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ABSTRACT

Accurately predicting base station traffic volumes and understand-
ing mobile traffic patterns is essential for smart city development,
enabling efficient resource allocation and ensuring high-quality
communication services. However, existing works have limitations
in capturing spatial information, though the surrounding environ-
ment plays a critical role in mobile traffic prediction. In this paper,
we utilize a spatial knowledge graph to represent spatial informa-
tion and add important urban components to augment it making it
a more effective tool for capturing environmental information. we
further propose a multi-relational knowledge graph convolutional
network model for mobile traffic prediction, which consists of three
parts. The environmental context modelling captures spatial infor-
mation from the augmented spatial knowledge graph using tucker
decomposition and relational graph convolutional network. The
semantic relationship modelling extracts semantic relationships
between base stations and employs transformer and causal convolu-
tion to capture temporal features. The inter-attentional fusion mod-
elling utilizes the self-attention mechanism to further capture base
station relationships and predict future traffic volumes. Extensive
experiments demonstrate that our proposed model significantly out-
performs the state-of-the-art models by over 10% in mobile traffic
prediction. The code is available at https://github.com/tsinghua-fib-
lab/Mobile-Traffic-Prediction-sigspatial23
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1 INTRODUCTION

The rise of smart cities has brought about a surge demand for Inter-
net of Things (IoT) and 5G devices [24], which play a crucial role
in various aspects of smart cities. However, the rapid proliferation
of IoT has also posed significant challenges to mobile networks,
putting a strain on network resources and leading to issues such
as congestion and latency [22, 43, 47]. To address these issues, it
is crucial to accurately predict mobile traffic and implement re-
fined allocation and proactive scheduling of network resources
[16, 23, 31, 40]. Accurate prediction of network traffic is the key to
rational allocation of energy and resources and ensures high-quality
service and communication [9, 17, 30]. By predicting traffic patterns
in advance, resources can be allocated efficiently, and proactive
scheduling of network resources becomes possible, which ensures
that network performance meets the demands of smart cities.

Traditional methods models treat mobile traffic prediction as a
general time series prediction problem, some machine-learning
models such as support vector regression (SVR) [4], and auto-
regressive integrated moving average (ARIMA) [38], have been
applied.

Additionally, recurrent neural networks (RNNs) [45], long short-
term memory (LSTM) [13], and gated recurrent units (GRU) [2] have
been employed to improve prediction accuracy. Recently, several
models have employed graph convolution networks (GCN) to cap-
ture the proximity relationships between base stations [3, 44, 48].
Despite progress in these areas, two fundamental limitations remain
in existing models.

¢ Existing models have limitations in capturing semantic
relationships between base stations. Most existing models
[3, 7, 44, 48] only consider the proximity relationship between
base stations, neglecting other relevant factors such as the re-
latedness to traffic patterns and the functional region in which
the base station is located.

¢ Existing research often overlooks the critical role of the
surrounding environment in mobile traffic prediction.
The surrounding environment plays a critical role in mobile
traffic prediction, yet it is often overlooked in existing research.
For example, during rush hour in a densely populated area, mo-
bile traffic may increase due to the high volume of commuters.
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By incorporating environmental factors into mobile traffic pre-
diction models, models can gain a more comprehensive under-
standing of traffic patterns and improve the performance of
prediction.

To mitigate such limitations in mobile traffic prediction, we first
introduce the spatial knowledge graph for accurate mobile traffic
prediction. A spatial knowledge graph is a type of knowledge graph
that represents spatial information and the relationships between
spatial entities. Specifically, we first construct the basic spatial
knowledge graph consisting of four semantic relationships between
base stations which could capture both spatial and temporal fea-
tures. Based on this, we employ the relational graph convolution
network (RGCN) [28] and transformer-based traffic encoder [34] to
model the dynamic traffic series and generate the domain embed-
dings. Furthermore, to capture the complex interaction between
base stations and the surrounding environment, we augment the ba-
sic spatial KG with regions, business areas, points of interest (POIs)
and categories included, which could generate the environmental
embeddings. Finally, the self-attention mechanism is applied to fuse
domain embeddings and environmental embedding together for fu-
ture traffic prediction. By leveraging the spatial KG and RGCN, our
proposed model effectively captures the comprehensive features
of base stations over time, providing more accurate predictions of
mobile traffic patterns.

Our major contributions are summarized as follows:

o We are the first to propose the knowledge-driven paradigm
for mobile traffic prediction and conduct a systematic study
of knowledge discovery from multi-source urban data via
KG construction, which identifies key elements and complex
relationships in the city as entities and relationships, re-
spectively. By leveraging the spatial KG, we can incorporate
multiple types of spatial data and capture a comprehensive
representation of the spatial context surrounding base sta-
tions.

e We propose a novel multi-relational knowledge graph con-
volutional network model for improving mobile traffic pre-
diction. Specifically, by leveraging the spatial KG and RGCN,
the model could capture various relationships between base
stations and environmental features. And model could cap-
ture dynamic temporal features through the transformer.
The model then employs the inter-attention mechanism to
fuse these features and predict future traffic.

e We conduct extensive experiments on two real-world datasets
and the proposed model outperforms state-of-the-art ap-
proaches by more than 10% on precision, which demonstrates
its accuracy and effectiveness. We carried out an analysis to
identify the semantic relationships and entities that could
improve the prediction of base station traffic. Besides, our
model has been integrated into the Jiutian platform as a
crucial component of the Al-powered modules for commu-
nication modelling.

2 RELATED WORKS
2.1 Mobile Traffic Prediction

Mobile traffic prediction is a widely recognized time series predic-
tion task, and significant efforts have been made.
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Initially, models utilized sufficient historical data to learn the
statistical rules of data automatically. For example, Hong et al. [15]
used SVR, and Shu et al. [29] used seasonal auto-regression inte-
grated moving average (SARIMA) for mobile data traffic prediction.
However, SARIMA’s reliance on past traffic volume averages makes
it unable to capture fast changes or model non-linear relationships,
and it requires significant effort to set suitable hyperparameters for
good performance. Li et al. [20] proposed a software-defined cellu-
lar radio access network architecture, and Xu et al. [42] proposed
a Gaussian Process (GP) method. However, these models focus on
single base stations for predicting short-term mobile traffic and
cannot be applied to large-scale mobile traffic prediction.

The recent advancements in deep learning have led to the de-
velopment of various neural network models for mobile traffic
prediction. Fu et al. [8] apply the LSTM and GRU to model time
series data, which solely consider temporal data and disregard ge-
ographical elements, despite the fact that each node in the base
station network can be influenced by other nodes. To address this
limitation, convolution neural networks (CNN) and graph neural
networks (GNN) [27] are applied to incorporate both temporal
and geographical data. Zhang et al. [46] apply CNN and LSTM to
encode spatial-temporal features, but the effectiveness of CNN is
constrained in non-Euclidean base station networks.

Fang et al. [6] employ Graph Convolutional Networks (GCN)
to describe the geographic dependency, where the graph’s edge
indicates the spatial relationship between base stations. Feng et al.
[7] present an end-to-end model to acquire the spatially dependent
and long-term mobile traffic, which employs LSTM for modelling
complex temporal changes and correlation selection mechanism
for modelling spatial relationships and encoding the external data.
Wang et al. [36] propose a hybrid deep learning model, which
consists of LSTM units and a unique autoencoder-based deep model
for spatial-temporal modelling and prediction.

However, current models only utilize the distance relationship to
capture spatial features, which can be imprecise due to the diverse
and complex urban functional areas. Furthermore, existing studies
tend to overlook the potential influence of environmental factors
that could enhance the accuracy of mobile traffic prediction.

2.2 Traffic Prediction in Other Applications

There are other types of traffic series predictions that share a similar
mathematical expression with mobile traffic prediction, such as road
traffic prediction and network traffic prediction.

Road traffic prediction is to predict the change of future flow
through the road topology map and the historical traffic flow recorded
by sensors. In the road traffic prediction, Yu et al. [44] propose the
STGCN model, which integrates GCN and gated CNN to capture
both the temporal dependency of dynamic mobile data traffic and
the topological structure of the graph. Guo et al. [10] propose a
new attention-based spatial-temporal graph convolutional network
(ASTGCN) model, which contains three independent components
to model three temporal properties of mobile data traffic, and the
three patterns are weighted fused to be the final output. Zhao et
al. [48] introduce the T-GCN model, which combines GCN and
GRU to capture both the spatial dependence of topology similar-
ity and the temporal dependence of dynamic mobile data traffic
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change of node attribution. Wu et al. [39] propose GraphWaveNet
to model the spatial-temporal dependency, which develops a novel
and learnable adaptive dependency matrix through node embed-
ding and a stacked dilated convolution is applied to expand the
receptive field. Zheng et al. [49] propose a graph multi-attention
network that adapts an encoder-decoder architecture, where both
the encoder and the decoder consist of multiple spatial-temporal
attention blocks to model the impact of the spatial-temporal factors.
Diao et al. [3] propose a DGCNN model to track dynamic spatial
dependencies by a dynamic Laplacian matrix estimator which could
capture the stable global long-term temporal-spatial traffic relation
and the local traffic fluctuations.

While the network traffic prediction is to predict the futural
network traffic through the network topology and the historical
traffic columns recorded by routers. In the network traffic predic-
tion, Davide et al. [1] apply DCRNN to predict the traffic and the
events of congestion, which utilizes a graph-based machine learn-
ing method to learn a representation of each node considering both
its properties and the structure of the network. Laisen et al. [26]
propose a reinforcement learning-based mechanism to model the
traffic prediction problem as a Markov decision process, which con-
sists of a residual-based dictionary learning algorithm to find the
features of temporal factors. He et al. [12] propose a meta-learning
scheme which consists of a set of predictors, each optimized to
predict a particular kind of traffic, and of a master policy that is
trained for choosing the best-fit predictor dynamically based on
these performances.

Though road traffic prediction and network traffic prediction
share the same mathematical formulation, these models could not
be directly applied to mobile traffic prediction due to differences in
the nature of the data and the underlying dynamics.

3 PRELIMINARY
3.1 Problem Definition

Given the historical mobile traffic series of each base station, the
mobile traffic prediction problem is to develop a model to predict
the traffic of all base stations in future time steps.

Mathematically, we denote a set of base stations as B = {b, by,
...bN}, and N is the number of base station. And the spatial knowl-
edge graph as G. Let xl.t € R represent the traffic value of base
station b; at time step t, and sit = [xl.t_T“,xit_T‘LZ, xf] TeRT
represents the past T time steps of base station b; at time step ¢.
Then, we denote the St = [s{ sg, slt\]] € RNVXT a5 historical traffic
matrix of all base stations at time step t.

Mobile traffic prediction aims to forecast future mobile traffic
based on past traffic data, which involves training a mapping func-
tion (f) using historical traffic series (S*) and a spatial knowledge
graph (G) to predict the traffic value for the next time step. The
mapping function can be expressed as:

xRl Lt = £(GLSY). (1)

3.2 Spatial Knowledge Graph

A knowledge graph is a type of database that represents knowl-
edge in a structured format using nodes, edges, and attributes. It
is designed to capture the relationships between different entities
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and concepts in a particular domain or field [14]. While the spa-
tial knowledge graph contains key components of urban areas to
capture comprehensive spatial information. Formally, the spatial
knowledge graph is made up of facts. The fact set includes triplets
on factual knowledge as F = {(h,r,t)|h,t € &,r € R}, where h is
the head entity, ¢ is tail entity and r is the relation between h and ¢
[5]. € and R are sets of entities and relations. Then we define the
spatial knowledge graph as G = (¢, R, F).

3.3 TuckER Decomposition

To obtain the representation of each entity in the augmented spatial
knowledge graph, we utilize the widely adopted TuckER model.
This model is highly effective at capturing the environmental infor-
mation present within the graph and generating low-dimensional
vectors, or embeddings, for all entities. To accomplish this, we feed
the augmented spatial knowledge graph into the TuckER model.
The model then learns and understands the complex relationships
between the entities and the environmental features present in the
graph and generates embeddings that accurately capture the most
important features of each entity and its surrounding environment.
For each triplet (A, r, t) € F, the model measures the plausibility as
follows,

(]5(]’1, 7, t) =W X1 ep Xa T X3 ey, (2)

where W € R4%@%d j5 the core tensor in Tucker decomposition
[33], and the e, 1, e; € RY are embeddings of entities and relations.
Respectively, d and X; represent the embedding dimension and
the tensor product along the i — th mode. Based on the observed
triplets in the augmented spatial knowledge graph, we calculate
the plausibility scores via the above scoring function and develop
the cross-entropy loss functions for parameter learning such that
valid triplets obtain higher scores than invalid ones.

3.4 Relational Graph Convolutional Network

To make the embeddings more suited for mobile traffic prediction,
we apply the Relational Graph Convolutional Network (RGCN)
[28] which could get the learnable entity embeddings. RGCN is
an extension of GCN, which could only operate on homogeneous
graphs. In contrast, RGCN can handle heterogeneous graphs with
multiple types of nodes and edges, each with its own set of features.
The RGCN model is able to handle heterogeneous graphs by uti-
lizing a different weight matrix for each edge type present in the
graph. This allows the model to learn different representations for
nodes and edges based on their respective types. By performing
convolutional operations on the graph, the RGCN model is able to
propagate information across the nodes and edges, resulting in the
generation of node embeddings, which can be formed as,

1+ _ o ow O L whp®
bt = oW b + Z W ny), 3)
reR jeN]
where N| denotes the set of neighbourhoods of node i under rela-
tionr € R, Wﬁl) denoted the learnable parameters under relation

r, and h;l) represents the embedding of node i at layer . ¢; , is a

normalization constant that can be learned or chosen in advance,
and [ denotes the [ — th RGCN layer. The ability of RGCN to handle
heterogeneous graphs makes it particularly useful for modelling
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knowledge graphs. By applying RGCN to mobile traffic prediction,
we are able to generate embeddings that are better suited for cap-
turing the relationships between the various entities in the graph.

4 METHODS

4.1 Framework Overview

Our model, shown in Figure 1, predicts future mobile traffic for all
base stations using the spatial knowledge graph G and historical
mobile traffic series S as inputs, with three main components: se-
mantic relationship modelling, environmental context modelling,
and inter-attentional fusion modelling. The semantic relationship
modelling component uses a historical mobile traffic matrix and
basic spatial knowledge graph to capture temporal features, pro-
ducing a domain embedding output for each base station to capture
relationships and traffic patterns. The environmental context mod-
elling component enhances the knowledge graph and employs rep-
resentation learning to capture the spatial structure and functional
similarity, producing an environmental embedding for each base
station to improve accuracy and robustness. The inter-attentional
fusion model combines domain and environmental embeddings,
providing comprehensive predictions that incorporate temporal
features and environmental information for greater accuracy.

4.2 Spatial Knowledge Graph Construction

4.2.1 Basic Spatial Knowledge Graph. To better understand the mo-
bile traffic prediction task, we discover four relationships between
base stations and form the basic spatial knowledge graph to capture
their spatial and temporal features. These four relationships model
the relationships between base stations from different temporal and
spatial perspectives.

e Proximity Relationship. Two base stations have a proximity
relationship when their physical locations are within a certain
distance of each other, formulated as,

dl-Siy' dis,-,-
ai = exP(— 02])’ exP(— o.zj) 2€ (4)
ij = is; :
/ 0, exp(—d;#) <e

where dis; j denotes the distance between base station b; and
base station b;, and o and € are thresholds to control the dis-
tribution and sparsity of the matrix of proximity relationship,
where we set o and € are 37 and 0.5. Close base stations likely
transfer traffic due to user behaviour of connecting to nearby
stations for weak signals. This affects overall traffic patterns
and mobile network usage.

e Function Similarity. POIs are functional units in a city where
people engage in social and productive activities. Similar POIs
generate similar traffic patterns. To determine this, we calcu-
late POI numbers in each category near each base station and
the cosine similarity of each base station to create a similarity
matrix. The formulation can be formed as,

bij= cos(leOI, UfOI), (5)

where b; j denotes the cosine similarity of POI distribution

between base station b; and base station b}, and the le Ol rep-

resents the POI distribution vector of base station b;. We select
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the 20 most similar base stations for each station to establish
functional similarity relationships.

Pattern Similarity. After thorough analysis, we found that
each base station has a unique and consistent traffic pattern
that reflects its typical usage by mobile users. However, there
is some variability in real traffic flow, which fluctuates around
the pattern on a weekly scale. Location can also affect a base
station’s traffic pattern. To group similar base stations based
on normalized patterns, we use hierarchical clustering [41], an
unsupervised machine-learning technique. We consider base
stations in the same cluster and within a certain distance to
have a pattern similarity relationship, expressed as:

1-aij, Uf =of
cij = J (6)
0, otherwise.

where v‘? denotes the results of clustering the pattern series of
base station b;.

Flow Similarity. Base stations may have pattern similarity
relationships, but their traffic flow can still vary significantly
in terms of absolute values and speed of changes. To examine
temporal characteristics, we introduce the concept of Similar
Series relationships. Using dynamic time warping methods [18],
we calculate traffic series similarity between base stations to
generate a similarity matrix D, expressed as:

dij = DTW (!, uf lowy @)

where d; jdenotes the traffic series similarity between base sta-

flo

tion b; and base station b, and v; v represents the traffic flow
of base station b;. We select the 20 most similar base stations
for each station to establish flow similarity relationships.

4.2.2 Augmented Spatial Knowledge Graph. To enhance the ac-
curacy of mobile traffic prediction by capturing environmental
information, we have expanded the basic spatial knowledge graph
to include additional elements and relationships beyond just those
between base stations. By establishing connections between base
stations and other important components of urban areas, such as
regions, business areas, POIs, and categories, we have enriched
the graph and made it more informative. We have also added vari-
ous relationships, including cateOf,coCheckIn,competitive, broderBy,
nearBy, flowTransition, similarFunction,locateAt, belongTo, POIs-
ervedBy, baseLocateAt, BaServe, and baseBelongTo [25, 37], which
are crucial for capturing the complex spatial relationships that
influence mobile traffic behaviour. More details are provided in
Appendix A.

The augmented spatial knowledge graph, as shown in Figure
2, provides a more comprehensive and informative representation
of the urban environment and its impact on mobile traffic. The
expanded graph includes relationships between base stations and
various urban components, enabling the graph to capture the inter-
dependencies between them and making it a more powerful tool
for mobile traffic prediction.

4.3 Semantic Relationship Modelling

We opt to use the basic spatial knowledge graph to model the
semantic relationship between base stations. By utilizing both the
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Figure 1: The Framework Overview of our model.
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Figure 2: The schema of augmented spatial knowledge graph.

historical mobile traffic series and the basic spatial knowledge graph
as inputs, our model can effectively capture the temporal features
of all base stations, ultimately resulting in domain embeddings for
each base station.

To capture the local shapes of the time series accurately, we
employ one-dimensional causal convolution. Unlike regular convo-
lution, causal convolution transforms the traffic of the base stations
while ensuring that the model has no access to future information
at the current position. This enables the model to focus on the local
context and shapes of the time series rather than just point-wise
values. The one-dimensional causal convolution takes the historical
traffic series S’ as its input and can be expressed as,

k-1
xl-t = U(Z fo_J +b),
7=0

®

where xi’ denotes the traffic value of base station b; at time step t,
and k denotes the kernel size. The one-dimensional causal convo-
lution can capture the local shapes of time series and outputs the
convolution feature matrix E€©" ¢ RNXTXd where N denotes the
number of base stations, T denotes the length of historical traffic se-
ries and d denotes the embedding dimension. In this way, enable the

Inter-
+ —'l )
attention
RGCN — Predictor
Traffic Encoder -
domain
embeddings
Rel : Proximity Relationship Proximity Relationshp
Relational o
representation oo

Function Similarity

Flow Similarity
(o]

oo
o

o]

Figure 3: Nodes updating process of RGCN. Features from
neighbour nodes with specific relations are gathered and
transformed into relational representations. After being
gathered, the relational representation is sent via an acti-
vation function.

attention mechanism in the transformer behind take concentrates
on the time series shapes instead of point-wise values [21].

We next employ the RGCN to propagate the local shapes of each
base station’s time series. The RGCN takes the convolution feature
matrix E°°"*? as input in time order which can be expressed as,

ERGCN — RGON(ES™) i€ {1,2,..,T}, )

where E; denotes the i — th step in the T time steps, RGCN de-
notes the RGCN layers, which can be expressed as Eq. 3. Then, we
collocate the output of RGCN to ERGCEN ¢ RNxrxd

We next employ the intra-attention mechanism, which focuses
on the feature vector of each base station, to model the time series.
This mechanism is composed of a time position encoding model
and transformer encoders. To leverage the sequence order [34], we
first apply time position embedding. We then utilize a transformer
to model the time series. To capture the interdependence of both
long and short-term temporal features, the transformer utilizes a
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multi-head self-attention mechanism, with each head focusing on
different aspects of temporal features, which can be expressed as,

T
hKh

)Vp, (10)
"

Q) = ERGCNWE, Kj, = EROCNWK v, = EROCNWY (17

E?° = Attention(ERCCN) = so ftmax(

where Wg, WIh< € RdXdk,W}‘l/ € R9%dv_ are learnable parame-
tersand h € {1,2, ..., H} denotes the h—th head. The intra-attention
mechanism takes the ERGEN a5 the input and outputs the domain
embeddings E9° € RN*4,

4.4 Environmental Context Modeling

The environmental context modelling takes the augmented spatial
knowledge graph G¢ as input, captures the environment informa-
tion of base stations, and outputs the environmental embeddings
of base stations.

To capture environmental information, we first use the TuckER
model to pre-train and learn the complex relationships between
entities and environmental features, resulting in learned embed-
dings of all entities in the augmented spatial knowledge graph
EPTe ¢ RN“Xd, where N, represents the number of entities in the
augmented spatial knowledge graph. We then utilize the RGCN
to improve the pre-trained embeddings for mobile traffic predic-
tion, which is not learnable. The RGCN takes EP" as its input and
outputs environmental embeddings E¢” € RN*4, where we only
retain the embeddings of the base stations.

To fuse the environmental embeddings E¢" (output of environ-
mental context modelling) and domain embeddings E%° (output of
semantic relationship modelling), we utilize the Inter-attentional
fusion module. This module first employs an inter-attention mech-
anism to capture the relationships between base stations, which
can be expressed as:

E! = Attention(E®"||E9°), (12)

where || denotes the concatenate operation, and the attentional
mechanism is expressed as Eq.10. Next, we use a Multilayer Per-
ception (MLP) [32] to be the output layer, which can be formed
as,

M = f(E**) = Wo(a(W1E¥" + by)) + by, (13)

where W, b are the trainable weight matrix and the bias matrix.
And the output of the MLP is the predicted future mobile traffic.
Algorithm 1 outlines the multi-relational knowledge graph con-
volutional network model training procedure. The model takes
the historical traffic matrix S* and the spatial knowledge graph as
input and outputs the mobile traffic for the next time step. The
model is trained in batches to minimize the difference between

predicted values [3%{“, fc;“, fc”l] and their corresponding true

N

values [x{”, xé”, e xﬁ'l]. We use the Mean Squared Error (MSE)

loss function to optimize the model’s parameters, which can be

formed as,
N
L=
i=1

Jel?+1 _ xit+1||2 . (14)
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Algorithm 1: Multi-relational Knowledge Graph Convolu-
tional Network Model
Input: Basic spatial knowledge Graph G, Augmented
spatial knowledge graph G?, historical mobile traffic
matrix St € RN* T
Result: Mobile traffic prediction for the next time step
[ﬁ{+l)f§+l’ - )%It\-;—l]
1 EC"  CausalConv1d(St) // Eon? ¢ RNXTxd
fori=1toT do
‘ ElRGCN —RGCN(E{°",G) // according to Equ 9
4 end
5 EP%S «PositionEmbedding(ERCCN) /7 EPOs ¢ RNXTxd
6 E'®™  Attention(EP°%) // according to Equ 10
7 E% « Mean(E!*™) // E?° ¢ RN*d
EP"¢ « TuckER(G?) // EP'¢ ¢ RNaxd
E®" — RGCN(EP"¢,G%) // E" € RN*d
10 Ef* « Concat(E",E4°) // Efv ¢ RN*2d
11 E%!  Attention(E/%) // E4t ¢ RN*2d

[#1F1, %041, %0 ] —MLP(E4'")

W N

o

©

-
1Y)

5 EXPERIMENT AND RESULT
5.1 Experimental Settings

Table 1: Statistics of the datasets used in our experiments.

Augmented Spatial KG ‘ Shanghai Nanjing

Regions 2579 1022
Business Areas 280 228

POIs 85018 51264
Categories 14 14
relationships 17 14

5.1.1 Datasets.

¢ Shanghai Dataset. The Shanghai Datasets consist of anony-
mous mobile traffic data collected by China Mobile in Shanghai
during August 2014. The dataset comprises 4505 base stations
and over 150,000 users, with each entry containing the anony-
mous device ID, start and end time of data collection, anony-
mous base station ID, and amount of data used in the connection.
We contributed 1.96 billion tuples of entries to 4505 base sta-
tions in Shanghai every 30 minutes, according to the tracing
logs. Moreover, the augmented spatial knowledge graph for
Shanghai includes five types of entities, such as regions, busi-
ness areas, POIs, categories, and base stations, with the number
of relationships totalling 17.

Nanjing Dataset. The Nanjing Datasets consist of anonymous
mobile traffic data collected by China Mobile from Nanjing
between February 2nd and March 31st, 2021. The dataset com-
prises 8000 base stations, which is larger than the Shanghai
Datasets. We contributed to 8000 base stations in Nanjing every
30 minutes. Furthermore, the augmented spatial knowledge
graph for Nanjing includes five types of entities, such as re-
gions, business areas, POIs, categories, and base stations, with
the number of relationships totalling 13.
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Table 1 shows the statistics of the Shanghai dataset and Nanjing
dataset. The large-scale and fine-grained datasets can ensure the
validity of mobile traffic reality and the model test.

5.1.2  Metrics. To address the issue of the large absolute value of
mobile traffic and focus on its magnitude, we apply log-normalization
to the mobile traffic data. In evaluating the performance of mobile
traffic prediction, we carefully consider three metrics: Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), and Coefficient
of Determination (R?).

5.1.3 Baselines. We elaborately select the following seven repre-
sentatives to be compared with our proposed algorithms, which
cover both representative classical traffic prediction models [4, 38]
and state-of-the-art deep learning models [7, 11, 35, 44, 48].

e SVR [4]. SVRis an extension of SVM for regression tasks that
predicts continuous output based on input features.

o ARIMA [38]. ARIMA is a statistical model for analyzing and
predicting time series data that uses three parameters to repre-
sent auto-regressive terms, moving average terms, and differ-
ences or orders.

e GAT [35]. GAT is a dynamic graph neural network that learns
node weights, capturing varying connection importance. It han-
dles changing graphs or contextual variables. We use mask
graph attention with GAT.

e GraphSAGE [11]. GraphSAGE is a graph representation learn-
ing method that enhances the scalability and performance of
GNN, which maximizes the ratio of sampling the current neigh-
bour node to sampling the entire graph.

e DeepTP [7]. DeepTP is an end-to-end deep learning model
that predicts spatial-temporally dependent cellular traffic over a
lengthy period. It handles complex and dynamic traffic patterns
influenced by spatial and temporal factors, using a sequential
module and a broad feature extractor.

e STGCN [44]. STGCN combines GCN and gated CNN architec-
tures to capture spatial-temporal patterns in graph-structured
data. It uses GCN to mine the graph’s topology and gated CNN
to explore dynamic mobile traffic features.

e T-GCN [48]. T-GCN combines GCN and GRU to model time
series and capture the dynamic mobile traffic change of node
attribution.

o GMAN][49]. GMAN utilizes an encoder-decoder architecture
with spatial-temporal attention blocks to capture the impact
of spatial-temporal variables on traffic conditions, where the
input traffic characteristics are encoded by the encoder and the
decoder predicts the output time step sequence.

5.1.4  Parameter Settings. Our model utilizes the Adam optimizer
[19] with a learning rate of 0.0005 and applies MSE loss for train-
ing. When using the TuckER model for pre-training, we set the
embedding vector dimension d to 32 and the epoch to 50 to balance
accuracy and efficiency. We set the length of the historical traffic
series T at 12 for higher accuracy and faster speed. The kernel size
of the one-dimensional causal convolution k is 3. We set the embed-
ding vector dimension for environmental context modelling and
semantic relationship modelling between base stations to 32. The
number of RGCN layers is 1, and we set the transformer encoder
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Table 2: Overall prediction performance of our model in com-
parison with compared algorithms on Shanghai and Nanjing
datasets.

‘ Shanghai Dataset ‘ Nanjing Dataset
Model | MAE RMSE R?* | MAE RMSE R
SVR 02092 03018 07479 | 02316 03336  0.7510
ARIMA | 0.2058 03041 0.7499 | 0.2328  0.3275  0.7797
GAT 0.1984 02650 05547 | 0.3574 04830 05735

GraphSAGE | 0.2138  0.2979  0.7418

T-GCN 0.1908 0.2694 0.7990 | 0.2516  0.3519  0.8178
STGCN 0.1996 0.2785 0.7767 | 0.2537 0.3642  0.8058
DeepTP 0.1869  0.2610 0.7991 | 0.2322  0.3327  0.8196
GMAN 0.1807  0.2554 0.8078 | 0.2209 0.3237  0.8237

0.2354  0.3467  0.7483

0.1478 0.2211 0.8577 | 0.1908 0.2832 0.8658
18.20% 13.42%  6.17% 13.62% 12.51% 5.11%

our model
Improv.

layers as 2 with H = 8 heads. In the inter-attention mechanism, we
set the dimension of the key and value as 32 and 16, respectively.
The datasets are divided into three parts: training, validation, and
testing, with a ratio of 0.7:0.15:0.15.

5.2 Overall Performance

In Table 2, we display the overall results of our model, temporal
model (SVR, ARIMA), spatial model (GAT, GraphSAGE), and spatial-
temporal model (DeepTP, STGCN, T-GCN, GMAN) to predict the
next time stamp (30 minutes) in Shanghai Datasets and Nanjing
Datasets. We list three metrics of all methods. From the results, we
have the following findings:

e Our framework steadily achieves the best performance.
Our model gets superior results on both datasets and perfor-
mances better than other compared algorithms. For example,
the R? improvement of our model compared with the second-
best performance model (GMAN), is around 5.11% to 6.17%. The
MAE reduction of our model is about 13% to 18%.

e Spatial models perform poorly in the mobile traffic pre-
diction task. Spatial models are commonly used to analyze
spatial data such as geographic patterns and location-based in-
formation. However, these models may not have the necessary
modules to model time series data or capture temporal features.
As a result, their performance may be inferior to models that
incorporate temporal information. By incorporating temporal
components into spatial models, we can achieve more accurate
predictions and better performance in real-world applications.

o It is essential to model various semantic relationships
and environmental information. Modeling various seman-
tic relationships and environmental information is crucial as
it not only facilitates the capture of spatial features but also
enhances the performance of models. Besides, we can see that
the Urban Knowledge Graph could mine more environmental
features that could be useful for mobile traffic prediction than
the distance matrix. Compared with STGCN and T-GCN, we can
obtain that our augmented spatial knowledge graph, consisting
of four semantic relations and environmental information, can
capture more spatial and temporal features than only the dis-
tance matrix. Compared with all spatial-temporal models, the
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Figure 4: Ablation study.

Table 3: Prediction results of the effectiveness of the aug-
mented spatial knowledge graph.

‘ Shanghai Dataset ‘
Graph | MAE RMSE R’ | MAE RMSE R?
our model | 0.1478 0.2211 0.8577 | 0.1908 0.2832 0.8658

Nanjing Dataset

w/o category | 0.1481 0.2213 0.8566 0.1915 0.2836 0.8654
w/o POI 0.1494 0.2224 0.8554 0.1948 0.2866 0.8625
w/o BA 0.1507 0.2243 0.8512 0.2019 0.2980 0.8514

w/o region 0.1518 0.2251 0.8502 0.2037 0.2995 0.8499

improvement of our model is around 7.33% to 10%. The MAE
reduction of our model is about 20% to 25%.

5.3 Ablation Study

To gain a deeper understanding of each component of our model,
we conducted a series of ablation experiments. Firstly, we removed
the augmented spatial knowledge graph, followed by removing
only the RGCN layer within this modelling. Next, we eliminated
the traffic encoder.

The results of the ablation study are presented in Figure 4. We
observe that removing the augmented spatial knowledge graph,
which involves deleting the environmental context modelling, re-
sults in a decrease in performance as the model lacks environmental
information. Eliminating the RGCN layer and using the pre-trained
embeddings from TuckER may not be suitable for this task as the
embeddings are static. In semantic relationship modelling, the trans-
former can better model time series and capture more temporal
features. Without the traffic encoder, the model fails to capture the
temporal dependency, resulting in a rapid decrease in performance
of around 10% to 17%.

5.4 Sensitivity Study

o Effectiveness of the Urban Knowledge Graph. To showcase
the effectiveness of each entity in the augmented spatial knowledge
graph, we remove an entity and the relationship connected to this
entity each time. We conducted experiments on the Shanghai and
Nanjing datasets, and the results are presented in Table 3. The
results indicate that the intact Urban Knowledge Graph outperforms
the sub-graphs, demonstrating the importance of leveraging the
full extent of the graph for optimal performance. Furthermore, we
observed that regions and business areas, outperform POIs and
categories. This can be attributed to the fact that POIs contain more
micro-geographic information and are more challenging to capture
in terms of spatial structure and environmental information. In
contrast, regions and business areas provide a more macro-level
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Figure 5: Prediction results of single semantic relation be-
tween base stations.

perspective and are easier to model and analyze within the context
of the augmented spatial knowledge graph.

e Performance of Semantic Relationships between Base
Stations. To evaluate the effectiveness of different semantic rela-
tions between base stations, we conducted experiments by select-
ing one relation at a time and incorporating it into the semantic
relations between base stations modelling. We then tested the per-
formance on both the Shanghai and Nanjing datasets. The results
of these experiments are presented in Table 5. Our findings indi-
cate that incorporating all four semantic relations simultaneously
leads to better performance than using only a single relation. This
suggests that each relation captures different aspects of the relation-
ships between base stations, and utilizing all of them leads to a more
comprehensive understanding of the behaviour of base stations in
the urban environment. Of the four individual relations, the pattern
similarity performs the best, while the function similarity performs
the worst. The success of the pattern similarity can be attributed
to the fact that the inputs of traffic encoders are temporal features
such as local shapes, which are well-suited to capture this type of
relationship. In contrast, the function similarity is a geographically
similar relationship that may not be as easily captured by the model.
These results provide insights into the effectiveness of different
semantic relations between base stations and can inform decisions
related to the selection of relations in future models.

5.5 Case Study

e Comparison in Predicting Base Station Traffic Patterns. In
our study, we conducted a performance comparison between our
proposed model and the second-best model, GMAN, in predicting
the values of four different types of base stations, each of which is
located in different areas and has its own traffic patterns [41]. To
evaluate the performance of models, we plotted predicted values
against the actual values for each model, as shown in Figure 6.

Our results demonstrate that our proposed model outperforms
GMAN in terms of prediction accuracy, producing more reliable and
low-latency predictions. Specifically, our model displays superior
performance in distinguishing the different traffic trends of base
stations on weekdays and weekends. We attribute this to the fact
that our model utilizes an augmented spatial knowledge graph,
which integrates various environmental information. This allows
our model to capture more nuanced and complex traffic patterns in
the urban environment, leading to better prediction accuracy.
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® Multi-step Prediction. To further evaluate the effectiveness
of our proposed model, we conducted a multi-step prediction ex-
periment to test its long-term prediction performance. In this ex-
periment, we compared the performance of our model with GMAN
and DeepTP, over a period of five prediction steps. The results of
this experiment are presented in Figure 7.

Our results demonstrate that as the number of prediction steps
increases, all models experience a decline in performance. However,
our proposed model continues to outperform all others, showcasing
its ability to effectively capture both short and long-term time series
features. This is a crucial advantage for predicting traffic patterns
in urban environments, where accurate forecasting over extended
periods is essential for effective resource allocation and planning.

5.6 Application on Real-world System

Our cellular traffic prediction model has been deployed on the
Jiutian Artificial Intelligence (AI) Platform!. Jiutian Artificial Intelli-
gence (AI) Platform is China Mobile’s self-developed Al innovation
platform, providing intelligent decision-making support for mobile
networks. As shown in Figure 8, our model acts as a key part in
the Al-empowered modules for communication modelling, which
support mobile network applications, including network resource
allocation, green communications, and mobility management.

https://jiutian.10086.cn/portal/
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Figure 8: The framework JiuTian AI platform.

6 CONCLUSION

Our research leverages the power of spatial knowledge graphs to
provide semantic relationships between base stations, allowing us
to capture various types of spatial information. In addition, we aug-
ment the spatial knowledge graph with other critical components
of urban areas, such as regions, business areas, POIs, and categories.
This enables the knowledge graph to be a more powerful tool for
capturing environmental information. By leveraging the augmented
spatial knowledge graph, we can incorporate multiple types of spa-
tial data and capture a wide range of spatial dependencies and
environmental factors. To fully utilize the spatial knowledge graph
and capture the complex relationships between different urban
components, we propose a Multi-relational Knowledge Graph Con-
volutional Network, which is designed to integrate both spatial and
semantic information to predict future traffic volumes accurately.
The RGCN component of the model captures environmental in-
formation, while the transformer encoder and causal convolution
model semantic relationships. Finally, an inter-attentional mecha-
nism combines these features to make the prediction.
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Empowering Spatial Knowledge Graph for Mobile Traffic Prediction

A DETAILS OF AUGMENTED SPATIAL
KNOWLEDGE GRAPH

A.1 Entities

e Region. According to the road network, the urban space is
divided into regions, which aim to reflect the organizational
structure of the urban space and the location choice of people
in the city for social production and life.

e Business Areas (Ba). Business areas are spaces within a city
that result from the clustering of economic and social activities.
They are formed through the process of social production and
daily life, but do not have clear physical boundaries.

e Points of Interest (POI). POIs describe the basic functional
units and places in the city, such as schools, hospitals, shopping
malls, etc., which are fine-grained places where people carry
out social production and life in the city.

e Categories (Cate). Categories describe the functional attributes
and categories of POI entities and combine expert knowledge
to divide all POI entities into 14 categories.

A.2 Relationships

In the augmented spatial knowledge graph, the relationship be-
tween urban elements is distinguished into three aspects, spatial
relationship, subordination relationship and functional relationship.

Spatial relationships model the spatial location and attribute
knowledge between urban elements.

o borderBy. The borderBy relationship is a symmetrical associa-
tion between two regions that share a common boundary, which
describes the relationship between regions that are adjacent to
each other.

nearBy. The nearBy relationship is a symmetrical association
between two regions that are in spatial proximity to each other,
which describes the relationship between two region entities
that are within a certain distance of each other.

o locateAt. The locateAt relationship describes the spatial rela-
tionship between a POI and a region, which associates the POI
with the region where its physical location is situated.

baseLocateAt. The baseLocateAt relationship associates a base
station with the region where it is physically located, describing
their spatial relationship.

Subordination relationships model the affiliation between urban
elements at the cognitive level.

e belongTo. The belongTo relationship describes the association
between a POI and the business area it belongs to, which links
the POI with the corresponding business area in the knowledge
graph. As the coverage of different business areas may overlap,
a POI can be associated with multiple business areas through
this relationship.

e CateOf. The CateOf relationship describes the category at-
tribute information of the POL

o baseBelongTo. The baseBelongTo relationship describes the as-
sociation between a base station and the business area it belongs
to, which links the base station with the corresponding business
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Table 4: Statistics of relationships in Shanghai and Nanjing-
datasets.

Semantic Info Relation ‘ Shanghai Nanjing
borderBy 13550 5498
Spatial nearBy 39312 12658
locateAt 85018 51264
baseLocateAt 4505 8000
belongTo 67760 42813
Subordinate CateOf 85018 51264
baseBelongTo 4012 7069
BaServe 13256 6457
competitive 508 -
Function coCheckIn 13621 -
similarFunction 5152 -
flowTransition 650 -
POlIserverBy 352137 228923

area in the knowledge graph. As the coverage of different busi-
ness areas may overlap, a base station entity can be associated
with multiple business areas through this relationship.
Functional relationships model specific functional-related knowl-
edge between urban elements from different functional perspec-
tives.

e BaServe. The BaServe relationship inks business areas and
regions, connecting the business area to the region within its
service range. As service ranges may overlap, a region can be
linked to multiple business areas through this relationship.

e competitive. The competitive relationship describes the com-
petition between POIs in terms of their economic attributes and
spatial locations, which associates two competitive POIs with
each other in the knowledge graph.
coChecklIn. The coCheckIn relationship describes the correla-
tion between two POIs in terms of user access, which associates
two correlation POIs with each other in the knowledge graph.

e similarFunction. The similarFunction relationship describes
the similarity between regions in terms of urban functions
and associates two regions with similar urban functions in the
knowledge graph.

o flowTransition. The flowTransition relationship describes the
transfer of people flow between two regions, which are referred
to as the source region and the destination region, which asso-
ciates the two regions with each other in the knowledge graph.

POlIserverBy. The POIserverBy relationship describes the ser-
vice dependency between base stations and POIs, which as-
sociates base station with POIs within their service radiation
range. As the service radiation ranges of different base stations
may overlap, a POI can be associated with multiple base stations
through this relationship.

Table 4 shows the statistics of relationships in Shanghai and Nan-
jing datasets. Due to the absence of user access data, the Nanjing
dataset lacks competitive, coCheckIn similarFunction and flowTran-
sition relationships.



	Abstract
	1 Introduction
	2 related works
	2.1 Mobile Traffic Prediction
	2.2 Traffic Prediction in Other Applications

	3 preliminary
	3.1 Problem Definition
	3.2 Spatial Knowledge Graph
	3.3 TuckER Decomposition
	3.4 Relational Graph Convolutional Network

	4 methods
	4.1 Framework Overview
	4.2 Spatial Knowledge Graph Construction
	4.3 Semantic Relationship Modelling
	4.4 Environmental Context Modeling

	5 experiment and result
	5.1 Experimental Settings
	5.2 Overall Performance
	5.3 Ablation Study
	5.4 Sensitivity Study
	5.5 Case Study
	5.6 Application on Real-world System

	6 conclusion
	References
	A Details of Augmented Spatial Knowledge Graph
	A.1 Entities
	A.2 Relationships


