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ABSTRACT
Built environment supports all the daily activities and shapes our
health. Leveraging informative street view imagery, previous re-
search has established the profound correlation between the built
environment and chronic, non-communicable diseases; however,
predicting the exposure risk of infectious diseases remains largely
unexplored. The person-to-person contacts and interactions con-
tribute to the complexity of infectious disease, which is inherently
di�erent from non-communicable diseases. Besides, the complex
relationships between street view imagery and epidemic exposure
also hinder accurate predictions. To address these problems, we
construct a regional mobility graph informed by the gravity model,
based on which we propose a transmission-aware graph neural
network (GNN) to capture disease transmission patterns arising
from human mobility. Experiments show that the proposed model
signi�cantly outperforms baseline models by 8.54% in weighted F1,
shedding light on a low-cost, scalable approach to assess epidemic
exposure risks from street view imagery.
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1 INTRODUCTION
With the rapid urbanization progress in the last century, more than
55% of people live in cities surrounded by the built environment
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Figure 1: Illustration of epidemic exposure risk identi�cation
in Birmingham. In this study, we investigate the epidemic
exposure risks for the whole England.

that provides the setting for all human activities, such as buildings,
roads, green spaces, etc.. The intimacy between human and urban
built environment makes it a critical environmental determinant of
health [4], a�ecting both the physical and mental status of citizens.

With the recent development of big data processing and deep
learning technology, street view imagery provides a powerful data
source to assess the built environment with rich information and
high scalability [7]. In Figure 1, we showcase that house types,
the number of vehicles, the design of green spaces are possible
transmission-related features for predicting epidemic exposure risks
[9]. With publicly available street view imagery from map services
or social media check-ins [8], we can predict the epidemic exposure
risk in most parts of the world, even in low- and middle-income
countries that may lack detailed census data.

However, accurately predicting epidemic exposure risk from
street view imagery is challenging. First, infectious diseases are
greatly in�uenced by the humanmobility, which cannot be properly
identi�ed solely from street view imagery. Second, the distinct
and complex transmission patterns arising from person-to-person
contacts and interactions require di�erent modeling approaches
from traditional non-communicable diseases.

To overcome these challenges, we propose a novel model to
identify epidemic exposure risks from street view imagery. Specif-
ically, we construct a network of street view imagery to capture
the regional transmission in�uence of infectious diseases, where
we simulate the population �ow inspired by Stou�er’s law of pop-
ulation movement and Tobler’s �rst law of geography. Based on
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the proposed network, we design a transmission-aware graph neu-
ral network (GNN) emulating epidemiological process inspired by
Susceptible-Infectious-Recovered (SIR) model [10]. Through the
proposed model, we predict the global map of epidemic exposure
risk in a low-cost, scalable manner, enlightening the design method-
ology for creating an epidemiologically resilient living environment
through the power of geographic information system (GIS).

The contributions of this study can be summarized as follows:
• We construct a regional transmission network informed by
the street view imagery and human mobility, based on which
the spatial correlation of epidemic can be accurately cap-
tured.

• We propose a transmission-aware GCN model with epidemi-
ological knowledge considering the distinct transmission
patterns of infectious diseases.

• We conduct extensive experiments to validate the e�ective-
ness of the proposed model, which outperforms the best
baseline by 8.54% in terms of weighted F1, 3.33% in weighted
precision, and 4.93% in weighted recall.

2 PRELIMINARIES
The SIR model is a well-established epidemiological model that
leverages the following ordinary di�erential equations (ODEs) to
depict the dynamic of the epidemic:

dY (C)
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= �V Y (C)O (C)
#

, (1)
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The above model divides the whole population # into four states:
Y, O , X for susceptible, infectious and recovered people accordingly.
There are two learnable parameters: V is the infection rate, while W
is the recovery rate. It assumes a second-order contact between sus-
ceptible and infectious people for disease transmission as VY (C)O (C),
and a �rst-order natural recovery process W O (C). Leveraging the cal-
ibrated SIR model, we can estimate the basic reproduction number
'0, which re�ects the transmissibility of the target disease under
speci�c urban scenarios as follows:

'0 = V/W . (4)

In this study, we use '0 as an agent for epidemic exposure risk.

3 METHODS
We illustrate the framework of this study in Figure 2. We propose a
transmission-aware GCN model, i.e., EpiGCN to infer the epidemic
exposure risk through publicly available street view imagery. To
capture the human mobility induced transmission of infectious
diseases, we construct a regional mobility network, where the node
feature represents geo-tagged imagery and the edge weight re�ects
the population �ow simulated by the gravity model [11]. Inspired by
the computational process of SIR ODEs, we design a novel message
passing function that integrates the epidemiological model with
representation learning.
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Figure 2: Framework overview.

3.1 Mobility Network Construction
To capture the regional contact and transmission patterns invoked
by human mobility, we �rst construct an MSOA level mobility
network as shown in Figure 3. Speci�cally, we have the graph
G = (V, E), where V is the set of MSOA and E is the set of
mobility in�uences.

Leveraging any CV backbone model"2 , we extract the MSOA
level imagery feature by aggregating all the image dense embed-
dings of the corresponding MSOA, which serves as the node feature
hE,8E 2 V .

To depict the human mobility in�uence between MSOAs, we
adopt the gravity model [11] to simulate regional population �ows
as the edge weight as follows:

4E,F =
# d
E #

\
F

exp(3EF/X)
,8E,F 2 V, (5)

where #¢ is the population number for MSOA ¢, 3EF is the Eu-
clidean distance between E,F . We set the empirical parameters
d, \ , X according to [1].

Eq.(5) predicts the population �ows as proportional to neigh-
borhood population and inversely proportional to travel distance.
The design of numerator is inspired by Stou�er’s law of population
movement that people are more attracted by regions with more
social interaction opportunities. Besides, the denominator depicts
Tobler’s �rst law of geography that people tend to visit nearby
places to reduce the travel cost.

3.2 SIR Message Passing Design
Given the node feature hE of target node E and the neighborhood
node setNE . First, we leverage three di�erent linear layers to trans-
form the node feature into susceptible (S), infectious (I), and recov-
ered (R) embedding as follows:

YE = f
⇣
]( ·hE+b(

⌘
, OE = f

⇣
]� ·hE+b�

⌘
, XE = f

⇣
]' ·hE+b'

⌘
,

where]¢ is the weight matrix, b¢ is the bias matrix, and f is the
recti�ed linear unit (ReLU) activation function.

The essence of SIR model lies in the second-order transmission
process of VY (C)O (C) and the �rst-order recovery process of W� (C).
For the transmission process, we aggregate the I embeddings from
neighborhood nodes according to the edgeweights generated by the
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Figure 3: Illustration of the network construction process.
The size of node represents the population, and the edge
color represents the strength of population �ow simulated
by the gravity model.

gravity model, which will be concatenated with local S embedding
to depict the second-order interaction. It goes through a linear
transformation to calculate the embedding of infections. For the
recovery process, the only in�uence factor is the local I embedding.
We use another linear transformation to depict the natural recovery
process that happens in infectious people. The above process is
shown in the following equations:

YE = YE �]CA0= · concat
⇣
YE,

’
F2NE

4FE OF

⌘
, (6)

OE = OE +]CA0= · concat
⇣
YE,

’
F2NE
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⌘
�]A42>E OE, (7)

XE = XE +]A42>E · OE, (8)

where]CA0= 2 R2⇡⇥⇡ ,]A42>E 2 R⇡⇥⇡ represent the linear trans-
formation for the transmission and recovery process accordingly,
⇡ is the embedding size.

To get the epidemic exposure risk prediction, we further con-
catenate the local S, I, R embedding and use another linear transfor-
mation]>DC?DC 2 R3⇡⇥⇡ to capture the epidemic exposure risk as
follows:

~̂
<08=
E = so�max

⇣
]>DC?DC · concat(YE, OE, XE)

⌘
. (9)

4 EXPERIMENTS
4.1 Setup of the Experiment
In this work, we study 6512middle layer super output areas (MSOAs)
in England, which are �ne-grained census units with a mean popu-
lation of 8236 and an average area of 19.5 km2. We collect the latest
street view images from Google Map for each MSOA, where we uni-
formly sample 9 locations within the corresponding boundary [15].
As a result, we get 215,759 images for the whole of England MSOAs,
where 76.8% of them are captured after 2019. The street view images
are available in 400 ⇥ 300, which will be randomly cropped into
224 ⇥ 224 before feeding into CV models. We download the MSOA
level time series of COVID-19 cases in the second outbreak window
(2020-09-01 to 2021-04-30) from the UK government.

In this study, we adopt the basic reproduction number '0 as an
agent for epidemic exposure risk, which is a widely used metric

Table 1: Distribution of epidemic exposure risk labels

Category Low Risk Medium Risk High Risk
Number 1727 3820 1505

Percentage 27% 52% 23%

to depict the severity of infectious diseases. Speci�cally, we cali-
brate the SIR model according to the COVID-19 time series, which
provides a model-informed '0 for each MSOA. Furthermore, we cat-
egorize the extracted '0 in each MSOA according to the mean and
standard deviation into three levels, which generates the epidemic
exposure risk label A 2 {0, 1, 2} for low risk, medium risk, and high
risk accordingly. The distribution of labels is demonstrated in Table
1. We randomly split the dataset into training, validation, and test
sets in a 6 : 2 : 2 ratio.

We implement the proposed EpiGCN in PyTorch, where we use
ResNet18 initialized with ImageNet pre-trained weights as the CV
backbone. Note that the whole architectures of the CV backbone
are trainable. We adopt cross-entropy as the loss function. The
implementation code of our model is available at https://github.c
om/0oshowero0/EpidemicGCN.

4.2 Baseline Models
To the best of our knowledge, this is the �rst work to identify re-
gional epidemic exposure risks through street view imagery. We
adapt three commonly used paradigms in socioeconomic prediction
task to validate the proposed method: feature based baselines (BOF
[12], SceneParse [6]), end-to-end supervised CV baselines (ResNet18
[5], ViT-B/32 [2]), and unsupervised baselines (Urban2vec [13],
READ [3], PG-SimCLR [14]). Implementation details are summa-
rized as below.

• BOF [12]: Bag of feature method leverages HOG and GIST to
extract geo-tagged imagery, which follows a random forest
classi�er to generate predictions.

• SceneParse [6]: SceneParse leverages the coverage ratio of
each object to train an MLP for downstream tasks.

• ResNet18 [5]: An end-to-end deep learning CV model that
follows pyramid architecture.

• ViT-B/32 [2]: An end-to-end deep learning CV model that
follows isotropic architecture.

• Urban2vec [13]: An unsupervised model that constructs
positive and negative image pairs according to the physical
distance to guide CV model learning.

• READ [3]: A semi-supervised model using a pretrained CV
model that �ne-tuned on downstream tasks using data prun-
ing and dimensionality reduction technology.

• PG-SimCLR [14]: An unsupervised model that use geo-
graphical distance and POI similarity to construct positive
and negative image pairs and use attention module to fuse
the embeddings.

We also implement two ablation models of the proposed EpiGCN:
• EpiGCN w/o gravity weight: We delete the edge weight
48 9 generated by the gravity model as described in Sec.3.1.

• EpiGCN w/o SIR message passing: We replace the SIR
passage passing design in Sec.3.2 by vanilla GCN.
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Table 2: Performance comparison for epidemic exposure risk
prediction. All the metrics are weighted ones. The average
performance over 5 runs is reported. We bold the best per-
formance, and (⇤) indicates p<0.01 signi�cance over the best
baseline metrics (underlined) in ANOVA test.

Method F1 Precision Recall

BOF [12] 0.4653 0.4711 0.4995
SenseParse [6] 0.4808 0.4883 0.5085
ResNet18 [5] 0.4795 0.4581 0.5360
ViT-B/32 [2] 0.4907 0.5195 0.5329

Urban2vec [13] 0.4870 0.4950 0.5190
READ [3] 0.4894 0.4976 0.5168

PG-SimCLR [14] 0.5014 0.5100 0.5219
EpiGCN w/o gravity edge weight 0.3280 0.2836 0.4268
EpiGCN w/o SIR message passing 0.4233 0.3993 0.5371

EpiGCN (Ours) 0.5442⇤ 0.5368 ⇤ 0.5624 ⇤

4.3 Performance Analysis
The overall experiment results are reported in Table 2. The baseline
models are categorized into feature based baselines, end-to-end
supervised CV baselines, and unsupervised CV baselines. From the
results, we have the following observations and conclusions.

• Our proposed EpiGCN constantly outperforms the best base-
lines on all metrics statistically signi�cantly, with 8.54%
higherweighted F1 than PG-SimCLR, 3.33% higher inweighted
precision than ViT-B/32, and 4.93% higher in weighted recall
than ResNet18.

• Compared with the two ablation models without gravity
edge weight and SIR message passing, the full model out-
performs by 65.9% and 28.6% in terms of weighted F1. This
phenomenon demonstrates the e�ectiveness of the proposed
improvements.

• In general, the performance of end-to-end supervised base-
lines surpasses that of unsupervised baselines, which in turn
outperforms feature based baselines. Supervised baselines
achieve the best performance for most metrics compared
with other baselines. Most of the unsupervised baselines and
feature based baselines perform poorly in terms of recall
metrics, which is not convincing enough for mission-critical
tasks such as epidemic exposure risk identi�cation.

5 CONCLUSION
In this paper, we proposed a novel model that explicitly predicts
regional epidemic exposure risks through street view imagery. Con-
sidering the inherently di�erent transmission patterns of infectious
diseases, we construct a network of street view imagery linked by re-
gional population �ow, based on which we propose a transmission-
aware GCN model to capture the epidemic in�uence arising from
human mobility. In the future, we will adopt transfer learning tech-
nology to further enhance themodel performance in unseen regions,
which enables a low-cost, scalable approach to assess how the built
environment a�ects disease transmission.
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