lighting a gap between traditional forecasting metrics
and clinical relevance. This discrepancy is likely due
to the fact that we only selected health-history sam-
ples for evaluation, to mimic the real-world scenar-
ios where predicting abnormality for currently stable
patients is crucial. However, the models were pre-
trained on the entire dataset, which also includes non-
health-history samples. This suggests that selecting
appropriate training samples for specific tasks could
be crucial, and it is worth further exploring how tai-
lored training sets might improve task-specific per-
formance.

For the second sub-task, we derived the EWS for
the last 1 hour within the target window for all testing
samples and subsequently assessed whether the fore-
casted vital sign values could predict such changes.
This approach provides a more comprehensive evalu-
ation, considering all five vital signs as a composite
measure. As shown in Table 5, the zero-shot perfor-
mance of most TSFMs is competitive with conven-
tional methods trained from scratch. In some cases,
such as with TimesFM on F1, the TSFMs even out-
perform the others.

On the other hand, for some models, like Lag-
Llama, we did not observe consistent and signifi-
cant performance improvements after full fine-tuning.
This may suggest that certain fine-tuning strategies,
particularly those based on quantitative loss measure-
ments like MSE, may not be effective in guiding the
model to learn capabilities relevant to clinical dete-
rioration. This points out a potential need for task-
specific fine-tuning approaches that better align with
clinical objectives.

4.2. Influence of historical window length

We also investigated the effects of the historical win-
dow length H on the prediction results. It is impor-
tant to look into such parameter, since it indicates
whether longer historical windows can empower the

FORVITAL SIGN FORECASTING IN HEALTHCARE?

model with better capability to capture relevant pat-
terns for future trend prediction, particularly for clin-
ical vital signs. We show the results of HR and SBP
in Figure 3, with comprehensive results listed in Fig-
ures A2 and A3 of the Appendix. In general, longer
historical windows tend to improve performance in
most cases. This may result in the need for longer
recording periods, for more accurate vital sign fore-
casting, in clinical practice.

4.3. Univariate versus Multivariate

Vital signs are typically collected as multi-parameter
forms. As mentioned in Section 3.3, due to the limi-
tations of current FM configurations, and to ensure a
fair comparison across different models, we conducted
the experiments in univariate mode only. However,
it would be beneficial to discuss whether incorporat-
ing additional vital signs types would result in im-
proved performance of the forecasting of single vital
sign. Such insights would be beneficial, to guide the
development of future FMs for clinical applications.

We selected Moirai, which supports multivariate
format as input, and reported its performance for
both zero-shot and full fine-tuning under multivari-
ate settings. We also reported all the results of con-
ventional time series models with multiple vital signs
as input. The results of HR and SBP forecasting are
presented in Figure 4, with complete results available
in Figures A4 and A5 of the Appendix.

As shown in Figure 4, the performance of the
TSFM Moirai, improved significantly when all five
vital signs were incorporated for forecasting. How-
ever, a similar improvement was not observed in con-
ventional time series models. This is a promising
finding, suggesting that while FMs may underper-
form compared to conventional models in univariate
mode, they hold potential in multivariate mode. This
is likely due to the limited shared knowledge between
non-clinical and clinical domains in terms of temporal
characteristics, whereas the relationships between dif-
ferent variables in multivariate forms may be shared
across domains.

4.4. Generalization across datasets

We further explored the generalization capability of
GRU and Chronos-Small, across datasets and with
the same vital sign type. The results, presented in
Table 6, indicate that both models exhibit relatively
good and similar performance in terms of generaliza-
tion across dataset sources. This demonstrates the
feasibility of pretraining a large clinical vital sign FM
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Table 5: Early warning score change detection per- Table 6: Vital sign forecasting performance compar-

formance comparison. Bold indicates the ison (MAE) on eICU dataset. Chronos de-
best result, and Underline indicates the sec- notes Chronos-Small model. “@MIMIC”
ond best result in each group. and “@elCU” denote the corresponding
model trained on MIMIC-IIT and eICU, re-
| eICU | MIMIC-ITT .
Methods spectively.
‘ F1 Rec. Prec. ‘ F1 Rec. Prec.
ARIMA 0.519 0.514 0550 | 0.531 0.523 0.556
GRU 0501 0500 0562 | 0526 0517  0.580 Model |HR SBP DBP RR SpO2
PatchTST 0.506 0.504 _0.564 | 0.522 0.514 0.578 GRU@eICU  |4.462 10.010 4.733 2.492 1.251
Crossformer 0.519 0.517 0.574 | 0.541 0.532 0.588 GRUGMIMIC |4.510 10.106 4.754 2.496 1.261
iTransformer | 0.498 0497 0563 | 0.511 0502 0.570
TimeMixer 0.497 0496 0.562 | 0.519 0510 0.581 Chronos@eICU ‘4.547 10.270 4.833 2.509 1.309
TimesFM 0.532 0.529 0.539 | 0.530 0.527 _0.536 Chronos@MIMIC | 4.624 10.293 4.875 2.559 1.317
Chronos-Small | 0.510  0.506 _0.535 | 0.513 0.506 0.534 ] ]
Chronos-Base | 0.507 0502 0522 | 0516 0509 0534  model and its potential for zero-shot performance on
Chronos-Large | 0.513 0.508 0.529 | 0.506 0.499  0.529 new clinical datasets.
Moirai-Small | 0.497 0493 0524 | 0.502 0.495 0.530
Moirai-Base 0.480 0.480 0.529 0.488 0.482 0.532 Generalization across Vital Sign types
Moirai-Large | 0.494 0492 0535 | 0.500 0.493 0.542 . .
Lag-Llama 0.517 0514 0530 | 0.530 0524 0.542 Furthermore, we aimed to explore the generaliza-
Chronos-Small | 0514 0510 0561 | 0524 0516 0572 tion capability of these time series forecasting models
Chronos-Base | 0.513 0.510 0.563 | 0.514 0507 0564  across different vital signs. Specifically, we assessed
Chronos-Large | 0.516 0.513  0.564 | 0.520 0.512 _0.566 : : ;
Moirai-Small | 0503 0499 0544 | 0503 0406 051 1OV Well amodel performs on one vital sign when it
Moirai-Base | 0518 0514 0565 | 0.525 0.517 0.572 has been pretrained on a different vital sign type.
Moirai-Large | 0.529 0.524 0.568 | 0518  0.511  0.563 We compared the results of a conventional time
Lag-Llama 0527 0.523 0535 | 0499 0496 0.512

series model GRU and one TSFM Chronos-Small,
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with results presented in Figure 5. The generaliza-
tion capability of the smaller GRU models seemed
to perform better than the larger Chronos-Small.
They may also suggest that pretrained TSFM on non-
clinical domain data might not share much knowl-
edge with clinical domain, thus prone to overfitting
when full fine-tuned on small-scale clinical datasets.
Further experiments regarding their generalization
across datasets are available in Table 6.

4.6. Computation efficiency and model size

In the meantime, we reported the computational effi-
ciency and parameter comparisons for different mod-
els in Figure 6. In clinical settings, it would be ideal
to achieve the compromise between time cost, and
quantitative results, aiming for the top-left region of
Figure 6. As shown in Figure 6, whilst FMs bene-
fit from model scaling and large-scale pretraining on
non-clinical time series data (Liang et al., 2024), their
performance in the clinical domain remains less im-
pressive. Given the real-time requirements for con-
tinuous “track and trigger” monitoring, especially for
critically ill patients, further research is needed to de-
velop efficient yet powerful FM tools.

5. Conclusion

Time series forecasting is a well-studied field that
has undergone significant paradigm shifts, evolving
from traditional statistical methods to deep learning
approaches, and more recently, to foundation mod-
els. In particular, TSFMs benefit from pretraining
on large-scale time series datasets and have demon-
strated exceptional performance in a variety of bench-
marks, even in zero-shot learning settings. However,
their performance on continuously recorded vital sign
data in healthcare settings, as well as their practical
applications in this domain, remain unexplored.

14665 Lag-LIama/Z
7 Moirai-L/Z 22min
81.0s
Moirai-B/Z 2_4Mli, 127.2/5 {5mii
Lag-Llama/F min
6 56.25 8 Chronos-L/Z
Moirai-S/Z 33185
| 2035Mm8, 1565 { Chronos-8/Z
I TimesFM
T [}
= 5 2.4m8, 'l =
o2 ‘lagy OO, 2085 MoiraitS/F Noirai-B/F
< | iTrans Time 13.8M8, 52min g7 4mig, 2.2h
s .fi?rmer ‘. ,'f«er '
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Arsvil l Chronos-B/F
417615 paychTsT oa0s” Chronos-L/F
11v,a5s | Chronos-S/F 709.0MB, 1.8h
46.2MB, 51.7s R
Crossformer
3 6.6MB, 39.55
Chronos-S/Z
114.35
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Time Cost (Seconds)

Figure 6: Computation efficiency, parameters and
MAE of all models on eICU dataset. For
conventional models and full fine-tuning
(/F) models, we report the training time
cost per epoch. For zero-shot (/Z) models,
we report the inference time on the testing
set. Note that the inference time for con-
ventional forecasting models is less than 5
seconds. Marker size indicates the number
of fine-tuned parameters.

In this paper, we firstly investigated the forecast-
ing potential of time series models especially TSFMs
on continuously recorded vital sign data in health-
care settings. Specifically, by reorienting time series
forecasting tasks toward practical clinical challenges,
we integrated a pipeline that associates forecasted vi-
tal sign values with clinical deterioration tasks, com-
plementing traditional general forecasting metrics.
Through extensive experiments across different mod-
els, settings, and computational efficiency, we argue
that there is substantial potential for improvement in
this area. Future work should particularly focus on
developing clinical TSFMs pretrained on large-scale
clinical data, while also enhancing computational ef-
ficiency and incorporating multi-modal information
for more accurate and efficient forecasting.
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Appendix A. Dataset Preparation

A.1. Dataset Descriptions

The eICU (Pollard et al., 2018) and MIMIC-IIT WDB
(Johnson et al., 2016) are two large publicly available
(upon appropriate data usage agreement) datasets,
which provide high-frequency, long-term, and contin-
uous vital sign recordings collected from the bedside
monitors in ICU settings. We focus on five typical
vital signs, including heart rate (HR), systolic blood
pressure (SBP), diastolic blood pressure (DBP), res-
piratory rate (RR), and oxygen saturation (SpO2).
These vital signs are crucial indicators of intermedi-
ate health conditions and are widely used in monitor-
ing patient status in critical care environments.

A.2. Preprocessing

The details of preprocessing are illustrated as below.
Resampling. Based on each recording, all data was
resampled to a uniform frequency by calculating the
median values every 5-minute interval, to ensure con-
sistency across time.

Segment Extraction. Subsequently, we extracted
segments of length H+P (historical window H and
prediction window P), from the long-term recordings
using a sliding window with a step size of 2 hours.
Data Cleaning. Segments containing more than 1
consecutive hour of missing data, consistently flatten
signals, as well as negative values, were filtered out
to ensure high-quality data for analysis.

Missing Data Imputation. We applied forward
filling for imputation of the remaining time series
where small-interval data missingness occurred. If
forward filling was not possible (e.g., at the start of a
recording), the gaps were filled using median values
calculated from the available data.

It should be noted that MIMIC-III includes mul-
tiple recordings from different ICU admissions for
certain subjects. In practice, we consider these as
recordings from different subjects, during data split
procedures.

Appendix B. Code Implementations

B.1. Conventional Methods

For conventional time series forecasting models, we
set the embedding dimension to 64 and the batch size
to 128. We conducted a grid search for the learning
rate and the number of encoder layers using the sets
{0.0001, 0.0005,0.001} and {1,2,4}, respectively. All

other parameters were kept at their default values as
specified in Time-Series-Library!.

B.2. Time Series Foundation Models

We followed the official fine-tuning implementations
for FMs Chronos?, Moirai®, and Lag-Llama*. We
followed the officially recommended batch size, and
if necessary, we set the batch size to accomodate the
single GPU memory capacity, as listed in Table Al.
In addition, we conducted a grid search for the learn-
ing rate using values of {0.0001,0.0005,0.001}.

Table Al: Batchsize settings of full fine-tuning for
existing time series foundation models.

Chronos  Chronos Chronos Moirai Moirai  Moirai Lag
Methods | ¢ B L S B L Ll
Batchsize ‘ 64 32 8 64 32 8 128

We also outline the details of the TSFM settings
in Table A2. It is worth noting that existing TSFMs
have limited access to health-related data, and in all
cases, no access to vital sign data, during pretrain-
ing. All code implementation will be released upon
acceptance.

Table A2: Time series foundation model comparison.

Multi- | Proba- # Inc.
Model ‘ Source variate | bilistic | Data* | Health!
TimesFM | Google | X | X | >100B| X
Chronos | Amazon | X | v | - | X
Moirai | Salesfore | v | X | >2tB | /T
Morgan
Lag-Llama Stanley v v ‘ <1B ‘ X

* Pretraining data size reported in Woo et al. (2024).
¥ Whether including (inc.) health data for pretraining.
T Including Hospital, COVID Deaths, US Births.

Appendix C. Explanation of
discrepancy of different
metrics

Here, we provide an intuitive explanation of the dif-
ferences between general time series metrics and clin-
ical deterioration related metrics, in Figure A1. With

1. https://github.com/thuml/Time-Series-Library

2. https://github.com/amazon-science/
chronos-forecasting

3. https://github.com/SalesforceAIResearch/uni2ts/

4. https://github.com/time-series-foundation-models/
lag-1llama
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Figure A1l: Tllustration of the comparison of different
metrics. Based on the historical window
as input, we compare two different fore-
casted values Prediction A and Predic-
tion B, against Ground Truth, in terms
of different metrics. Although Prediction
A shows a higher MAE than Prediction
B, it actually demonstrates better perfor-
mance in detecting deterioration.

the historical window as input, we evaluate two fore-
casted values, Prediction A and Prediction B, in com-
parison to the Ground Truth, using different metrics.
Despite the fact that Prediction A having a higher
MAE than Prediction B, it performs better in de-
tecting deterioration.

Appendix D. Other Results

D.1. Other quantitative performance results

Additional results mentioned in the main paper, re-
garding different metrics, are provided here. These
include the MSE metrics Table A3, recall of abnormal
vital sign detection Table A4, precision of abnormal
vital sign detection Table A5.

D.2. Other historical window length results

The complete results of the impact of hostrical win-
dow length, across vital sign types and datasets, are
presented in Figures A2 and A3.

D.3. Other univariate versus multivariate
results

More results of the effects of incorporating additional
types of vital signs, on the forecasting performance,
are presented in Figures A4 and Ab5.
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Figure A2: Performance comparison of models with different horizon lengths for vital sign forecasting on

eICU dataset. “/Z” and “/F” denote zero-shot and full fine-tuning settings.
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Figure A3: Performance comparison of models with different horizon lengths for vital sign forecasting on
MIMIC-III dataset. “/Z” and “/F” denote zero-shot and full fine-tuning settings.
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Figure A4: Performance comparison of models training in univariate and multivariate settings for vital sign
forecasting on eICU dataset. “/Z” and “/F” denote zero-shot and full fine-tuning settings.
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Figure A5: Performance comparison of models training in univariate and multivariate settings for vital sign
forecasting on MIMIC-IIT dataset. “/Z” and “/F” denote zero-shot and full fine-tuning settings.
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Table A3: Vital sign forecasting performance measured with Mean Square Error (MSE). Bold indicates the
best result, and Underline indicates the second best result in each group.

Setting Methods ‘ elCU ‘ MIMIC-IIT
| HR SBP DBP RR SpO2 | HR SBP DBP RR  SpO2
ARIMA 56.167  219.236  67.571  17.555 5.511 | 53.561  237.740 67.155 14.338  5.498
Traini GRU 49.574  207.648 64.261 16.520 4.592 | 47.122  228.365 64.136  13.524  5.029
fa‘“mg PatchTST 49.701  207.544  64.543 16585 4.608 | 46.684 227.452  64.357 13472  5.113
S “’f‘h Crossformer 49.087 203.623 65926 16.228 4.716 | 46.190 224.444 63.018 12.868 4.911
cratelh  imTyransformer 50.489  209.221  64.868  16.685  4.612 | 47.976  229.750  65.145 13.573  5.111
TimeMixer 49.982  208.026  64.325 16.613  4.619 | 47.306 229.048  64.454 13.546  5.090
TimesFM 66.202  266.394 75.950 20.249  7.008 | 60.739 288.344 76.778 15.953 8.294

Chronos-Small | 60.166 263.099 80.507 20.351 5.352 | 54.929 297.728  79.351 17.143  7.304
Chronos-Base 60.806  277.250  83.189  21.096  5.489 | 56.974  303.741  80.170  16.882  6.267
Zero- Chronos-Large | 61.893  270.454  82.875 20.851  5.378 | 56.693  299.266  79.446  17.099  6.079
Shot Moirai-Small 70.364  303.343  88.538  20.981  6.973 | 68.557  337.480 91.682 18.042  7.839

Moirai-Base 60.702 267980 78.674 19.713 5457 | 58.674  298.441  82.280  16.249 5.259
Moirai-Large 65.459  276.508  81.483  20.118  6.110 | 63.027  310.308  83.955  16.732  6.905
Lag-Llama 103.634 308.255 ~ 91.826  22.196 18.562 | 95.516  324.182  87.541  17.614 17.625

Chronos-Small | 53.056  220.174 68.955 18.034  5.130 | 49.671  238.996  68.224  15.077  5.305
Chronos-Base 53.010 220.521 68.562 17.994 4.999 | 49.350 243.934 67.769 15.177 5.261
Full Chronos-Large | 53.5630 218.791 69.974 18.801  5.141 | 49.878 243.275 67.878 14.862 5.326

Fine- Moirai-Small 60.305  233.253  72.268  18.168  5.424 | 54.140  259.880  73.644  15.138  5.609

Tuning Moirai-Base 57.969  231.238  71.441 17.874 5.008 | 54.854  288.718 72426  14.778  5.429
Moirai-Large 58.258  230.797  70.061  18.309  5.542 | 55.153  266.333  73.397 14.548 5.380
Lag-Llama 92.463  261.706  82.553  18.043  6.179 | 66.490  304.727  82.920  14.629 14.404

Table A4: Physiological decompensation detection performance measured with recall. Bold indicates the
best result, and Underline indicates the second best result in each group.

Setting Methods ‘ elCU ‘ MIMIC-III
| HR SBP DBP RR SpO2| HR SBP DBP RR SpO2
ARIMA 0.682 0569 0558 0.61 0.685 | 0.662 0517 0546 0592  0.568
Traini GRU 0598 0.598 0.598 0.626 0.634 | 0.560 0.551 0.559 0.615 0.621
fa“‘mg PatchTST 0.581 0.627 0.612 0.659 0.658 | 0.521 0.586 0.566 0.592  0.577
S m‘tnh Crossformer 0.504 0.588 0.607 0.626 0.624 | 0.562 0.529  0.555 0.607  0.601
crateh i ransformer 0.604 0.588 0.605 0.620 0.632 | 0.569 0.551 0.565 0.609 0.573
TimeMixer 0.619 0.594 0.607 0.636 0.631 | 0.575 0.538 0.567 0.617 0.584
TimesFM 0.560 0.568 0.541 0.579 0.556 | 0.524 0.590 0.556 0.564  0.506

Chronos-Small | 0.598 0.578 0.601 0.571 0.570 | 0.585 0.552 0.578 0.567 0.601
Chronos-Base | 0.601 0.577 0.611 0.552 0.586 | 0.635 0.566 0.577 0.566 0.608
Zero- Chronos-Large | 0.587 0.568 0.613 0.561 0.551 | 0.614 0.586 0.554 0.564  0.548
Shot Moirai-Small 0.552 0.544 0.537 0.566  0.558 | 0.519  0.522 0.535 0.532  0.549
Moirai-Base 0.549 0.542 0.570 0.569 0.584 | 0.541 0.539 0.548 0.536 0.614
Moirai-Large 0.548 0.543 0.555 0.568 0.521 | 0.546 0.509 0.539 0.524 0.541
Lag-Llama 0499 0.506 0.514 0.516 0.503 | 0.500 0.498 0.510 0.516  0.498

Chronos-Small | 0.579 0.573 0.599 0.591 0.548 | 0.561 0.532 0.524 0.570  0.495
Chronos-Base | 0.582 0.566 0.608 0.595 0.555 | 0.560 0.5637 0.538 0.588 0.496
Full Chronos-Large | 0.581 0.572 0.604 0.566 0.555 | 0.547 0.556 0.550 0.581  0.510
Fine- Moirai-Small 0.563 0.530 0.544 0.580 0.551 | 0.528 0.510 0.522 0.544  0.507

Tuning Moirai-Base 0.513 0.527 0.561 0.561 0.548 | 0.521 0.501 0.527 0.524 0.511
Moirai-Large 0.523 0.534 0522 0546 0.513 | 0.513 0.502  0.530 0.529 0.511
Lag-Llama 0.534 0.596 0.647 0.539 0.504 | 0.553 0.498 0.581 0.567 0.392
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Table A5: Physiological decompensation detection performance measured with precision. Bold indicates
the best result, and Underline indicates the second best result in each group.

Setting Methods ‘ eICU ‘ MIMIC-TIT
‘ HR SBP DBP RR SpO2 ‘ HR SBP DBP RR SpO2
ARIMA 0.614 0.602 0.590 0.545 0.558 | 0.598 0.535 0.595 0.588  0.565
Trainin GRU 0.662 0.606 0.625 0.551 0.580 | 0.628 0.577 0.591 0.614 0.614
fromg PatchTST 0.663 0.595 0.636 0.552 0.566 | 0.674 0.608 0.604 0.562 0.579
Scratch Crossformer 0.659 0.600 0.623 0.554 0.551 | 0.668 0.555 0.594 0.611 0.614
iTransformer 0.658 0.599 0.626 0.551 0.578 | 0.680 0.579 0.599 0.605 0.607
TimeMixer 0.649 0.593 0.623 0.552 0.549 | 0.641 0.559 0.608 0.597  0.558
TimesFM 0.617 0.572 0.547 0.534 0.520 | 0.564 0.604 0.579 0.558 0.502

Chronos-Small | 0.633 0.570 0.608 0.544 0.520 | 0.597 0.552 0.565 0.559  0.532
Chronos-Base 0.629 0.560 0.591 0.538 0.524 | 0.635 0.558 0.570 0.564  0.534
Zero- Chronos-Large | 0.631 0.559 0.601 0.542 0.515 | 0.626  0.575 0.547 0.566 0.515
Shot Moirai-Small 0.638 0.596  0.589  0.563 0.537 | 0.587 0.562 0.626 0.561  0.539

Moirai-Base 0.631 0.600 0.613 0.572 0.539 | 0.664 0.592 0.582 0.585 0.559
Moirai-Large 0.645 0.599 0.607 0.557 0.507 | 0.600 0.526 0.581 0.556 0.515
Lag-Llama 0.483 0.596 0.571 0.518 0.527 | 0.486 0.468 0.545 0.539  0.486

Chronos-Small | 0.638 0.608 0.616 0.560 0.517 | 0.649 0.573 0.545 0.560  0.497
Chronos-Base 0.648 0.589 0.615 0.560 0.519 | 0.624 0.579 0.575 0.585  0.498
Full Chronos-Large | 0.644 0.613 0.620 0.549 0.519 | 0.617 0.609 0.591 0.569 0.505
Fine- Moirai-Small 0.629 0.610 0.611 0.574 0.536 | 0.669 0.534 0.583 0.626 0.506

Tuning Moirai-Base 0.646 0.625 0.643 0.565 0.578 | 0.737 0.503 0.583 0.579 0.539
Moirai-Large 0.674 0.640 0.639 0.566 0.511 | 0.598 0.505 0.579  0.565 0.534
Lag-Llama 0.531 0.568 0.562 0.553  0.507 | 0.554 0.497 0.550 0.549  0.482
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