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Abstract—Wearable-based affective computing offers a promis-
ing solution for monitoring and managing stress and fatigue
in adolescent student populations. This can help to support
student well-being without increasing reliance on mobile phones
by providing on-device insights into stress and fatigue levels.
To do so, the processing and classification methods must be
lightweight enough to be executed in real-time on wearables. This
study outlines the findings of the implementation of a student-
informed wearable and mobile app, Wellby. Students tested this
for one month while completing routine photoplethysmography
(PPG) recordings and check-ins on their perceived levels of
stress and fatigue. This study proposes a lightweight processing
pipeline, intended for wearable-based deployment, while exam-
ining its classification performance on real-world student PPG
data from Wellby. The pipeline performs denoising, fixed noise
elimination, and peak detection to calculate time-domain heart
rate variability (HRV) metrics. It was first evaluated on public
datasets, the Wearable Stress and Affect Detection (WESAD)
dataset and the AKTIVES dataset, achieving an area under
the receiver operating characteristic curve (AUC-ROC) of up
to 91.58% for stress classification on WESAD and 76.61%
on AKTIVES. In the Wellby dataset, the adapted processing
pipeline achieved an AUC-ROC of 77.02% for stress classification
and 71.58% for fatigue classification using only time-domain
HRV features. Furthermore, the inclusion of a signal quality
metric and baseline well-being questionnaires improved the AUC-
ROC for stress classification to 91.60% in the best performing
model. These findings demonstrate the potential for wearables
to implement real-time affective computing, providing timely
feedback to students in real-world settings based on PPG and
contextual data. The code used in this study is available on
GitHub [https://github.com/j-1aiti/PPG-affect-classification].

Index Terms—Wearables, student stress and fatigue detection,
PPG, edge computing, machine learning

I. INTRODUCTION

HE increased adoption of wearable devices, such as

wristbands, glasses, rings and headbands, has expanded
the availability of sensors for continuous monitoring of phys-
iological data [[1]]. These devices capture health-related data
through measurement techniques such as photoplethysmogra-
phy (PPG), accelerometry (ACC), and electroencephalography
(EEG) for the collection of heart activity, movement, and brain
activity, respectively [2]. Physiological signals from wearables
can provide insights into psychological processes, making
these devices valuable tools for monitoring affective states
such as stress and fatigue in daily life [3[]-[6].

This paper was produced by the IEEE Publication Technology Group. They
are in Piscataway, NJ.
Manuscript received March 28, 2025; revised 2025.

The detection of acute psychological stress using data
from wearable devices has been gaining attention within
affective computing research [7]]. Psychological stress man-
ifests itself through physical reactions in the body that can
be detected from brain activity, eye movements, respiration
rate, skin conductivity, and heart activity [5]. Among these,
skin conductivity and heart activity are the most commonly
used for wearable-based stress detection [8]. For example,
heart rate variability (HRV) is a widely used signal for
stress detection [8], emotion recognition [3[], [9], and fatigue
detection [10]. PPG is a technique that uses non-invasive
optical sensors to detect changes in blood flow through light
absorption which is commonly used in wearables for HRV-
based monitoring due to ease of integration and suitability for
continuous monitoring [11].

With the increasing use of wearables for affect detection,
educational settings have emerged as a key research area
in affective computing, as both students and teachers face
increasing stress levels [5], [[12]. Biofeedback tools, which
provide real-time insight based on physiological data, show
promising results for stress management in both educators and
students [13]], [14]. Academic stress is commonly experienced
by adolescents cross-culturally and is associated with poor
sleep quality [15], nutrition disorders [16], and low academic
performance [13]. Importantly, the physiological stress re-
sponse undergoes a period of development in adolescence that
makes it unique to that of adults, with heightened and more
prolonged stress-induced hormonal responses that can increase
susceptibility to stressors [17]. The detection of the unique
stress and fatigue responses in educational settings presents an
opportunity to address student-specific well-being needs that
may have long-term health implications [[18]. Although ado-
lescents are increasingly seeking mobile apps and wearables
to support their well-being needs, few student-focused tools
support engagement and change in health behavior [[19], [20].
PPG-based affective computing tools offer promising support
for students but remain underexplored in educational settings.
To understand PPG-based stress and fatigue detection for
students, more research is needed in real-world environments,
as most existing studies have been conducted in controlled
laboratory settings [S[], [21]], [22].

Machine Learning (ML) techniques are widely used for
affect state classification due to the efficient handling of com-
plex physiological patterns compared to traditional threshold-
based methods [23]]. Therefore, wearable devices for affect
detection in educational settings must integrate ML models,
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complicating the implementation of lightweight stress and
fatigue detection. During the school day, students often have
limited access to their smartphones, so wearable devices must
function on their own. However, the small form factor of wear-
ables restricts their storage and processing capabilities [24]].
Real-time stress and fatigue classification requires several
steps, including continuous data collection, processing, and
communication with peripheral devices. Thus, wearable-based
processing methods must be optimized for edge computing,
or perform these steps locally on the wearable before sending
the output to a cloud server, thereby balancing accuracy with
power and computational constraints [25].

Despite the promise of PPG-based stress detection, sig-
nal processing in real-world conditions remains a challenge
due to motion artifacts and inconsistent signal quality [26],
[27]. Many consumer wearables generate stress, readiness,
or drowsiness scores. However, the algorithms used to de-
rive these metrics from everyday wearable data often lack
transparency [28]] and consistency between devices [29]]. This
presents a need for more robust signal processing and valida-
tion methods to encourage the implementation of accurate and
context-specific insights for the people using these devices.

These challenges can be summarized as follows:

o The limited number of real-world studies that have ex-
plored PPG-based wearable detection of fatigue or stress
in educational settings hinders evidence-based solutions.

o Wearables must execute complex pipelines despite hard-
ware limitations in power and computation.

o Existing stress and fatigue scores lack transparency in
how they are generated.

To address these gaps, this study presents a novel,
lightweight processing pipeline for PPG signals collected from
students during the final month of the school year. The pro-
cessing pipeline is adapted to be computationally efficient and
suitable for PPG-based affect detection on wearable devices
by implementing simplified filtering, noise elimination, peak
detection, and affect classification using time-domain HRV
features. Signal quality and contextual information, including
baseline well-being questionnaires, are also included in the
feature set for this pipeline.

For PPG data collection, we use a custom-built, wrist-
worn PPG sensor which is a low-cost purpose-specific device
designed to support edge computing. This enables local signal
processing, reduced latency, and enhanced security and privacy
to provide on-device insights [30], [31]. We evaluate our
proposed pipeline for stress and fatigue detection based on
both our student dataset and open-source datasets for stress
detection [32]], [33]] to assess generalizability.

This paper contributes the following:

e A real-world implementation and evaluation of PPG-
based wearable stress and fatigue detection optimized for
wearable use in educational settings.

o An adapted lightweight processing pipeline for HRV
extraction and ML stress and fatigue classification com-
pared to baseline methods.

« An explainability analysis of HRV features and contextual
factors that influence the output of the classification
models.

To our knowledge, no prior work has provided an open-
source PPG-processing pipeline validated with an adolescent
cohort and optimized for deployment on resource-constrained
wearable devices. Our approach addresses this gap by focusing
on data from adolescents in real-life scenarios and presenting
a lightweight pipeline for affect classification based on time-
domain HRV, baseline well-being, and signal quality metrics.

The remainder of this paper is organized as follows. Section
IT outlines related research on affect detection using wearables
in educational settings and for PPG-based stress and fatigue
detection. Section III details the methods used for data col-
lection, PPG signal processing, and performance evaluations
on both public and Wellby datasets. Section IV presents the
results of the PPG processing, the correlation of HRV features
with affect labels, the performance of ML models across each
dataset, and the impact of the PPG features on the model
performance. Section V discusses and interprets these findings,
while Section VI concludes the paper with key takeaways,
limitations, and recommendations for future work.

II. RELATED WORK

This research investigates a lightweight PPG-based stress
and fatigue classification pipeline applied to public, lab-
based datasets and data collected in this study from students
in their daily life. A recent systematic review of wearable
technologies in education highlighted that most studies focus
on university students, mainly use EEG devices, and are
conducted in controlled laboratory settings [34]. Among the
few studies that incorporate HRV-based measurements, one
explored stress levels during exams, comparing across student
levels (e.g., undergraduate vs. graduate) or exam types [35].
Another study implemented PPG-based HRV biofeedback
sessions using slow breathing with live HRV metrics feed-
back to reduce social stress and anxiety in primary school
students [36]. Other techniques, such as eye tracking [37]
and facial recognition [38[], have been used to assess student
attention and fatigue levels during class times. A study in
technical education settings used PPG-based stress detection
during lessons and reported over 86% accuracy [39]]. Despite
the growth of research in this area, there remains a gap in
the application of PPG-based wearables to monitor stress
and fatigue in students’ daily lives, particularly outside of
structured classroom activities and exams.

In addition to a lack of real-world studies, a review of
PPG-based wearable stress detection emphasized the need
for greater attention to data processing methodologies [21].
While edge-based signal processing was highlighted for its
speed and direct access to raw data, most pipelines still
rely on computationally intensive methods suitable only for
offline or cloud-based analysis. Neural network architectures,
including artificial neural networks (ANNs), convolutional
neural networks (CNNs), Long Short-Term Memory networks
(LSTMs), and transformer architectures are widely applied
for feature extraction and affect detection of PPG signals.
One study demonstrated higher performance using a simple
ANN compared to traditional machine learning methods for
binary stress classification based on the WESAD dataset, with
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accuracies of 95.21% and 93.20%, respectively [40]. Despite
promising research in neural networks, other traditional meth-
ods of feature processing without deep learning have resulted
in an accuracy of 96.50% on the same WESAD dataset
using PPG alone [41]]. Prior research implemented ensemble
base peak detection, adaptive noise filtering, and classification
using machine learning with the best performance from Linear
Discriminant Analysis [41]. Furthermore, other research has
investigated hybrid feature approaches, including one study
which combined features generated from a CNN with tradi-
tional ECG and EDA feature extraction from WESAD, re-
sulting in an accuracy of 90.05% [42]. Alternative approaches
using spectrograms have also been explored for PPG feature
extraction [43[], [44]. While there are various approaches for
classifying affective state based on PPG data, the processing
pipelines used in these studies are computationally intensive
and do not address on-device feasibility. Additionally, while
the WESAD dataset is widely used to study affect detection
[45]], it is limited to an adult cohort and a controlled setting
[32]. Therefore, there remains a need to evaluate lightweight
pipelines in comparison to other mainstream methods to
address the feasibility of implementation for PPG-based stress
and fatigue edge detection in various contexts.

III. DATA ACQUISITION & METHODS
A. Participants

Senior-level students (n = 43) from three secondary schools
in Ireland participated in this project (Table [[). Schools A
and B are mainstream secondary schools (co-ed and all-girls,
respectively, catering for students aged 12-18 years), while
school C is a Youthreach Centre which is an alternative school
that supports early-school leavers from mainstream schools.
Students in Schools A and B were eligible if they were in
their fifth year (age range 16-18 years), while all students in
School C (Youthreach) were eligible (age range 16-19 years).
The project consisted of two stages. In stage one, groups of
students from each of these schools participated in a needs
assessment and co-design process to tailor a wearable device
and mobile app, which they named ‘Wellby’, to their well-
being needs [46]]. Stage two is outlined in this paper, where
students tested Wellby for four weeks. Table [I] outlines the
demographics of the participants and indicates the number
of students who participated in the co-design previously. The
legal guardians of the students completed consent forms and
students completed assent forms to participate in this study.
Students were informed that their participation was voluntary,
that they could leave at any time during the research, and that
their participation or non-participation would not affect any
other aspect of their schoolwork or performance.

B. Study Protocol

In this study, the students had access to the Wellby mobile
and mobile app for four weeks in May 2024 (Fig. [I). PPG
recordings collected throughout the month were linked to in-
app mood, stress, and fatigue check-ins. Student feedback on
the usability of Wellby, including app engagement metrics
and post-study interviews, will be reported in a forthcoming

paper. At the beginning of the month, students completed three
questionnaires which have been validated for adolescents, in-
cluding the Perceived Stress Scale (PSS) [47], Pittsburgh Sleep
Quality Index (PSQI) [48]], and the Engagement, Perseverance,
Optimism, Connectedness, and Happiness (EPOCH) Measure
of Adolescent Well-Being [49]].

The wearable device, assembled by RCSI researchers, col-
lected PPG recordings from the wrist. This device, enclosed
in a 3D printed nylon casing, included the XIAO NRF52840
microcontroller and the MAX30101 PPG sensor which was
chosen for its form factor and the ability to use red, infrared,
and green LEDs for PPG. The MAX30101 has undergone
previous validation for wrist-based HRV measurements [50],
[51]. The recordings were initiated in the mobile app after the
Bluetooth connection was secured to the wearable. Students
received reminders three times a week to complete check-
ins on the app by starting a one-minute PPG recording while
sitting.

After the recording, the students completed a brief check-in,
including scales for level of relaxation and alertness to indicate
stress and fatigue level and other contextual information for
each recording. The raw PPG recordings, extracted HRV fea-
tures, and check-in data were uploaded to the cloud and stored
in a Google Firestore account accessed by the researchers.
Students were able to see the computed metrics after the
recording, including heart rate, signal quality index (SQI), and
two time-domain HRV metrics, including root mean squared
of standard differences (RMSSD) and standard deviation of n-
to-n peaks (SDNN). The signal quality was calculated based
on the standard deviation and mean of both the overall signal
and peak-to-peak intervals, which were expressed to students
as either low, good or excellent. A summary of previous
recording metrics and educational information was available
to students in the app. The data collection process is further
outlined in Fig.

C. PPG Processing Pipeline

We developed a lightweight PPG processing pipeline de-
signed to accommodate the computational requirements of the
NRF52840 microcontroller used in the Wellby wearable device
building on previous work [41]], [52]-[54]. Common PPG pro-
cessing steps in these works include running a bandpass filter,
moving average, noise elimination, peak detection, and HRV
feature extraction. These features serve as inputs for training
and evaluating ML classification models. An open-source
pipeline outlined by Heo et al. [41] uses the Wearable Stress
and Affect Detection (WESAD) dataset [32]] and incorporates
noise filtering, adaptive noise elimination, ensemble peak
detection, and HRV feature extraction from time, frequency
and non-linear domains. In contrast, our proposed pipeline
uses a simplified noise elimination method, a single threshold-
based peak detection algorithm, and focuses exclusively on
time-domain HRV features (Fig. [2). Table [T outlines the time-
domain features extracted from the PPG data.

This adapted pipeline was validated on the open-source
WESAD [32]] and AKTIVES datasets [33[], and the Wellby
data collected in this study. The raw PPG data in the WESAD



JOURNAL OF AFFECTIVE COMPUTING

TABLE I
DEMOGRAPHICS OF PARTICIPANTS BY SCHOOL

Category School A (n=16) School B (n=11) School C (n=16) Total (n=43)
Age
16 5 2 5 12
17 11 7 7 25
18 0 2 1 3
19 0 0 3 3
Ethnicity
White Irish 12 5 13 30
White - Other European 4 2 1 7
White African 0 1 0 1
Black or Black Irish 0 1 1 2
Asian 0 2 1 3
Gender
Female 8 10 9 27
Male 8 0 5 13
Non-binary 0 0 1 1
Prefer not to say 0 1 1 2
Previous Research Engagement
Prior co-design participants 15 10 15 40
New participants 1 1 1 3
i Metrics display
Post-recording form In-app wearable dashboard
Check-in on current activity, to connect device, view
mood, stress and fatigue metrics, and start recording
‘Wearable connection Wearable Dashboard Data saved
Device worn on the . Wihait's going o2 ; to the cloud
wrist and connected to PPG recording = ;;né RecentMeasures . Raw PPG signal
the app via BLE Ong'lnmuﬁ: Otf ZPG o= 83ms 78?:,,5 and post-recording
ata collecte Camng ot RatumtoBamce i
o . f(gln data sav Ld,(m
joogle Firebase
v | == =l g
Recording heart activity... I'm feeling: + Start a new recording Q
3x per week © 3¢ 4s [ View session summary
10 seconds Mood Alert Relaxed
)
m Breath HRV
Pacer Information
& = L 4 [ 4 () - L 4 ®

Fig. 1. Data collection process overview: (a) Students received check-in reminders three times per week. (b) To begin a session, students wore the wearable
device and paired it with the mobile app. (c) During each session, students completed a one-minute PPG recording via Bluetooth Low Energy (BLE). (d)
Following the recording, students completed post-recording self-reports rating their alertness and relaxation levels from 1-5 to assess stress and fatigue. (e)
The app displayed metrics from the latest recording (RMSSD, SDNN, HR, and SQI). (f) The raw PPG signals, extracted features, and self-report data were

then uploaded to the cloud for storage and analysis

dataset were segmented into 2-minute components to enable
comparison with similar work [41]], [55]], while the AKTIVES
dataset was separated by 30-second intervals based on the short
duration of the labels [33]. 1-minute recordings were retained
for the Wellby dataset. These windows have been shown
to be sufficient for HRV time-domain calculations and
align with the computational limitations of wearable devices.
Furthermore, windows of 30-60 seconds have demonstrated
high performance for stress detection, which may be attributed
to a correlation with the onset time of the physiological stress

response [57].

The signals were standardized, and a 2nd order Butterworth

bandpass filter of 0.5-10 Hz was applied based on previous
research in PPG signal processing and PPG-based stress
detection [41]]. The lower cutoff can help to reduce signal
drift, respiratory artifacts, and low-frequency motion artifacts
while the upper cutoff can eliminate high-frequency noise [59].
Other studies recommend alternative ranges, such as 0.2-10
Hz and 0.5-8 Hz [59], which were tested for the WESAD
dataset and show a less than 1% and 5% average change,
respectively, compared to 0.5-10 Hz in the time-domain HRV
metrics used in this study.

Following the bandpass filter, a moving average filter with
a window of 5 data points was applied to smooth the signal.
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A. Noise filtering B. Noise elimination

C. Peak detection D. Feature extraction

| Raw PPG I Band-pass filter
signal E> E>

Moving
average filter

intervals and extract
standard deviation

Remove segments
above set threshold

Segment data at fixed E>

Calculate 10 features

Run local maxima
E> from the time domain

peak detection

E>| Classifier I

Fig. 2. PPG processing pipeline presented including noise filtering, noise elimination, peak detection and feature extraction.

The signal was then segmented into 3-second components,
and the standard deviation was calculated for each segment. To
eliminate high-noise components, the highest 15% of segments
were removed [[61]] and the same moving average filter was
reapplied to smooth the final signal. Peak detection was
implemented using a threshold-based algorithm that identifies
local maxima above the global average of the signal [62].

TABLE 11
TIME-DOMAIN HRV METRICS AND THEIR CALCULATION FORMULAS

Metric Calculation

— 60
Mean HR Mean HR = N
Std HR Std HR = Standard deviation of HR values

N-1
RMSSD RMSSD = \/ﬁ SN N NNy — NN;)2
SDNN SDNN = Standard deviation of all NN
SDSD SDSD = Standard deviation of NN; 1 — NN;
NN 1 N

Mean NN NN = 5 YL NN;
Mean SD Mean SD = Mean of NN;;1 — NN;
Median NN Median NN = Median of NN;
pNN20 pNN20 = Number of |NN3\4;1INNi|>20ms % 100%
pNN50 pNN50 = Numberof|NN§<;_iINNi|>50ms % 100%

D. PPG Datasets

The Wellby dataset collected in this study includes data
from 43 students who were encouraged to record PPG data
three times a week for four weeks using the Wellby wearable
and mobile app. In total, 100 one-minute PPG recordings
(50 Hz) were uploaded via the mobile app. However, due to
motion artifacts, initial hardware issues, and several missing
self-reported stress/fatigue ratings, only 38 recordings were
retained for analysis. These recordings represent data from 19
different students and were examined to confirm that distinct
PPG waveforms were present in each.

The public WESAD dataset consists of 15 participants
who wore the wrist-based Empatica E4 device while un-
dergoing controlled baseline, amusement, and stress-inducing
conditions. The dataset provides PPG, skin conductance, tem-
perature, and accelerometer data. The combined activities
resulted in approximately 36 minutes of PPG data per WESAD
participant [32]. This paper focuses only on the PPG signal
from baseline and stress states, aligning with a prior evaluation
of the WESAD dataset [41]].

The public AKTIVES dataset includes 25 child participants
who wore the wrist-based Empatica E4 device while com-
pleting therapeutic games in a controlled setting. Participants

completed two computer-based games lasting approximately
7 minutes each [33|]. The dataset provides PPG, skin con-
ductance, temperature, and accelerometer data, although only
the PPG signal was used in this study. Participant data were
included in the analysis in this paper if PPG data was available
with at least one stress label during the gaming activities.
Although both of the public datasets outlined have been used
for stress detection, they have several limitations compared
to the Wellby dataset collected in this study. The WESAD
and AKTIVES data were collected in a controlled laboratory
environment during predefined stress-inducing activities and
neither include fatigue labels. In addition, WESAD only
includes adult participants. In contrast, the Wellby dataset
offers real-world data from secondary school students. The
characteristics of each dataset are summarized in Table

TABLE III
DATASETS USED FOR PPG-BASED AFFECT CLASSIFICATION

Property Wellby WESAD AKTIVES
Participants 19 15 15
Age (mean = 169 £ 0.8 275+24 102+ 1.3
SD)
Sampling rate 50 Hz 64 Hz 64 Hz
Total record- 38 (Stress: 15/38, 30 (15 stress, 15 16
ings used Fatigue 24/38) baseline)
Duration per 1 minute Stress: ~10  ~7 minutes
recording min, Baseline:

~20 min
Context Everyday life Controlled 1lab  Controlled

setting lab setting
Label used as  Self-reported Activity-based Expert-
ground truth stress/fatigue stress/baseline labeled stress

E. ML Classification of Stress and Fatigue

The features extracted from the PPG recordings were used
to train various ML models to determine stress and fatigue
using binary classification algorithms. The subjective self-
assessment of stress and fatigue completed by the students
after each recording was used as the ground truth for the
Wellby dataset. Consistent with previous work [55]], the 1-5
scale for self-reported calmness and alertness was binarized,
with scores of 1-3 classified as “stress/fatigue” and scores of
4-5 as ’no stress/fatigue’ to achieve binary classification.

A range of traditional ML algorithms were compared,
including Random Forest (RF) [63]], AdaBoost (AB) [64], K-
Nearest Neighbors (kNN) [65], Linear Discriminant Analysis
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(LDA) [66], Support Vector Machine (SVM) [67]], and Gradi-
ent Boosting (GB) [68]].

These models were selected based on their previous appli-
cation in affect detection studies [Sf], [41]], [69] and relatively
low computational cost compared to deep learning models.
Additionally, a systematic review found that SVM, RF, and
kNN were most often used for stress detection, with consis-
tent high performance in tree-based models and the highest
performance reported using LDA [57]. Similarly, SVM, kNN
and tree-based models are frequently used for fatigue detection
from wearable data [4].

F. Model Training and Evaluation

Stratified group k-fold validation and leave one group out
(LOGO) evaluation methods were used to ensure the balance
of classes and separate participants in the data splits. To
address class imbalance, models were trained using weighted
loss functions that assigned higher penalties to the minority
class (stress/fatigue). The training and evaluation architectures
for public datasets followed previous studies to enable direct
comparisons [33[], [41]. For the Wellby dataset, hyperparam-
eter tuning was performed using grid search to maximize
the average precision. Model performance was assessed using
average precision, balanced accuracy, and Area Under the
Receiver Operating Characteristic Curve (AUC-ROC) to assess
model robustness.

For each model evaluation, we included baseline compar-
isons from deep learning approaches including one CNN-
based model [70] and one hybrid model [42] incorporating
both time-domain features and CNN features. Efficiency met-
rics were compared across the methods and the datasets in
this study. The model implementations and efficiency mea-
surements can be found in GitHub [https://github.com/j-laiti/
PPG-affect-classification].

In addition, models were trained on different feature sets
included in the Wellby data to compare the impact of the
combination of contextual information with the HRV features
extracted from the processing pipeline. Feature importance
was quantified using Shapley values for the SVM model to
interpret their impact on the classification outcomes.

IV. RESULTS

This section presents the evaluation of stress and fatigue
detection using a lightweight processing pipeline for PPG
signal classification across three datasets. We first examine the
distribution of stress and fatigue labels by student demograph-
ics in the Wellby dataset, then demonstrate our processing
pipeline on sample PPG signals from WESAD, AKTIVES,
and Wellby datasets. We analyze correlations between HRV
features and affective labels, evaluate ML classification per-
formance, assess demographic bias and computational effi-
ciency, and conclude with feature importance analysis using
Shapley values. The complete code is available on GitHub
[https://github.com/j-laiti/PPG-affect-classification].

A. Stress and Fatigue Label Distribution

To contextualize the ML classification evaluation of the
Wellby dataset, the distribution of stress and fatigue labels
was first examined across the demographics of the students,
including school, gender, age, and ethnicity (Table [[V). Only
the data associated with the final selected high-quality PPG
signals is summarized with the number of recordings listed
next to each category. In particular, the rate of recordings
with the stress label was highest in School 2 (the all-girls
secondary school), while the rate of fatigue-labeled record-
ings was highest at School 3 (the co-ed Youthreach Centre).
Similarly, the percent of stress-labeled recordings was highest
for females, while the percent of fatigue-labeled recordings
was highest for males. Although these patterns suggest some
variation of stress and fatigue across demographic groups,
no statistical tests were performed due to the limited sample
sizes in several subgroups. Therefore, these distributions are
presented descriptively to support the interpretation of the
subsequent classification results.

TABLE IV
DISTRIBUTION OF STRESS AND FATIGUE LABELS ACROSS STUDENT
DEMOGRAPHICS IN THE WELLBY DATASET

Category Stress (%) Fatigue (%)
School

School 1 (n=12) 33.30 66.70
School 2 (n=8) 62.50 37.50
School 3 (n=18) 33.30 83.30
Gender

Female (n=16) 62.50 62.50
Male (n=18) 22.20 72.20
Prefer not to say (n=4) 25.00 75.00
Age

16 (n=9) 22.20 66.70
17 (n=20) 35.00 80.00
18 (n=5) 80.00 20.00
19 (n=4) 50.00 75.00
Ethnicity

Asian (n=1) 0.00 100.00
Black or Black Irish (n=5) 80.00 20.00
White - Other European (n=2) 0.00 100.00
White African (n=3) 33.30 66.70
White Irish (n=27) 37.00 74.10

B. PPG Signal Processing

The processing pipeline presented in this paper was applied
to PPG data from each dataset. The pipeline included (1) noise
reduction to account for signal drift and apply smoothing, (2)
noise elimination to remove noise artifacts, and (3) peak de-
tection to identify pulse peaks used in HRV feature extraction.
Fig. [3| illustrates the application of this pipeline on raw PPG
signals from the included datasets, demonstrating reliable peak
detection and enabling robust HRV feature calculation.
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Fig. 3. PPG processing pipeline applied to 30 second segments of data for each dataset.

C. Correlation Between HRV Features and Labels

To explore the relationship between individual HRV fea-
tures and self-reported stress and fatigue labels, point-biserial
correlation coefficients were calculated for the features in each
dataset. As shown in Fig.[d] most HRV features exhibited weak
correlations with fatigue labels in the Wellby dataset and stress
labels in the AKTIVES dataset. Moderate correlations were
observed between select HRV features and stress labels in the
Wellby and WESAD dataset, with generally lower correlations
in the Wellby results. Notably, most of the features in the
Wellby dataset showed negative correlations with stress labels,
while the features in the WESAD dataset showed a general
positive correlation with stress labels. These HRV features
are typically expected to decrease with increased stress [56].
The correlation analysis suggests that individual HRV features
alone are insufficient for robust stress or fatigue detection,
reinforcing the need for multivariate ML approaches to capture
more complex, non-linear physiological patterns.

D. Classification Performance on the Public Datasets

The extracted features from the WESAD and AKTIVES
datasets were used to train six classification algorithms (RF,
AB, kNN, LDA, SVM, GB) for stress detection based on
PPG signals compared to baseline methods. We used Leave-
One-Group-Out (LOGO) cross-validation for WESAD and
10 repeated random 70% training and 30% testing splits
for AKTIVES to enable direct performance comparison with
previous research [32]], [71]).

On the WESAD dataset, our proposed pipeline achieved
it’s highest classification with SVM (AUC-ROC: 91.58%,
Accuracy: 93.44%, F1-Score: 86.99%) (Table . The hybrid
baseline showed competitive performance with GB achieving
the highest overall (AUC-ROC: 91.63%, Accuracy: 93.61%,
F1-Score: 93.61%), while the CNN baseline achieved slightly
lower performance metrics than the proposed pipeline and
hybrid baseline.

Based on the AKTIVES dataset, the proposed pipeline
with GB achieved the highest performance across all evalu-

Point-Biserial Correlation Across Datasets
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Fig. 4. Point-biserial correlation coefficients between HRV features and
stress/fatigue binary labels in the Wellby, AKTIVES, and WESAD datasets.

ation metrics (AUC-ROC: 76.61%, ACC: 80.67%, F1-Score:
78.93%) compared to the hybrid baseline with GB (AUC-
ROC: 71.34%, ACC: 78.67%, F1-Score: 77.72%) (Table [V]).
The CNN baseline showed substantially degraded performance
(AUC-ROC: 44.26%, ACC: 48.73%, F1-Score: 46.14%), in-
dicating challenges of applying deep learning architectures to
small datasets with high inter-subject variability.

E. Classification Performance on the Wellby Dataset

Following high classification performance on the public
datasets, the same signal processing pipeline and classification
methods were applied to the raw PPG recordings in the Wellby
dataset. Since this dataset is imbalanced, with a low number
of positive class samples for stress detection and negative
class samples for fatigue detection, average precision (AP) was
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TABLE V

PERFORMANCE OF STRESS CLASSIFICATION ALGORITHMS ON THE WESAD DATASET. RESULTS ARE PRESENTED AS i + 0 (95% CI).

F1 Score

Accuracy

83.84 + 21.48 (71.94, 95.74)
80.42 + 20.76 (68.93, 91.92)
81.81 + 24.58 (68.20, 95.42)
85.28 + 16.03 (76.40, 94.16)
86.99 + 17.85 (77.10, 96.87)
82.92 + 18.67 (72.58, 93.26)

91.37 + 10.69 (85.45, 97.29)
88.12 + 14.54 (80.07, 96.17)
91.38 + 10.43 (85.61, 97.16)
92.53 + 6.96 (88.68, 96.39)
93.44 + 7.82 (89.12, 97.77)
90.50 + 9.49 (85.25, 95.75)

86.20 + 17.81 (76.34, 96.07)
86.30 + 16.79 (77.00, 95.60)
73.93 + 20.37 (62.65, 85.21)
78.78 £ 26.78 (63.95, 93.61)
82.95 + 15.63 (74.29, 91.60)
88.28 + 15.90 (79.48, 97.09)

92.89 £ 9.00 (87.91, 97.87)
92.41 £ 9.04 (87.40, 97.41)
88.14 + 8.64 (83.35, 92.93)
89.79 + 10.47 (83.99, 95.58)
91.89 + 6.32 (88.39, 95.39)
93.61 + 8.86 (88.71, 98.52)

Method Algorithm AUC-ROC
RF 89.26 + 14.49 (81.23, 97.29)
AB 86.34 + 15.03 (78.02, 94.67)
Proposed kNN 88.21 = 16.04 (79.32, 97.09)
Pipeline LDA 89.99 + 11.14 (83.82, 96.16)
SVM 91.58 + 12.23 (84.80, 98.35)
GB 88.74 + 12.78 (81.66, 95.82)
RF 90.06 + 12.32 (83.24, 96.89)
AB 90.64 + 11.63 (84.20, 97.09)
Hybrid Baseline kNN 81.53 + 13.27 (74.18, 88.88)
(CNN + TD) LDA 86.51 + 15.57 (77.88, 95.13)
SVM 87.58 + 10.43 (81.81, 93.36)
GB 91.63 + 11.38 (85.33, 97.94)
CNN Baseline ~ CNN 87.46 + 7.99 (79.47, 95.45)

81.56 + 11.91 (69.65, 93.47)

91.12 + 5.22 (85.90, 96.34)

TABLE VI

PERFORMANCE OF STRESS CLASSIFICATION ALGORITHMS ON THE AKTIVES DATASET. RESULTS ARE PRESENTED AS 1 £ o (95% CI).

Accuracy

F1 Score

80.67 + 2.38 (78.96, 82.37)
77.83 £ 3.69 (75.19, 80.47)
79.83 £ 4.04 (76.94, 82.72)
78.67 + 2.46 (76.91, 80.43)
72.33 + 4.39 (69.19, 75.47)
79.17 £ 4.10 (76.23, 82.10)

78.93 + 2.09 (77.43, 80.42)
75.74 £ 3.16 (73.48, 78.00)
78.66 * 4.59 (75.38, 81.95)
7529 + 3.01 (73.14, 77.44)
71.61 £ 2.97 (69.48, 73.74)
77.41 £ 3.65 (74.79, 80.02)

73.50 + 5.47 (69.59, 77.41)
73.33 £ 3.33 (70.95, 75.72)
78.67 + 4.96 (75.12, 82.21)
71.83 + 4.93 (68.30, 75.36)
74.50 £ 4.65 (71.17, 77.83)
75.67 £ 3.35 (73.27, 78.06)

70.96 £+ 5.31 (67.17, 74.76)
68.56 + 2.98 (66.43, 70.69)
77.72 + 4.65 (74.39, 81.05)
71.44 + 4.15 (68.47, 74.41)
72.59 * 4.66 (69.26, 75.92)
73.10 £ 3.51 (70.59, 75.61)

Method Algorithm AUC-ROC
RF 76.61 + 4.83 (73.16, 80.07)
AB 69.04 + 3.78 (66.34, 71.75)
Proposed kNN 74.61 + 4.38 (71.47, 77.74)
Pipeline LDA 69.32 + 3.50 (66.81, 71.83)
SVM 70.67 + 5.94 (66.42, 74.91)
GB 73.86 = 6.15 (69.46, 78.26)
RF 62.79 % 7.39 (57.50, 68.07)
AB 58.81 = 6.21 (54.37, 63.26)
Hybrid Baseline kNN 71.34 + 6.47 (66.72, 75.97)
(CNN + TD) LDA 61.59 % 5.23 (57.84, 65.33)
SVM 59.30 + 14.13 (49.20, 69.41)
GB 63.60 % 6.78 (58.75, 63.45)
CNN Baseline CNN 44.26 + 13.14 (34.86, 53.66)

48.73 + 22.19 (32.86, 64.60)

46.14 + 24.71 (28.46, 63.82)

used as the primary performance measure. AP summarizes the
precision-recall curve and is commonly used in imbalanced
classification tasks [72], allowing us to evaluate the model’s
ability to correctly identify positive stress and fatigue cases.
AUC-ROC was also included to allow for direct comparison
with the public dataset results. Grid search was used for
hyperparameter tuning, as it provides an exhaustive method of
evaluating parameters that is reproducible and feasible on our
smaller datasets, optimizing models based on AP. The mean
and standard deviation of the Wellby performance metrics are
reported for consistency with baseline dataset comparisons and
previous research [41]].

The classification results were compared between two dif-
ferent feature sets: (1) time-domain (TD) features only and
(2) TD features, SQI, and baseline questionnaires (BQs). The
baseline DL methods were also run for comparison with the
proposed pipeline. TD features are widely used for stress

and fatigue classification and are computationally efficient
compared to frequency-domain or non-linear HRV features.
The SQI helps account for the increased variability in noise
present in everyday recordings, while BQs provide context
about individual differences that may influence physiological
responses. Three-fold stratified group k-fold cross-validation
was used to maintain class balance across folds while ensuring
that no data from the same participant appeared in both the
training and test sets.

Stress classification performance improved with the inclu-
sion of SQI and baseline questionnaires, leading to better
average precision across models. For TD features only, kNN
achieved the highest AP score of 80.99%. SVM achieved
the highest AP scores of 91.15% when SQI and BQs were
added (Table [VII). AUC-ROC results followed a similar trend,
kNN performing best for TD features alone (77.02%), while
SVM achieved the highest performance of 91.60% with the
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additional features (Table[VII). The hybrid baseline evaluation
resulted in lower overall AP and AUC-ROC, with SWM
achieving an AP of 81.13% and AUC-ROC of 83.00%. Similar
to the AKTIVES training set, the CNN baseline evaluation
indicates substantial overfitting for stress classification on the
Wellby dataset.

TABLE VII
STRESS CLASSIFICATION PERFORMANCE (£ ) ON THE WELLBY
DATASET ACROSS DIFFERENT APPROACHES USING AVERAGE PRECISION
(AP) AND AUC-ROC.

Method Algorithm AP AUC-ROC
RF 63.57 £497  65.67 + 11.30
AB 58.60 £ 11.62  63.76 + 12.77
TD Features kNN 80.99 + 5.40 77.02 + 7.71
Only LDA 6741 +724  68.65 + 9.34
SVM 77.04 £2.06  71.56 + 3.55
GB 5222 +586 4934 +4.96
RF 75.80 + 1227 75.60 + 15.77
AB 62.15+7.92  69.58 + 534
. + K 3. + .
TD + SOI + BOs kNN 76.45 £ 1042 73.88 + 11.18
LDA 84.59 + 6.15  86.71 + 4.41
SVM 91.15 + 3.38  91.60 + 3.48
GB 65.48 £ 15.89  64.65 + 12.92
RF 6047 £5.46  61.97 +2.78
AB 61.84 £ 9.84  59.49 + 5.08
Hybrid Baseline kNN 68.82 + 8.85 69.84 + 14.33
(CNN + TD) LDA 70.82 + 15.59  74.87 + 13.61
SVM 81.13 + 832  83.00 + 9.46
GB 70.66 + 18.44 7421 + 11.27
CNN Baseline CNN 4425 + 31.32 3327 + 23.76

Fatigue classification followed the same evaluation process
as stress classification (Tables [VIII). The highest AP (85.84%)
was achieved by SVM when trained on TD features, baseline
questionnaires, and SQI combined. GB performed best for TD
features alone with an AP of 83.19% and an AUC-ROC of
71.58%. AP values were consistently higher than AUC-ROC,
suggesting that precision is higher than the overall separability
between fatigue and non-fatigue classes. The hybrid baseline
performance was generally lower than the proposed pipeline
performance, with a maximum AP of 77.73% and AUC-ROC
of 56.80%. Conversely, the CNN baseline performance was
comparable to the proposed pipeline with an AP of 82.58%
and AUC-ROC of 73.36%, suggesting the potential influence
of class imbalance in a small dataset on this classification
method, since there is a positive class imbalance for fatigue
data in contrast to the negative class imbalance for stress
detection.

Leave-One-Group-Out (LOGO) cross-validation was also
performed for both stress and fatigue classification. Due to the
small sample size in the Wellby dataset, there was a limited
number of samples per participant. Most of the participants
had only 1 to 3 recordings and a few had data covering
both class labels (non-stress/stress or non-fatigue/fatigue). As

TABLE VIII
FATIGUE CLASSIFICATION PERFORMANCE (i 4 o) ON THE WELLBY
DATASET ACROSS DIFFERENT APPROACHES USING AVERAGE PRECISION
(AP) AND AUC-ROC.

Method Algorithm AP AUC-ROC
RF 7479 £ 1237 52.79 + 14.08
AB 7337 £ 1124 59.26 + 16.60
TD Features kNN 68.17 = 12.47 4297 + 20.68
Only LDA 74.00 £ 7.34  49.42 + 12.06
SVM 7532 £ 787 5451 + 8.69
GB 83.19 + 12.12  71.58 + 12.09
RF 7748 £9.70  61.08 + 14.74
AB 81.57 £9.29  66.95 + 17.59
KNN 83 % 12. 33 +19.42
TD + SQI + BQs 68.83 53 5033+ 19
LDA 78.80 + 10.38  58.61 + 16.00
SVM 85.84 + 11.20  68.58 + 23.07
GB 75.56 £ 7.67  52.65 + 12.69
RF 73.18 £ 10.99  46.99 + 19.11
AB 7748 937  62.15 + 12.16
Hybrid Baseline kNN 69.28 + 3.94 37.43 + 13.05
(CNN + TD) LDA 69.62 + 11.15  44.97 + 21.31
SVM 7291 £ 854  42.28 +20.21
GB 7773 + 18.46  56.80 * 36.50
CNN Baseline CNN 82.58 + 16.28  73.36 + 18.95

a result, LOGO performance varied widely, particularly for
participants with only one class label (non-stress/stress or non-
fatigue/fatigue), rendering metrics that depend on both true
positives and true negatives less reliable. Balanced accuracy
was used as the primary evaluation metric for LOGO classi-
fication, given class imbalance and participant variability. TD
features, baseline questionnaires, and SQI were included in
both stress and fatigue classification evaluations that showed
highly variable results (Table [IX)). The highest balanced accu-
racy was 81.14% for stress classification (SD = 32.43) and
75.00% for fatigue classification (SD = 37.17) (Table [IX).
The large standard deviation suggests that the LOGO cross-
validation results lacked stability for this dataset.

TABLE IX
BALANCED ACCURACY (i £ o) FROM LOGO CROSS-VALIDATION FOR
STRESS AND FATIGUE CLASSIFICATION ON THE WELLBY DATASET.

Algorithm Stress Fatigue

RF 60.09 +39.05  75.00 + 37.17
AB 71.05 +37.40  67.11 + 39.78
kNN 6535 £39.02 63.16 + 42.43
LDA 81.14 + 3243  66.05 + 43.61
SVM 80.70 + 36.78  67.89 + 38.23
GB 71.05 £ 3740 68.42 + 3791
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TABLE X
COMPUTATIONAL EFFICIENCY COMPARISON OF THE PROPOSED PPG PROCESSING PIPELINE AGAINST BASELINE METHODS ACROSS DATASETS.

WESAD AKTIVES Wellby
Method Train Inference Model Train Inference Model Train Inference Model
Time (s) Time (s) Size (KB) Time (s) Time (s) Size (KB) Time (s) Time (s) Size (KB)
Proposed Pipeline 3.906 0.003 12.612 0.319 0.001 10.350 0.099 0.001 3.344
Hybrid Baseline 21.616 0.007 117.561 3.215 0.003 44.031 2.074 0.003 11.620
CNN Baseline 6184.827 0.046 6791.880 303.347 0.016 6791.900 42.021 0.011 6791.820

F. Model Efficiency

Beyond evaluating model performance on the Wellby
dataset, we also assessed computational efficiency to explore
the feasibility of deploying these models on wearable devices.
The NRF52840 includes a 64 MHz ARM Cortex-M4 proces-
sor with 256 KB of RAM and 1 MB of flash memory. To
validate the suitability of our approach with these hardware
constraints, we compared the proposed processing pipeline
against an existing PPG-based stress detection pipeline pro-
posed in Heo et al. [41]] using a 2-minute segment of WESAD
data. The adapted pipeline achieved a 96.9% reduction in
processing time and a 55.6% reduction in memory usage
for the extracted time-domain features compared to the time,
frequency, and non-linear domains extracted in Heo et al. [41]].

The training time, inference time, and model sizes for stress
classification were evaluated for each method and dataset
(Table [X])). All experiments were conducted on a laptop with
an Apple M1 Pro chip (8-core CPU, 16GB unified memory),
using Python 3.13.1 and scikit-learn 1.6.1. CPU was used
instead of GPU to simulate conditions similar to wearable
deployment, where GPU processing is not feasible. SVM was
chosen as the reference model due to its high-performance
metrics across the datasets. The training time represents the
combined time for feature extraction and model training. The
1D CNN in the hybrid baseline for feature extraction and
the dilated CNN used in the CNN baseline were trained for
30 epochs to ensure consistent comparison across methods.
The inference time represents the average time per sample for
feature extraction and classification. Model size refers to the
memory footprint of the trained model. The proposed pipeline
achieved the shortest training times, fastest inference times,
and smallest model sizes across all datasets. For the WESAD
dataset, training times were 3.906, 5.846, and 221.157 sec-
onds for the proposed pipeline, hybrid baseline, and CNN
baseline, respectively. Similarly, model sizes for the Wellby
dataset were 3.344, 11.620, and 6791.820 KB, respectively.
This analysis highlights the computational efficiency of the
proposed pipeline for practical application in wearable or
resource-constrained environments.

G. Demographic Bias

To examine potential demographic bias due to imbalanced
data, we compared the classification accuracy of the best-
performing model (SVM with all features) across demographic
subgroups (Table [XI). To ensure sufficient sample sizes in each

subgroup, only male and female genders were reported, and
ethnicity was grouped into non-white and white categories.
The stress classifier was 3.2% more accurate for male partic-
ipants, whereas the fatigue classifier was 7.7% more accurate
for female participants. Ethnicity and school showed larger
differences in classification accuracy compared to gender. The
stress and fatigue classification accuracy for white participants
was 4.2% and 18.8% greater than non-white participants,
respectively. School-based analysis revealed that School 2 had
10.8% greater stress detection accuracy while School 1 had
19.5-27.8% greater fatigue prediction accuracy compared to
other schools.

TABLE XI
CLASSIFICATION ACCURACY OF THE BEST-PERFORMING MODEL (SVM
WITH ALL FEATURES) BY DEMOGRAPHIC GROUPS.

Category Sample Size (n) Stress Accuracy Fatigue Accuracy
Gender

Female 16 68.8% 68.8%
Male 18 72.2% 61.1%
Ethnicity

Non-white 6 66.7% 50.0%
White 32 71.9% 68.8%
School

School 1 12 66.7% 77.8%
School 2 8 87.5% 50.0%
School 3 18 66.7% 58.3%

H. Feature Importance Analysis

Shapley values were used to quantify feature importance
in stress and fatigue classification from the Wellby dataset.
These values were calculated for SVM models trained using
three-fold stratified group k-fold cross-validation. SVM was
selected due to its strong performance for both stress and
fatigue classification and the use of a linear kernel, which
facilitates interpretation of feature impact via Shapley values.
Feature importance was assessed for models trained on TD
features, SQI, and baseline questionnaire data. The Shapley
value heatmaps represent the feature importance across each
recording session in the Wellby dataset.

In stress classification, the features with the greatest impact
on model output included mean HR, median NN, baseline
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Fig. 5. Shapley value heatmap for stress classification showing the contribu-
tion of each feature across individual data samples.
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Fig. 6. Shapley value heatmap for fatigue classification showing the contri-
bution of each feature across individual data samples.

Perceived Stress Scale, SDNN, and standard deviation of HR.
The TD metrics (mean HR, median NN, SDNN, and standard
deviation of HR) are widely used HRV metrics associated
with stress [[73]], [[74]. In particular, the Perceived Stress Scale,
measured at the beginning of the month, had a significant
influence on the model, suggesting that students with higher
baseline stress were more likely to report moments of stress
throughout the month. The heatmap of the feature importance
for stress classification is shown in Fig. 5]

In fatigue classification, the feature importance ranking
differed slightly from those observed in stress classification.
The features with the greatest impact included the median NN
interval, mean NN interval, SDNN, standard deviation of HR,
and the baseline well-being questionnaire. These HRV metrics
have previously been associated with the detection of sleep-
related fatigue and drowsiness [75]. Interestingly, median NN
interval, SDNN, and standard deviation of HR were among
the five most impactful features for stress and fatigue clas-
sification. The EPOCH Adolescent Well-being Questionnaire
also had a high impact on the model output, suggesting that
students with lower baseline well-being scores were more
likely to report fatigue throughout the month. The heatmap
of the importance of the features for fatigue classification is
shown in Fig.[6] These results highlight the value of combining
TD HRV features and contextual variables to improve the
stress and fatigue classifications of the model.

V. DISCUSSION

The results demonstrate the application of a PPG processing
pipeline that was adapted for future on-device classification of
stress and fatigue based on real-world data from adolescents.
The lightweight processing pipeline makes affect detection
more accessible for student populations by eliminating reliance
on cloud computing.

The point-biserial correlation between individual PPG fea-
tures and stress or fatigue labels were moderate to weak across
the included datasets, reflecting the need for ML models to
detect complex physiological correlations with affective state.
This aligns with previous research which indicates that affec-
tive states are related to multiple interacting physiological and
contextual factors [76]]. The weaker correlations in the Wellby
dataset compared to the WESAD dataset may also suggest the
complexity of physiological responses in real-world settings
compared to controlled lab settings with pre-defined stressors,
consistent with previous literature on HRV in naturalistic
settings [77]. Additionally, the negative correlations of Wellby
HRV features generally followed expected trends of HRV
features decreasing in response to physiological stressors [56].
The positive correlations in the WESAD and AKTIVES
dataset may indicate that these controlled experiments are
detecting increases in cognitive load [78|] or attention [79]]
during the experimental tasks and are not generalizable for
real-world stress detection.

The presented processing pipeline was computationally ef-
ficient, with substantially lower training time and model size
compared to the DL baselines, while still including necessary
noise reduction and ML classification algorithms. The pipeline
relies solely on TD HRV features, avoiding computation-
ally intensive spectral analysis or DL feature extraction. It
maintained a high classification performance compared to
DL baseline methods for the public WESAD and AKTIVES
datasets, collected in a controlled environment, and the Wellby
dataset, collected during the daily lives of the students in
this study. The performance of stress classification on the
Wellby dataset was lower than that of the WESAD dataset,
but comparable to the performance on the AKTIVES dataset.
This may reflect the increased complexities of detecting stress
in a youth cohort [17], increased motion artifacts [26], and
less controlled stressors in real-world environments [77]].

The high performance of SVM across the WESAD and
Wellby datasets may demonstrate SVM’s advantages including
robustness to small sample sizes and effective margin maxi-
mization in high-dimensional feature spaces [80]. The strong
performance of GB, particularly in fatigue detection, aligns
with previous research on the strength of tree-based models
in stress and fatigue classification [4], [57]. This may also
be due to the ability of these models to capture complex
non-linear patterns and feature interactions without distribu-
tional assumptions about the input data. This is particularly
relevant given that non-linear relationships are suggested to
exist between PPG time-domain metrics and stress-induced
sympathetic nervous system activity [81], which tree-based
models can effectively capture.

The stress and fatigue classification using the time domain
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features extracted from Wellby achieved results comparable
to other real-world classification methods [4]], [22], [82]]. The
inclusion of a SQI improved the classification performance
across most models. This may be because the SQI allowed
the model to adjust the contribution of HRV features based
on signal quality, helping to mitigate the influence of noise
on the classification. When baseline questionnaires on student
stress, sleep, and overall well-being were also included in
the feature set, the classification of stress yielded the highest
results. The inclusion of contextual data may explain why this
model performed better than those in a similar study [55].
This underscores the benefit of complementing HRV metrics
with contextual data to enhance classification performance,
consistent with similar research on stress classification [83|].

The performance of the baseline methods generally de-
creased on smaller datasets relative to the performance of
the proposed pipeline. The size of the AKTIVES and Wellby
datasets may be insufficient to train more complex CNN
architectures and lead to overfitting and poor generalization.
These findings highlight an advantage of the proposed pipeline
for real-world wearable deployment, where training data and
computational resources are often limited. There remains a
significant need for research into lightweight deep learning
models that are both computationally efficient and able to
recognize complex physiological patterns.

The Shapley values indicated that HRV metrics, such as
SDNN and median NN interval, correlated with both stress
and drowsiness detection, which is consistent with the lit-
erature [10], [56]. Shapley value analysis also revealed that
the baseline well-being questionnaires had a strong impact
on model output. This further emphasizes the relevance of
combining physiological signals with contextual data to better
capture affective states in real-world environments.

The study sample size limited the generalizability of out-
comes associated with the Wellby dataset. In particular, the
LOGO cross-validation yielded highly unstable performance
metrics due to the small number of recordings per participant,
the imbalance between stress and non-stress labels, and the
range of label balance within individual participants. The high
variability indicates potential overfitting to individual partic-
ipant characteristics rather than learning generalizable HRV
patterns associated with stress and fatigue across students.
Future work should validate these methods in larger, more
diverse student cohorts to test model performance on unseen
data using LOGO validation. Given the small sample size and
the focus of the study on lightweight, on-device classification
methods, deep learning models were not evaluated in this
context. Future studies with larger student datasets could
explore deep learning approaches and personalized models for
affect detection.

This study highlighted varied model performance based on
participant demographics in the Wellby dataset. This perfor-
mance variation may suggest physiological differences in re-
sponse to affective states, cultural differences in self-reporting
patterns, or the relatively small sample size of particular
subgroups. Since resting HRV varies between demographic
groups including ethnicity [84], age [85]], and gender [85],
the underrepresentation of certain demographic subgroups

can lead to model bias and limit generalizability to broader
populations. The imbalanced distribution of fatigue and stress
labels across demographic groups may further influence model
generalizability, as evidenced by the substantial performance
differences observed across subgroups. The observed perfor-
mance differences across schools may be particularly relevant
given that School 3 represents a Youthreach Centre serving
early school-leavers, who may experience different stressors
compared to traditional secondary school students [46].

Beyond sample size and demographic representation, an-
other limitation is that this study did not account for in-
dividual differences in student health or physiology. Health
status is a determinant of HRV patterns including levels of
inflammation [86]], presence of cardiovascular disease [87],
metabolic conditions [88|], and mental health disorders [89].
Future affect detection studies should incorporate health status
data to account for the potential influence of these conditions
on individual baseline HRV and stress responses.

Future research should investigate lightweight PPG process-
ing pipelines across diverse student populations with particu-
lar attention to demographic-specific model performance and
personalized approaches. Future studies could also implement
measures to enhance the reliability of self-reported measures
since many affect detection studies rely on these measures
as ground truth outside of laboratory settings [57]. To ac-
count for this, self-reported measures can be strengthened
by including multiple biosignals and implementing baseline
calibration techniques [90]. Exploration of affect detection
in various educational settings could foster models that are
both generalizable and lightweight. To implement appropriate
affect detection for students, engineers should collaborate with
stakeholders such as students, teachers, psychologists, and
behavioral scientists to understand how to provide effective
biofeedback insights for improving student well-being. Further
collaboration between industry and academia could also help
increase the transparency and validity of affect detection on
commercial devices [29].

Taken together, this study addresses important gaps in the
literature, including the limited exploration of PPG-based
affect detection in real-world settings [21]], [22]], [91]] and the
lack of lightweight classification algorithms that are deploy-
able on wearable devices [92]. The co-designed Wellby wear-
able and mobile app represents a student-centered approach
to affective computing, providing a customized intervention
aligned with student preferences and practical needs. In future
studies, the Wellby device could be used to test real-time, on-
device deployment of affect detection models in educational
contexts. By demonstrating the feasibility of lightweight pro-
cessing on real-world student data, this work contributes to
the broader goal of making physiological monitoring more
accessible in everyday settings, such as classrooms or rural
environments, where cloud connectivity may be limited.

VI. CONCLUSION

This study contributes to the growing interest in the ap-
plication of wearables for emotion recognition in everyday
settings by demonstrating the effectiveness of a lightweight
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machine learning approach for stress and fatigue detection [3]].
The results of this study demonstrate the ability of a com-
putationally efficient processing pipeline to achieve reliable
stress and fatigue classification from PPG recordings captured
from secondary school students during daily life. This pipeline
demonstrated strong classification performance on the public
WESAD and AKTIVES dataset, as well as the Wellby dataset
despite the small sample size. It also demonstrates the benefit
of including signal quality metrics and contextual informa-
tion alongside HRV features to improve affect detection in
everyday environments. Further research should explore larger
samples and more personalized machine learning approaches
for implementing affective computing pipelines on wearable
devices, including usability and ethical considerations to en-
sure that they appropriately address student well-being needs.
This can help bridge the gap between affective computing and
the application of wearables in real-world environments such
as educational settings.
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