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Understanding and accurately predicting cellular traffic data is vital for communication operators and device
users, as it facilitates efficient resource allocation and ensures superior service quality. However, large-scale
cellular traffic data forecasting remains challenging due to intricate temporal variations and complex spatial
relationships. This article proposes a Knowledge Graph Driven Decomposition Approach (KGDA) for precise
cellular traffic prediction. The KGDA breaks down the impact of static environmental factors and dynamic
autocorrelations of cellular traffic time series, enabling the capture of overall traffic changes and understanding
of traffic dependence on past values. Specifically, we propose an urban knowledge graph to capture the static
environmental context of base stations, mapping these entities into the same latent space while retaining
static environmental knowledge. The cellular traffic is divided into a regular pattern and fluctuating residual
components, with the KGDA comprising four modules: a Knowledge Graph Representation Learning model, a
traffic regular pattern prediction module, a traffic residual dynamic prediction module, and an attentional fusion
module. The first leverages graph neural networks to extract spatial contexts and predict regular patterns, the
second utilizes the Bi-directional Long Short-Term Memory (Bi-LSTM) model to capture autocorrelations of
traffic time series, and the final module integrates the patterns and residuals to produce the final prediction
result. Comprehensive experiments demonstrate that our proposed model outperforms state-of-the-art models
by more than 10% in forecasting cellular traffic.
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1 Introduction
Accurately forecasting cellular traffic is essential for providing reliable and high-quality Internet
services while optimizing resource utilization [20, 40, 47, 49]. This capability benefits both commu-
nication operators and smartphone users [13, 27, 35]. For example, communication operators can
turn off base stations during expected decreases in traffic to save resources and energy consumption
[25, 28] and, conversely, activate base stations in anticipation of increased traffic to avoid potential
network congestion [52]. Furthermore, accurate cellular traffic prediction enables network detectors
to monitor unusual user activities [26], allowing the identification of unexpectedly high cellular
traffic volumes and abnormal devices [7, 46].

Researchers have invested considerable effort in predicting cellular traffic. Traditional time series
prediction models, such as Support Vector Regression (SVR) [9], ARIMA [42], and SARIMA
[34], have been used by treating cellular traffic prediction as a general time series forecasting issue.
Additionally, Recurrent Neural Network (RNN) [50], Long Short-Term Memory (LSTM)
[18], and Gated Recurrent Unit (GRU) [4] have been utilized to enhance forecasting accuracy.
In recent years, several models [5, 48, 51, 54] have used Graph Neural Networks (GNNs) [33]
to capture spatial information, e.g., the distance relationship between regions and base stations.
Current models are limited to analyzing the autocorrelations within traffic time series data and do
not consider the different environmental factors that may affect the base stations. This shortfall
reduces the efficiency of current methods.

Several existing studies on mining cellular traffic data have shown that particular traffic patterns
in base stations are affected by contextual information in the surrounding environment [38, 53].
For instance, base stations situated in commercial districts witnessed a notable increase in traffic
during typical office hours. Likewise, those in residential zones exhibited peaks in traffic during the
early morning and late evening hours, indicative of residents being at home and engaging with
their devices for leisure or work purposes. By considering and modeling these static environmental
factors, valuable insights into the general trends of cellular traffic can be gained, enabling more
accurate predictions for future traffic patterns.

This article aims to incorporate static environmental factors and propose a Knowledge Graph
Driven Decomposition Approach (KGDA) for precise cellular traffic prediction. Our approach
involves explicitly breaking down the impact of static environmental factors and dynamic autocorre-
lations of cellular traffic time series.This enables us to capture the overall direction of traffic changes
and understand how traffic depends on its past values. We propose an urban knowledge graph
aimed at encapsulating static environmental information. The graph comprises diverse environ-
mental elements, including Points of Interest (POIs), regions, business districts, and base stations,
each depicted as distinct entities interconnected to illustrate their relationships. We can efficiently
map these entities into a unified latent space by employing a knowledge graph embedding model,
thereby preserving the static environmental knowledge crucial for base stations. Furthermore,
we break down the cellular traffic into regular patterns and fluctuating residual components. We
discover that regular traffic patterns of base stations primarily depend on static environmental
factors while the varying residuals can be predicted by modeling the autocorrelations of the traffic’s
historical data. The KGDA we proposed comprises three components: a traffic regular pattern
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prediction module, a traffic residual dynamic prediction module, and an attentional fusion module.
The regular pattern prediction model employs GNNs to extract spatial contexts of base stations
from the urban knowledge graph, leveraging these contexts to forecast the regular patterns of
base stations. In contrast, the traffic residual dynamic prediction module utilizes the Bidirectional
Long Short-Term Memory (Bi-LSTM) model. This model adeptly captures autocorrelations
within traffic time series, where the current value of a variable relies on its past values. Finally, the
attentional fusion module integrates the patterns and residuals to produce the final prediction result.

Below are the summarized major contributions of our work:

—We are the first to use the urban knowledge graph to capture environmental information and
decompose cellular traffic series into patterns and residuals. The proposed decomposition
approach allows us to identify the general trend of traffic changes and gain insight into how
traffic is influenced by its previous values.

—We propose the KGDA. This approach comprises four components: Knowledge Graph Repre-
sentation Learning using the TuckER model, regular pattern estimation using Graph Convo-
lutional Network (GCN), residual dynamic estimation using Bi-LSTM, and attention fusion
for integrating predictions. KGDA extracts spatial information from the urban knowledge
graph to estimate base station regular patterns, predicts residual traffic dynamic, and generates
precise predictions by combining patterns and residuals.

—We conducted comprehensive experiments on two real-world datasets. Our proposed model
demonstrates superior performance, surpassing state-of-the-art approaches by over 10% in
precision, highlighting its efficiency and effectiveness. Additionally, we conducted an in-depth
analysis further to illustrate the effectiveness of the urban knowledge graph.

This article is structured as follows. We initially present the preliminaries in Section 2, which
includes an introduction to cellular traffic patterns, the urban knowledge graph, and the problem
definition. We then outline the entire framework of our model, the KGDA, along with the specifics
of each part of KGDA in Section 3. We describe evaluation environments in Section 4. Related
studies are discussed in Section 5. Finally, we draw conclusions in Section 6.

2 Preliminaries
2.1 Cellular Traffic Patterns
In order to improve the accuracy of predicting cellular traffic, we suggest creating models that
incorporate the consistent patterns of base stations and their surrounding environment. In this
section, we will demonstrate how environmental factors impact the usage of base station traffic by
visualizing the distribution of temporal traffic. We will be using real-world data from 4,505 base
stations located in Shanghai.

Each base station has its own stable traffic patterns. Figure 1 illustrates the similarity between
cellular traffic temporal distributions across 3 weeks and the regular pattern, with reduced traffic
during sleeping hours and increased traffic during the daytime [44]. On a weekly basis, a base
station’s cellular traffic oscillates around its regular pattern, with pronounced differences between
weekdays and weekends [8].

The location of the base station significantly influences its traffic pattern [6]. Areas such as
commercial centers, residential areas, and entertainment places encounter different levels of user
activity at different times of the day. This leads to unique surges in cellular traffic at various times.
To identify these patterns, we used hierarchical clustering methods and an unsupervised machine
learning algorithm with Euclidean distance as the distance metric. By integrating the specific
locations of each base station cluster, we have identified four primary cellular traffic patterns, as
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Fig. 1. An example of traffic pattern of the base station. A base station has its own traffic pattern and varies
greatly between weekdays and weekends.

Fig. 2. Different traffic patterns in different areas.

shown in Figure 2. These four patterns vary based on peak traffic value times and disparities in
traffic value during a week. For instance, base stations in residential areas typically witness higher
traffic volumes at night, attributed to residents commuting to work in the morning and returning
home at night. Conversely, base stations situated in office areas experience peak traffic during
daytime hours. Additionally, weekend traffic volumes generally decrease compared to weekdays,
reflecting reduced work-related commuting. Base stations near the subways and stations observe
heightened traffic loads during rush hours. Consequently, the environmental features surrounding
base stations significantly shape their traffic flows. Stations with similar environmental features
tend to display analogous traffic patterns, and vice versa. Hence, we regard environmental contexts
as crucial exogenous factors in shaping traffic profiles for base stations.

2.2 Urban Knowledge Graph
Constructing an urban knowledge graph entails aggregating diverse data from various sources,
encompassing road network data, POI data, business area data, category data, and base station data.
Next, we introduce the construction process of each dataset in detail.
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Fig. 3. The overview of the urban knowledge graph.

—Road network dataset : The road network dataset delineates cities based on their road infras-
tructure, serving as a fundamental source for depicting urban transportation networks. This
dataset is compiled by extracting data from Baidu Maps.

—POI dataset : The POI dataset provides comprehensive information about various POI within
the city, offering insights into urban functions and the spatial arrangement of infrastructure.
This dataset is collected and constructed in cooperation with Internet application service
providers.

—Business area dataset : The business area dataset pinpoints key zones characterized by bustling
commercial and economic activities, essential for understanding the city’s economic landscape.
This dataset is collected and constructed in cooperation with Internet application service
providers.

—Category dataset : The category dataset amalgamates expert insights to categorize and define
the functional attributes of different urban facilities, enriching our understanding of the city’s
diverse infrastructure.

—Base station dataset : The base station dataset furnishes details about the distribution of base
stations across the city, generously provided by mobile operators.

Integrating data from these disparate sources makes the urban knowledge graph a robust frame-
work, empowering comprehensive insights into urban dynamics and structures.

To more comprehensively characterize the environment surrounding the base station, we propose
building an urban knowledge graph. This graph is crafted to model the semantic relations between
urban elements, including business areas, POIs, regions, brands, and categories. We enhance the
urban knowledge graph by integrating base station entities and establishing connections with
their adjacent regions, business areas, and POIs. Additionally, we link neighboring base station
entities, drawing upon the spatial correlation in cellular traffic. Figure 3 showcases the schema
of our refined urban knowledge graph, which effectively incorporates the influence of the urban
environment on cellular traffic.

Formally, we define the urban knowledge graph as � = (�, ', F ), where �, ', and � are the sets
of entities, relationships, and facts therein. The fact set includes triplets on factual knowledge, i.e.,
F = {(ℎ, A, C) |ℎ, C ∈ E, A ∈ R}.

2.3 Problem Definition
We delineate the cellular traffic prediction task. In the framework of a base station network, the
task involves utilizing historical cellular traffic series associated with each one. The aim of cellular
traffic forecasting is to train a model to forecast future cellular traffic volumes.
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Table 1. Summary of Notations

Notations Definition

1, � A base station and the set of base stations
GC
8

The traffic volume of base station 1B8 at timestamp C
� The input length and the patch length
BC
8

The traffic sequence of 1B8 at C in the past � steps
ℎ, A, C The head entity, relationship, and the tail entity in the knowledge graph
"C The regular traffic pattern
'C The residual traffic series
� The node embedding of knowledge graph

Fig. 4. Overview of our KDGA model.

Mathematically, let � = 11, 12, ..., 1# denote the set of base stations, where # represents the total
number of base stations. Each GC8 ∈ R signifies the traffic volumes of base station 18 at timestamp
C . Furthermore, let BC8 =

[
GC−)+18 , GC−)+28 , ..., GC8

]
> ∈ R) denote the past ) timesteps of base station

18 at time C . Consequently, we define (C =
[
BC1, B

C
2, ..., B

C
#

]
∈ R#×) as the historical traffic matrix

encompassing all base stations at time C . For a detailed explanation of the notations, please refer to
Table 1.

Cellular traffic prediction endeavors to anticipate future cellular traffic by leveraging past traffic
data. This task entails training a mapping function, denoted as 5 , using historical traffic series (C to
forecast the traffic volumes for the subsequent timestamp, which can be succinctly expressed as:

GC+11 , GC+12 , ..., GC+1# = 5 ((C ). (1)

3 Methods
3.1 Framework Overview
The KGDA framework is depicted in Figure 4. With the urban knowledge graph � , timestamp C ,
and historical cellular traffic matrix (C as input, KGDA forecasts the future cellular traffic volumes
for all nodes in the network. Specifically, the KGDA model consists of four parts: the Knowledge
Graph Representation Learning model, the Traffic Regular Pattern Estimating model, the traffic
residual dynamics estimating model, and the Attentional Fusion Model.

First, we utilize Knowledge Graph Representation Learning to generate knowledgeable represen-
tations for network nodes in the urban knowledge graph, which captures both the spatial structure
of the node network and the functional similarity of nodes therein. Second, the Traffic Regular
Pattern Estimating model takes the node embedding �, the adjacency matrix of the base station
network �, and the timestamp C as the input. The model estimates the cellular traffic patterns"C
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on weekdays and weekends. Third, we use the historical cellular traffic as the input, and the Traffic
Residual Dynamics Estimation model estimates the difference between the true volumes and the
historical mean volumes at the current moment. Finally, the Attentional Fusion model takes the
mean traffic value"C , which is the output of the Traffic Regular Pattern Estimating model and the
residual traffic value, the output of the Traffic Residual Dynamics Estimating model, as the input
and forecasts the future cellular traffic volumes of each node in the mobile network.

3.2 Knowledge Graph Representation Learning
To harness the full potential of urban knowledge graphs for cellular traffic prediction, we initially
employ Knowledge Graph Representation Learning to acquire low-dimensional vectors (embed-
dings) for base stations within the graph. In particular, we utilize Tucker model [2] and assess the
plausibility of a triplet (ℎ, A, C) ∈ F :

q (ℎ, A, C) = W ×1 eℎ ×2 r ×3 eC , (2)

where W ∈ R3×3×3 is the key tensor in Tucker decomposition [36], eℎ, eC , r ∈ R3 are embeddings
for entities and relation. Besides, 3 signifies the dimension of embedding, and ×8 denotes the tensor
product along the 8th mode.

From the observed triplets within the urban knowledge graph, we compute plausibility scores
using the specified scoring function. Following this, we formulate cross-entropy loss functions for
parameter learning, with the aim of prioritizing valid triplets over invalid ones. Ultimately, the
acquired embeddings for base station entities can be seamlessly integrated into the subsequent
traffic prediction module, effectively leveraging the captured urban knowledge.

3.3 Traffic Regular Pattern Estimating
The Traffic Regular Pattern Estimating model takes the node embedding �, which we obtained
from the previous model, the adjacency matrix �, and the timestamp C as the input. The model
estimates the cellular traffic patterns on weekdays and weekends and outputs the mean cellular
traffic matrix" .

First, the adjacency matrix� is calculated from the distances among base stations in the network.
The adjacency matrix � can be formed as

08, 9 =


4G?

(
−38,9
f2

)
, 4G?

(
−38,9
f2

)
≥ n,

0, 4G?

(
−38,9
f2

)
< n,

(3)

where 08, 9 is the value in the adjacency matrix and is decided by 38, 9 the distance between node
E8 and node E 9 . f2 and n are thresholds to control the distribution and sparsity of the adjacency
matrix.

The adjacency matrix � represents the interconnections between nodes in the network. These
connections effectively capture the distance relationships among the nodes, reflecting the relevance
of cellular traffic volume between them. For instance, when a smartphone user moves out of the
coverage area of a particular base station, they are more likely to connect to a nearby base station
and transfer their traffic volume accordingly. Thus, capturing the distance relationships among
nodes in the network proves valuable for predicting cellular traffic patterns.

In addition, we incorporate the embedding matrix � obtained from the Knowledge Graph
Representation Learning model as the feature matrix in our approach. The Knowledge Graph
Representation Learning model enables us to capture the topological similarities among nodes
within the urban knowledge graph. On the other hand, the embedding matrix � reflects the
similarity of the scenes covered by base stations. When two base stations have similar covered
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Fig. 5. Traffic Regular Pattern Estimating model.

scenes, it is more likely that their cellular traffic patterns will exhibit similarities as well. For instance,
if a base station predominantly covers educational institutions, the cellular traffic will likely increase
during the daytime on weekdays and decrease during nighttime or weekends. Conversely, if the
base station primarily covers transportation hubs, cellular traffic may peak during rush hours and
decline during other times. Hence, considering the similarity of covered scenes among base stations
proves beneficial for predicting cellular traffic patterns.

In this subsection, we study the above two similarities. The detail of the Traffic Regular Pattern
Estimating model is shown in Figure 5. To capture the topology similarity among the nodes in the
network, we employ the Convolution Neural Network (CNN) to capture the features of the
embedding vector, which can be expressed as

�� = (� ∗  ) (G) =
:∑
8=1

� (G + 8) (8), (4)

where ∗ denotes the convolution operation, : is the filter size. The filter multiple : elements by its
: parameters and outputs the matrix �� .

To capture the distance relation among nodes in the network, we use a GCN [23], which can be
expressed as

�� = 5 (�� , �) = f (�̃− 1
2 �̃�̃− 1

2 �, ; ), (5)

where the �̃ denotes the adjacency matrix which we calculated above, with self-loop, and the �̃
denotes the degree matrix of �̃.

Next, we add an additional CNN layer to process and extract features further. This step aids the
model in comprehending global feature patterns more effectively, thereby enhancing its under-
standing of the overall data structure and information.

As for the timestamp C , we let them pass through the embedding layer and obtain the time
embedding �C . Ultimately, we proposed a Multi-Layer Perception (MLP) as the output layer. The
MLP can be formed by,

"C = 5 ((, �C ) =,2 (f (,1 (( | |�C ) + 11)) + 12, (6)

where ‖ denotes the concatenation operation. The " is the mean cellular traffic patterns and the
Traffic Regular Pattern Estimating model output. The, and the 1 are the weight matrix and bias
matrix, respectively, which are trainable parameters.

3.4 Traffic Residual Dynamics Estimating
To capture the temporal dependences from cellular traffic series, we proposed a Traffic Residual
Dynamics Estimating model, which takes the historical trafficmatrix (C and the future traffic pattern
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Fig. 6. Traffic Residual Dynamic Estimating model.

matrix "C as the input and outputs the difference between the true volumes and the historical
mean volumes at the current moment. As shown in Figure 6, we use the Bi-LSTM model [14], which
could extract temporal features from the historical traffic sequence and future pattern sequence.
In this context, the residual represents the difference between the actual traffic volumes and the
pattern volumes. And the dynamic embodied in the underlying variations in the traffic data that
are not fully captured by the traffic patterns, including short-term fluctuations, sudden spikes or
drops, and so forth. The model can be formed as,

'C = �8 − !()" (BC , "C ). (7)

The Traffic Residual Dynamics Estimating model can estimate the temporal dependency and predict
the residual cellular traffic matrix '.

3.5 Fusion Model
The Fusion model takes the mean cellular traffic matrix "C , which is the output of the Traffic
Regular Pattern Estimating model, and the residual cellular traffic matrix 'C , which is the output of
the Traffic Residual Dynamics Estimating model. We employ an MLP model to fuse the mean and
residual matrices. The model can be formed as

ĜC+11 , ĜC+12 , ..., ĜC+1# = "!% ("C , 'C ). (8)

The model is trained in batches to minimize the disparity between predicted volumes
[
ĜC+11 , ĜC+12 ,

..., ĜC+1
#

]
and their true volumes

[
GC+11 , GC+12 , ..., GC+1

#

]
. Throughout the training procedure, we employ

the MSE loss function to optimize the model’s parameters, which is expressed as follows:

L =

#∑
8=1



ĜC+18 − GC+18




2 . (9)

4 Evaluation
4.1 Experimental Settings
In this subsection, we will introduce our read-world datasets, metrics, baselines, and parameter
settings.

Datasets.

—Shanghai Dataset. The Shanghai Dataset comprises anonymous cellular traffic data gathered
by China Mobile in Shanghai throughout August 2014. These datasets encompass records
from 4,505 base stations and more than 150,000 users. Each entry in the dataset comprises
an anonymous device ID, starting and ending timestamps of the data record, anonymous
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Table 2. Statistics of the Datasets Used in Our Experiments

Dataset Shanghai Nanjing

Collection Duration 1–31 August 2014 2 February to 31 March 2021
Time Interval 30 minutes
Covered Users ≥150,000 ≥450,000
Covered BSs 4,505 8,000
Covered Area 6,340 km2 6,587 km2

Flow Records 8.65 × 108 8.18 × 108

Regions 2,579 1,022
Business Areas 280 228

POIs 85,018 51,264
Categories 14 14

Relationships 17 14
Nodes 92,296 60,528
Edges ≥ 1 M ≥ 600 K

base station ID, and the volume of data transmitted during the connection. We contributed a
total of 1.96 billion entries corresponding to the 4,505 base stations in Shanghai, logged at
30-minute intervals. Furthermore, the Shanghai urban knowledge graph incorporates 5 entity
types and 14 relationship types, housing 92,396 nodes and over one million edges, making it a
substantial urban knowledge graph.

—Nanjing Dataset. The Nanjing Dataset comprises anonymous cellular traffic data collected by
China Mobile in Nanjing spanning from 2 February to 31 March 2021. This dataset surpasses
the Shanghai Dataset in scale and encompasses data from 8,000 base stations. We facilitated
data collection for all 8,000 base stations in Nanjing at 30-minute intervals. Additionally, the
Nanjing urban knowledge graph comprises 5 entity types and 14 relationship types, featuring
60,528 nodes and over six hundred thousand edges.

Metrics. We elaborately select the following three metrics to evaluate the performance of cellular
traffic prediction:

—RMSE

'"(� =

√√√
1

# ·)

# ·)∑
8=1

(.8 − .̂8 )2, (10)

where # denotes the number of base stations in the network and ) is the timestamps of test
data.

—Mean Absolute Error (MAE)

"�� =
1

# ·)

# ·)∑
8=1

��.8 − .̂8 �� . (11)

—Coefficient of Determination ('2)

'2 = 1 −
∑# ·)
8=1 (.8 − .̂8 )2∑# ·)
8=1 (.8 − .̄ )2

, (12)

where .̄ denotes the average value of . , i.e., .̄ = 1
=

∑=
8=1 .8
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Compared Algorithms.

—SVR [9]. SVR constitutes a crucial branch within the Support Vector Machine (SVM)
framework, initially designed for binary classification tasks. In regression applications, SVR
utilizes a linear SVM approach.

—ARIMA [42]. ARIMA stands as a prevalent technique in time series forecasting. It integrates
auto-regressive (AR) and moving average (MA) components, where “p” signifies the count
of AR terms and “q” denotes the number of MA terms. The parameter “d” indicates the number
of differences applied to achieve temporal smoothness in the series.

—Graph Attention Network (GAT) [37]. In response to the limitations of GCN regarding
dynamic graphs and varying learning weights for neighbors, researchers devised the GAT.
GAT incorporates a masked graph attention mechanism, empowering each node to interact
attentively with its neighbors and aggregate their outcomes. By adopting this approach, GAT
adeptly surmounts these constraints, bolstering the learning process within dynamic graph
scenarios.

—Graph Sample and Aggregate (GraphSAGE) [16]. The core of the GraphSAGE algorithm
revolves around optimizing the sampling process, specifically focusing on sampling the current
neighboring node rather than the entire graph. This optimization allows for efficient training
on large-scale graphs and leads to enhanced performance, surpassing that of GCN even with
smaller parameters and faster processing speed.

—DeepTP [11]. DeepTP represents an end-to-end deep learning architecture designed to precisely
forecast spatially correlated cellular traffic over extended durations. It employs a flexible
feature extraction mechanism to capture spatial dependencies and incorporate external data.
Additionally, DeepTP integrates a sequential module to capture intricate temporal patterns,
facilitating comprehensive traffic predictions.

—Spatio-Temporal Graph Convolutional Networks (STGCN) [48]. STGCN combines GCN
and gated CNN to capture spatial and temporal dependencies. GCN extracts spatial depen-
dencies by analyzing the graph’s topological structure represented by the adjacency matrix.
Gated CNN explores dynamic features of cellular traffic to detect temporal dependencies. The
model predicts future cellular traffic using an output layer. In STGCN, the adjacency matrix is
replaced with an embedding matrix to capture spatial structure more accurately, resulting in
STGCN (emb).

—Temporal Graph Convolutional Network (T-GCN) [54]. In the T-GCN, GCN and GRU
are combined to capture temporal dependencies in dynamic cellular traffic. GCN is utilized to
model time series and explore the changing node attributes, while GRU is utilized to model
the dynamic nature of the data. Additionally, the network’s hidden state is initialized using
an embedding matrix to enhance the capture of topology similarity. This variant is referred to
as T-GCN (emb).

—Graph Multi-Attention Network (GMAN) [55]. In its architecture, GMAN utilizes an
encoder–decoder framework with spatiotemporal attention blocks to accurately represent the
impact of spatial and temporal parameters on traffic conditions. The encoder handles input
traffic characteristics, while the decoder forecasts the output timestamp series.

—PatchTST [31]. PatchTST integrates two significant components: first, the time series seg-
mentation into patches at the sub-series level, which serves as input tokens, and second,
channel independence, where each channel comprises a distinct time sequence sharing the
same embedding and model weights.

—Spatio-Temporal Self-Supervised Learning (ST-SSL) [22]. ST-SSL framework enhances
the traffic pattern representations to be reflective of both spatial and temporal heterogeneity,
with auxiliary self-supervised learning paradigms.
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Table 3. Values of the Hyper-Parameters

Modules Hyper-Parameters Value

Global Variables

Epoch 50
Optimizer Adam

Learning Rate 0.01
Schedular Step Learning Rate Scheduler

W 0.9
Loss MSE Loss

Input Length 12
Dimension of Embedding 32

Dropout Rate 0.5

Knowledge Graph
Representation Learning

Epoch 50
Dimension of Embedding 32

Traffic Regular
Pattern Estimating

Dimension of Embedding 32
Dropout Rate 0.5

Parameter Settings. We set the learning rate as 0.01 and apply a Step Learning Rate scheduler
to decrease the learning rate per 10 epochs set W = 0.9 and apply the MSE loss to the train model.
To balance the efficiency and the performance, in the Knowledge Graph Representation Learning
model, we set the dimension of the embedding as 32, and the epoch as 50. As for the Traffic Regular
Pattern Estimating model, we set the output time of the embedding size of the embedding layer as 8.
We set the length of the input historical traffic series and the length of future traffic patterns as 12,
which has both higher accuracy and faster speed. In order to prevent overfitting themodel, we set the
dropout rate as 0.5. We apply it to the outputs of both the Traffic Regular Pattern Estimating model
and the Attentional Fusion model. Our experiments use an early stopping strategy with a patience of
5 epochs on the validation dataset. The dataset is divided into three components: training, validation,
and test, with a ratio of 0.7:0.05:0.25. We provide detailed values of the hyper-parameters in Table 3
for reproducibility. The experiments are performed on the “Jiutian”1 artificial intelligence platform.

4.2 Overall Performance
In Table 4, we show the overall performances of our model KGDA, temporal prediction models (SVR,
ARIMA, and PatchTST), spatial prediction model (GAT and GraphSAGE), and spatial-temporal
prediction models (DeepTP, STGCN, T-GCN, and GMAN) to forecast the futural traffic volumes
in the dataset. We list three metrics of all algorithms. The RMSE and MAE are log-normalized.
According to the result, we have the following findings:

—Our framework steadily achieves the best performance. Our model consistently outperforms
other compared algorithms on both datasets. For instance, compared with the second-best
performing model (GMAN), our model demonstrates an improvement in '2 ranging from
approximately 4.7% to 5.8%. Moreover, our model achieves a reduction in MAE of approxi-
mately 16.7% to 19.3%.

—Geographic prediction models perform poorly in the cellular traffic prediction task. Spatial models
are frequently utilized in analyzing spatial patterns and location-based data. Nonetheless,
these algorithms overlook the crucial components for modeling time sequences and capturing
temporal information. Consequently, their efficacy might be limited compared to models

1https://jiutian.10086.cn/portal/#/home
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Table 4. Overall Prediction Performance of Our Model KGDA in
Comparison with Compared Algorithms on Our Datasets

Shanghai Dataset Nanjing Dataset

Model MAE RMSE '2 MAE RMSE '2

SVR 0.2092 0.3018 0.7479 0.2316 0.3336 0.7510
ARIMA 0.2058 0.3041 0.7499 0.2328 0.3275 0.7797
GAT 0.1984 0.2650 0.5547 0.3574 0.4830 0.5735

GraphSAGE 0.2138 0.2979 0.7418 0.2354 0.3467 0.7483
STGCN 0.1996 0.2785 0.7767 0.2537 0.3642 0.8058

STGCN (emb) 0.1978 0.2767 0.7795 0.2505 0.3619 0.8083
T-GCN 0.1908 0.2694 0.7990 0.2516 0.3519 0.8178

T-GCN (emb) 0.1893 0.2674 0.8011 0.2497 0.3502 0.8190
DeepTP 0.1869 0.2610 0.7991 0.2322 0.3327 0.8196
PatchTST 0.1963 0.2708 0.7791 0.2634 0.3728 0.7989
ST-SSL 0.1811 0.2567 0.8061 0.2251 0.3286 0.8220
GMAN 0.1807 0.2554 0.8078 0.2209 0.3237 0.8237
KGDA 0.1507 0.2234 0.8548 0.1934 0.2857 0.8624

Bold values indicate the best performance across all methods. Underlined values
indicate the second-best performance across all methods.

Fig. 7. Prediction vs. the ground truth for a sample base station.

seamlessly integrating temporal features. Integrating temporal elements into geographic
models can lead to more precise predictions and notably improved performance in real-world
scenarios.

— It is essential to capture various environmental information. STGCN and T-GCN solely rely on
the distance adjacency matrix and fail to fully exploit environmental information, resulting in
compromised model performance. However, by substituting the distance adjacency matrix
with the embedding matrix derived from the urban knowledge graph, we were able to enhance
the performance of the baseline model and demonstrate the effectiveness of leveraging the
urban knowledge graph.

We depict the predicted values of KGDA against the real values, alongside those of the second-
best model, DeepTP, on the testing datasets in Figure 7. The plot demonstrates that KGDA produces
predictions with greater stability and lower latency compared to DeepTP.

4.3 Case Study
—Effectiveness of Embedding Matrix of Urban Knowledge Graph. To showcase the capabilities of
the Traffic Regular Pattern Estimating model and the effectiveness of the embedding matrix �, we
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Fig. 8. Prediction vs. the ground truth for the pattern of sample base station.

conducted an experiment. First, we removed the GCN from the Traffic Regular Pattern Estimating
model to exclude the capture of the graph’s topology structure. This modification allowed the model
to focus solely on capturing the intrinsic features of its embedding vector. Additionally, we created
a new embedding matrix using the Term Frequency-Inverse Document Frequency (TF-IDF)
method, based on the relationship between base stations and POI. TF measures the frequency of a
term within a file, while IDF evaluates the importance of a term, which can be formed as

C 58, 9 =
=8, 9∑
: =:,9

, (13)

83 58 = ;>6
|� |�� 9 + 1 : C8 ∈ 3 9

�� , (14)

C 5 − 83 58, 9 = C 58, 9 ∗ 83 58 , (15)

where C 58, 9 denotes the term frequency of term 8 in the file 9 , =8, 9 denotes the number of appearances
of term 8 in the file 9 , 83 58 means the inverse document frequency of term 8 . The |� | denotes the
number of the files and

�� 9 + 1 : C8 ∈ 3 9
�� means the number of the files which contains the term 8 . In

order to prevent zero, we plus one. And the C 5 −83 58, 9 denotes the term frequency-inverse document
frequency of term 8 in the file 9 .

We present the visualizations of the output from the Traffic Regular Pattern Estimating model
and the aforementioned methods. Figure 8 demonstrates that our embedding matrix �, which
incorporates a wider range of entities, outperforms the TF-IDF matrix in capturing the topology
structure of the urban knowledge graph. Comparing the output of the Traffic Regular Pattern
Estimating model with and without GCN, we observe that the model with GCN, capable of capturing
the graph’s topology structure and propagating information across nodes, provides more accurate
traffic pattern estimations.

—Sensitivity of Length of Historical Traffic Series and Futural Pattern Series. To assess the per-
formance of the Traffic Residual Dynamics Estimating model with various hyper-parameters,
we conducted experiments using different traffic series lengths, ranging from 3 (equivalent to
90 minutes) to 18 (equivalent to 9 hours). The results are presented in Table 5, where the future
traffic pattern series length is fixed at 12 (equivalent to 6 hours). Furthermore, Table 6 displays the
performances of different future traffic pattern series lengths while keeping the historical traffic
series fixed at 12.

—Transferability of Different Urban Area. In order to evaluate the transferability of the model for
different urban functional areas, we conduct a transfer experiment, training on one dataset and
testing on another and compare the prediction results of the model in different functional areas,
respectively. The results are presented in Table 7. According to the results, our model achieves
good transferability. Besides, the traffic prediction results in the office area and resident area are
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Table 5. Prediction Results w.r.t Different Length of Historical Traffic Series

Shanghai Dataset Nanjing Dataset

Historical Length MAE RMSE '2 MAE RMSE '2

3 0.1531 0.2273 0.8482 0.1978 0.2901 0.8587
6 0.1517 0.2253 0.8534 0.1959 0.2886 0.8601
9 0.1516 0.2244 0.8539 0.1946 0.2870 0.8618
12 0.1507 0.2234 0.8548 0.1934 0.2857 0.8624
15 0.1492 0.2229 0.8556 0.1920 0.2843 0.8635
18 0.1490 0.2230 0.8562 0.1903 0.2835 0.8641

Bold values indicate the best performance across all methods. Underlined values indicate
the second-best performance across all methods.

Table 6. Prediction Results w.r.t Different Length of Future Traffic Pattern
Series

Shanghai Dataset Nanjing Dataset

Historical Length MAE RMSE '2 MAE RMSE '2

3 0.1525 0.2289 0.8475 0.1978 0.2893 0.8578
6 0.1505 0.2241 0.8539 0.1962 0.2874 0.8594
9 0.1497 0.2232 0.8550 0.1949 0.2866 0.8606
12 0.1507 0.2234 0.8548 0.1934 0.2857 0.8624
15 0.1503 0.2230 0.8554 0.1927 0.2849 0.8632
18 0.1498 0.2224 0.8563 0.1918 0.2838 0.8637

Bold values indicate the best performance across all methods. Underlined values indicate
the second-best performance across all methods.

Table 7. Transfer Experiment Results on Different Urban Areas

Shanghai Dataset Nanjing Dataset

Urban Areas MAE RMSE '2 MAE RMSE '2

Office Area 0.1508 0.2228 0.8540 0.1945 0.2835 0.8626
Transport Area 0.1537 0.2268 0.8525 0.1983 0.2885 0.8575

Entertainment Area 0.1525 0.2261 0.8512 0.1963 0.2879 0.8603
Resident Area 0.1496 0.2229 0.8549 0.1927 0.2829 0.8629

Overall 0.1513 0.2239 0.8541 0.1943 0.2867 0.8608

Bold values indicate the best performance across all methods. Underlined values indicate
the second-best performance across all methods.

more accurate, while the prediction results in the transportation area and entertainment area are
worse. This could be caused by transportation and entertainment areas experiencing sudden spikes
or drops in traffic due to events, holidays, or shifts in consumer behavior, making predictions less
accurate and more challenging.

—Efficient of Model Inference. We conducted a comparison of GPU memory usage and inference
time between our method and STGCN, which is the spatiotemporal model with the smallest
GPU memory consumption in the baseline. As illustrated in Figure 9, the results show that the
GPU memory requirements and inference time of STGCN increase rapidly as the number of
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Fig. 9. Comparison of computational cost.

Table 8. Ablation Study

Shanghai Dataset Nanjing Dataset

MAE RMSE '2 MAE RMSE '2

KGDA 0.1507 0.2234 0.8548 0.1934 0.2857 0.8624
LSTM 0.1582 0.2373 0.8361 0.2022 0.2986 0.8468

w/o Regular Pattern 0.1575 0.2360 0.8364 0.2003 0.2971 0.8453
w/o Residual Dynamics 0.2925 0.3818 0.4638 0.3515 0.4462 0.5142

Patterns Prediction 0.1511 0.2291 0.8519 0.1953 0.2891 0.8531
Residual Prediction 0.1524 0.2304 0.8514 0.1967 0.2904 0.8516

Bold values indicate the best performance across all methods.

nodes increases, while the GPU memory usage and inference time of our method increase to a
smaller extent. Experiments prove that our model requires less computing resources and shorter
experiments and can better meet practical needs.

4.4 Ablation Study
In order to better understand each part of our model KGDA, we perform the following ablation
experiments. We first changed the Bi-LSTM model in the Traffic Residual Dynamics Estimating
model to the original LSTM. We also remove the Traffic Regular Pattern Estimating model. Third,
we remove the Traffic Residual Dynamics Estimating model. Moreover, we test the performance
output of the Traffic Regular Pattern Estimating model and Traffic Residual Dynamics Estimating
model with its true traffic pattern and traffic residual series. The prediction results of different
variants are presented in Table 8. We observe that the Traffic Regular Pattern Estimating model
utilizes a static embedding matrix as input, which limits its ability to estimate real cellular traffic
accurately. However, when coupled with the Traffic Regular Pattern Estimating model, KGDA
demonstrates improved performance.

—Effectiveness of Urban Knowledge Graph. We systematically conducted experiments to demon-
strate the effectiveness of individual entities within the urban knowledge graph by iteratively
removing one entity along with its associated relationships. These results are summarized in Ta-
ble 9. The findings highlight the superior performance of the complete urban knowledge graph
compared to its partial counterparts, emphasizing the importance of utilizing the entire graph for

ACM Transactions on Intelligent Systems and Technology, Vol. 15, No. 6, Article 123. Publication date: November 2024.



Knowledge Graph Driven Decomposition Approach 123:17

Table 9. Ablation Study on the Urban Knowledge Graph

Shanghai Dataset Nanjing Dataset

MAE RMSE '2 MAE RMSE '2

Our Model 0.1507 0.2234 0.8548 0.1934 0.2857 0.8624
w/o Category 0.1523 0.2241 0.8558 0.1956 0.2858 0.8610

w/o POI 0.1534 0.2272 0.8488 0.1981 0.2910 0.8584
w/o BA 0.1554 0.2282 0.8525 0.2068 0.3042 0.8467

w/o Region 0.1555 0.2284 0.8535 0.2073 0.3022 0.8462

Bold values indicate the best performance across all methods.

optimal results. Additionally, our analysis revealed that regions and business areas consistently
outperformed POIs and categories. This disparity can be attributed to the highly detailed micro-
geographic data associated with POIs, which poses challenges in capturing spatial structures and
environmental nuances accurately. Conversely, regions and business areas offer a broader, macro-
level perspective that is more conducive to modeling and analysis within the urban knowledge
graph framework.

5 Related Work
5.1 Cellular Traffic Prediction
Initially, cellular traffic forecasting was viewed as a generic time series prediction issue, and
significant efforts and models were employed to promote the performance of traffic forecasting in
communication networks. Hong et al. [19] utilized SVR to model short-term cellular traffic series.
Although SVR is commonly used in time series forecasting, it struggles to capture rapid variations in
traffic flow as it relies on the average volume of historical traffic series. Furthermore, it fails to model
non-linear relationships, requiring substantial time and effort to identify appropriate parameters for
achieving satisfactory performance. Li et al. [24] and Xu et al. [45] focus on predicting short-term
cellular traffic series for a single base station in cellular networks. However, as the prediction
window is expanded, the performance of these models deteriorates rapidly.

Recently, there has been increasing interest in improving the precision of cellular traffic forecast-
ing through spatial structure analysis. Several spatial models have been proposed for this purpose.
Cao et al. [3] examine the distribution of hotspots over space and time, categorizing various types
of hot regions. Feng et al. [11] propose a deep-learning-based end-to-end model that captures
spatial-dependent and long-term cellular traffic patterns. This model highlights the influence of
environmental factors, such as the distribution of POIs, on the basic traffic demands within a given
area. Wang et al. [39] integrate spatial-temporal modeling and prediction in cellular networks. They
introduce an innovative deep model that combines autoencoder-based spatial modeling with LSTM
for temporal modeling. These models employ a grid-based method for cellular traffic prediction.
However, they do not differentiate between base stations within the same grid. Wang et al. [41]
introduce a novel decomposition method for in-cell and inter-cell data traffic. They also propose a
graph-based deep learning approach for precise cellular traffic forecasting. This method considers
the relationships between base stations and leverages graph-based techniques to accurately capture
spatial dependencies.

5.2 Spatial-Temporal Traffic Forecasting
Fundamentally, urban traffic originates from the actions of citizens, rendering them inherently
similar. However, there are still some differences.
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For the road traffic, its spatiotemporal dependence is significant. Vehicles can only transfer from
one node to its neighbor nodes. During the transfer process, if the source node decreases by one,
the target node will increase by one. Road traffic changes follow simpler patterns than mobile
traffic. Fang et al. [10] propose a method to model spatial dependencies among base stations using
a dependency graph constructed based on spatial distances between cells. This preserves the spatial
granularity of the data, with edges in the graph representing spatial relationships between nodes. Yu
et al. [48] introduce STGCN, a deep learning model combining GCN and CNN.The GCN component
captures the topology structure of the graph through an adjacency matrix calculated based on node
distances, enabling spatial dependency capture. Meanwhile, the gated CNN component explores
dynamic features in cellular traffic, capturing temporal dependencies. Guo et al. [15] propose
ASTGCN, comprising three significant parts to capture specific temporal features of cellular traffic.
These components’ outputs are weighted and combined to produce the final prediction. Zhao et al.
[54] present T-GCN, merging GCN and GRU. GCN captures graph topology similarity using an
adjacency matrix based on node distances for spatial dependency capture, while GRU models
dynamic changes in cellular traffic at each node for temporal dependency capture. Wu et al. [43]
propose GraphWaveNet, incorporating a trainable adaptive dependency matrix via node embedding
and stacked dilated convolution to broaden the receptive field, capturing a broader range of spatial
and temporal information for spatial-temporal dependency modeling. Diao et al. [5] introduce
DGCNN, utilizing a dynamic Laplacian matrix estimator to track dynamic spatial dependencies.
This adeptly captures enduring global temporal-spatial traffic relationships and transient local
traffic fluctuations.

Predicting the network traffic entails forecasting forthcoming traffic patterns by leveraging
network structure and historical traffic data obtained from routers. Davide et al. [1] utilize DCRNN
to predict traffic levels and congestion incidents. DCRNN employs a graph-based machine learning
approach to learn individual node representations, considering their intrinsic properties and the
network’s structure. Laisen et al. [30] introduce a method based on reinforcement learning to
address the traffic forecasting challenge, treating it as a Markov decision process. Their approach
integrates a residual-based dictionary learning algorithm to extract temporal feature sets relevant
to the prediction task. He et al. [17] introduce a meta-learning framework comprising a suite of
predictors, each tailored to forecast specific traffic types. Furthermore, they devise a master policy
trained to dynamically select the most suitable predictor based on individual performance metrics.

Notably, other traffic prediction models are primarily based on modeling spatiotemporal correla-
tion and failure to incorporate urban environmental factors into their models, resulting in subpar
performance.

5.3 Urban Knowledge Graph
A knowledge graph, also known as a semantic network, represents a network of real-world entities
and illustrates their relationships. Similarly, an urban knowledge graph represents urban elements
such as base stations, POIs, and regions as entities, modelling spatial and semantic dependencies as
relationships between them. Liu et al. [29] present Urban KG, an urban knowledge graph system,
which is built upon the data layer, the system further develops the multiple layers of construction,
storage, algorithm, operation, and applications, which achieve knowledge distillation and support
various functions to the users. Ning et al. [32] introduce UUKG, a unified urban knowledge graph
dataset designed for knowledge-enhanced urban spatial-temporal predictions, which uncovers
diverse high-order structural patterns that can be leveraged to improve downstream Unsupervised
Spatio-Temporal Prediction tasks.

Recently, there has been increasing interest in applying urban KG to traffic prediction and traffic
generation in cellular networks. Gong et al. [12] propose amulti-relational knowledgeGCNmodel for
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mobile traffic prediction, which captures spatial information from the augmented spatial knowledge
graph using Tucker decomposition and relational graph convolutional network. Zhang et al. [52]
propose ADAPTIVE, a deep transfer learning framework for city-scale cellular traffic generation
through the urban knowledge graph. Hui et al. [21] propose a knowledge-enhanced GAN with
multi-periodic patterns to generate large-scale cellular traffic based on the urban environment.
Therefore, we are motivated to develop urban knowledge graphs to represent the urban environment
for cellular traffic prediction.

6 Conclusion
In this article, we examine the inherent traffic patterns of base stations and identify four key traffic
patterns influenced by location, using hierarchical clustering.We introduce a KGDA to predict future
cellular traffic. This approach breaks down the impact of static environmental factors and dynamic
autocorrelations, thereby capturing the overall direction of traffic changes and understanding
the dependence of traffic on past values. Our urban knowledge graph encapsulates the static
environmental context of base stations. Extensive experiments, conducted on a real-world dataset,
corroborate the efficiency and accuracy of our approach.

In future work, we plan to extend our proposed approach to evaluate its effectiveness in diverse
settings by applying it to other cities and regions. This will help us assess the generalizability of
our model and identify any limitations or challenges in applying it to various mobile network
environments. Moreover, it is interesting to investigate the transferability of our model to different
types of mobile networks, such as sensor networks and vehicle networks, which have unique
characteristics and requirements. We can explore how our model can be adapted to these networks
and applied in optimization andmanagement. Additionally, we plan to sustain our collaborationwith
industry partners to integrate our model into existing mobile network management systems. This
collaborative effort is aimed at enhancing network performance and augmenting user experience.
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