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The binary relational knowledge base (KB, a.k.a. knowledge graph), representing real-world knowledge with
binary relations and entities, has been an important research topic in artificial intelligence, while, considerable
knowledge also involves beyond-binary relations. Recently, the area proposes to model n-ary relational
KBs with both binary and beyond-binary relations included. However, most current models are extended
from translational distance and neural network models in binary relational KBs, which suffer from weak
expressiveness and high complexity, respectively. To overcome such issues, in this work, we propose a novel
two-step modeling framework, GETD, generalizing the powerful tensor decomposition technique from binary
relational KBs to the n-ary case. For n-ary relational KBs with single-arity relations, the GETD framework
introduces Tucker decomposition and Tensor Ring decomposition for expressive and efficient modeling.
Furthermore, the framework is technically extended for the representation of n-ary relational KBs with
mixed-arity relations. The existing negative sampling technique is also generalized to the n-ary case for GETD.
In addition, we theoretically prove that the GETD framework is fully expressive to completely represent
any KBs. Empirical results on two representative datasets show that the proposed framework significantly
outperforms the state-of-the-art methods, achieving 11-26% and 4-7% improvements on Hits@10 for the
single-arity and the mixed-arity cases, respectively.
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1 Introduction

In the past decade, the emerging of numerous web-scale knowledge bases (KBs) such as Free-
base [3], Wikidata [46], YAGO [41], and Google’s Knowledge Graph [38], has inspired various
applications, e.g., question answering [32], recommender systems [53], and natural language
processing (NLP) [31]. Most of these KBs are constructed based on binary relations with triplet
facts represented as (head entity, relation, tail entity), which are termed as binary relational KBs.
Specifically, extensive studies have been proposed to model such KBs, including translational
distance models [6, 26, 50], neural network models [8, 37, 39], and tensor decomposition models [2,
22, 43, 52]. These models first embed relations and entities into low-dimensional space, and then
design a scoring function based on such embeddings for fact plausibility measure [20, 33, 47].

Despite the great attention in binary relational KBs, n-ary relational KBs with both binary and
beyond-binary relations are less studied. In fact, n-ary (a.k.a. multi-fold) relations play an important
role in KBs. For instance, Purchase is a common ternary (3-ary) relation, involved a Person, a Product,
and a Seller. Sports_award is a 4-ary relation, involved a Player, a Team, an Award, and a Season,
giving an example of Michael Jordan from Chicago Bulls was awarded the MVP award in 1991-1992
NBA season. Also, as observed in [11] and [51], 61% of the relations in Freebase are beyond-binary
and more than 1/3 of the entities therein participate in these relations. Besides, since higher-arity
relations with more knowledge are closer to natural language, modeling n-ary relational KBs
provides an excellent potential for question answering-related NLP applications [10]. Figure 1
provides examples of n-ary relational KBs. Especially, Figure 1(a) and (b) is n-ary relational KBs
with single-arity relations, while Figure 1(c) is an example of n-ary relational KB with mixed-arity
relations (binary and ternary relations). As shown in Figure 1, mixed-arity relational KBs can
capture more complex semantics and encode more comprehensive knowledge than single-arity
relational KBs. This capability makes them a key focus of current research [9, 30].

Specifically, to model n-ary relational KBs, existing works can be categorized into two classes
of translational distance models and neural network models in terms of scoring function. The
first category models such as m-TransH [51] and RAE [54] are extended from TransH [50] in
binary relational KBs, translating entities onto relation-specific hyperplanes for plausibility scores.
However, these models also face the weak expressiveness of TransH [22], and fail to represent
some n-ary relations, which impairs the performance. Neural network models such as NaLP [14]
and HINGE [36] explore neural network-based scoring functions for n-ary relational fact modeling
and entity relatedness evaluation, which obtains state-of-the-art results. However, these models
achieve good performance at the cost of time-consuming pairwise operations and a large number
of parameters. Additionally, higher-arity relations further complicate the issue, which conflicts
with the linear time and space requirements for KB modeling [5]. Thus, existing works do not
provide an expressive and efficient solution for n-ary relational KB modeling, and it is still an open
problem to be addressed.

On the other hand, although tensor decomposition has been proved to be very powerful in binary
relational KBs by both the state-of-art results [2] and theoretical guarantees on full expressiveness
[22, 49], few works is adopting such a technique for n-ary relational KB modeling. A possible way is
to extend current tensor decomposition models from the binary case to the n-ary case, while direct
extensions yield serious issues. First, several existing models [22, 43] leverage some customized
operations for scoring functions design, while these operations are constrained on binary relations,
which are not able to be applied in n-ary relations. Second, powerful tensor decomposition models
[2] introduce exponential model complexity with the increase of arity, which cannot be applied in
large-scale KBs.

ACM Transactions on Intelligent Systems and Technology, Vol. 16, No. 3, Article 61. Publication date: May 2025.



Modeling N-ary Relational Knowledge Bases with Tensor Decomposition 61:3

obtainDegreeAt obtainDegreeAt

THE UNIVERSITY . —
of EDINBURGH THE UNIVERSITY
of EDINBURGH

receiveAwardIn| receiveAwardIn
B McGill =

B McGill

_Bengio | friend
obtainDegreeAt
(a) Binary Relational KB (b) Ternary Relational KB (¢) Mixed-arity Relational KB

Fig. 1. The illustration of n-ary relational KBs.

To solve n-ary relational KB modeling problem as well as tackle the above challenges, we
Generalize Tensor Decomposition in a two-step modeling framework, termed as GETD. In the first
step, the GETD framework focuses on modeling n-ary relational KBs with single-arity relations
(only n-ary relations, as shown in Figure 1(a) and (b)), referred to as GETD-S. More specifically,
GETD-S follows TuckER [2], the state-of-the-art model in binary relational KBs, and applies Tucker
decomposition [44] for the scoring function design in the n-ary case. However, the core tensor in
Tucker decomposition grows exponentially with the arity, and excessively complex models usually
overfit. Thus, motivated by the model compression benefits of tensor ring (TR) decomposition
[55] in computer vision [35, 48], the core tensor is further decomposed by TR for linear complexity.
In the second step, the GETD framework extends GETD-S for modeling the KBs with mixed-arity
relations (not exceeding n-ary relations, as shown in Figure 1(c)),! referred to as GETD-M. A group
of TR tensors are introduced as the base space for TR decomposition with different arity cases.
Specifically, based on the arity of relation, GETD-M chooses different tensors from the group
to decompose corresponding core tensors, while, the final scoring function is unified with the
entity and relation embeddings shared across different arities. Furthermore, since most KBs only
provide positive observations, we also generalize the existing negative sampling technique for
efficiently training on the GETD framework. Theoretically, we prove that our GETD framework is
fully expressive to represent various true and false facts in n-ary relational KBs. Through extensive
experiments on both synthetic and real-world datasets, we demonstrate the expressiveness and
effectiveness of our proposed framework on n-ary relational KB modeling.

The main contributions of this article are summarized as follows:

—We investigate tensor decomposition for n-ary relational KB modeling, and identify the
bottleneck of directly extending existing binary relational models to the n-ary case, including
the binary relation constrained scoring function and exponential model complexity.

— We propose GETD, a generalized tensor decomposition framework for n-ary relational KBs.
The framework integrates Tucker decomposition with TR decomposition, where linear com-
plexity is guaranteed for modeling the KBs with single-arity relations. Furthermore, we extend
our GETD framework to address the problem of modeling the KBs with mixed-arity relations.
To the best of our knowledge, GETD is the first framework that leverages tensor decomposition
techniques for n-ary relational KB modeling.

—We give theoretical analysis on our proposed framework and prove that our framework is
fully expressive, which is able to represent all types of relations, and can completely separate
true facts from false ones. We also generalize the negative sampling technique from the binary
to the n-ary case.

!In the following, n-ary relational KBs refer to KBs with mixed-arity relations if not specified.
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— We conduct extensive experiments on both synthetic and real-world datasets, and the results
show that GETD improves state-of-the-art solutions by 11-26% and 4-7% for n-ary relational
KBs with single-arity and mixed-arity relations, respectively. Moreover, GETD achieves close
and even better performance on two binary relational benchmarks compared with state-of-
the-art solutions.

The rest of this article is organized as follows. Section 2 introduces the background of tensor
decomposition and notations. Section 3 gives a systematic review on the related works of KB
modeling. After that, the framework of GETD and theoretical analyses are presented in Sections 4
and 5, respectively. Section 6 evaluates the performance on representative KB datasets and provides
extensive analyses. In light of our results, this article is concluded in Section 7.

2 Background and Notation
2.1 Tensors and Notations

A tensor is a multi-order array, which generalizes the scalar (Oth-order tensor), the vector (1st-order
tensor), and the matrix (2nd-order tensor) to higher orders. We represent scalars with lowercase
letters, vectors with boldface lowercase letters, matrices with boldface uppercase letters, and higher-
order tensors with boldface Euler script letters. For indexing, let a; denote the ith column of a
matrix A, Xj,;,...;, denote the (i1, iz, - - ,ip)-th element of a higher-order tensor X € RExxIp
where I; is the dimensionality of the ith mode. Especially, given a 3rd-order tensor Z € Ri*2xls
the i,-th lateral slice matrix of % is denoted by Z(i;) in the size of I} X I3, a.k.a., Z;,. where the
colon indicates all elements of a mode.

As for the operation on tensors, o represents the vector outer product, and X; represents the
tensor i-mode product. (-) represents the multi-linear dot product, written as (a1, az, - ,a,) =
2 G1,idgi - - - Ap,;. trace{-} is the matrix trace operator, written as trace{ A} = }}; a;;. More details
about these operations and tensor properties can be referred to [24]. The related notations frequently
used in this article are listed in Table A1 in appendix.

2.2 Tucker Decomposition

Tucker decomposition was initially proposed for three-order tensor decomposition [44]. It can be
generalized to a higher order, which decomposes a higher-order tensor into a set of factor matrices
and a relatively small core tensor. Given a pth-order tensor X € Rl Tucker decomposition
can be denoted as:

Lok Jp
X = g X1 A(l) X A(z) Xg oo Xp A(P) = Z Z ce Z g]l]szaﬁll) ° ajzz) 0---0 a(.P), (1)

Jp
J1=1j2=1 Jp=1

where G € R} is the core tensor, ], is the rank of gth mode, and {AD | AD e Rla*Jg }5:1
is the set of factor matrices. Usually, Ji,- - -, J, are smaller than I, - -, I,. Thus the number of
parameters is reduced compared with the approximated tensor X.

2.3 TR Decomposition

Although Tucker decomposition approximates a higher-order tensor with fewer parameters, the
number of parameters scales exponentially to the tensor order. TR decomposition [55], on the
other hand, represents a higher-order tensor by a sequence of 3rd-order latent tensors multiplied
circularly. Given a pth-order tensor X € R"**lr TR decomposition can be expressed in an
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element-wise form as:
p
Xiyiy-i, ~ trace{Zy(i1)Zz(iz) - -+ Z,(ip)} = trace l_qu(iq) , (2)
g=1

where {Zg| %, € R X7 ry = rp+1}§:1 is the set of TR latent tensors and Z, (i) is in the
size of R"#*"a+1 accordingly. For convenience, we also denote the above TR decomposition as

TR(Zy,- -, %q). Especially, the size of latent factors, concatenated and denoted by r =[ry, 73, - - - , 7]
is called TR-ranks.

3 Related Work

We introduce in this section the related works for KB modeling, which are classified into two
categories of binary relational KBs and n-ary relational KBs.

3.1 Binary Relational KB Modeling

Basically, existing approaches embed entities and relations into low-dimensional vector spaces and
define a scoring function with embeddings to measure if a given fact is true or false. Based on the
scoring function design, the typical works in binary relational KBs can be categorized into three
groups: translational distance models [6, 19, 26, 50], neural network models [8, 37, 39], and tensor
decomposition models [2, 22, 34, 43, 52].

Translational distance models measure the entity distance after a translational operation carried
out by the relation [47], and various translational operations are exploited for distance-based
scoring functions [6, 19, 26, 50]. However, most translational distance models are found to have
restrictions on relations [22, 47], thus can only represent part of relations.

Neural network models [8, 37, 39] subtly design the scoring function with various neural network
structures, which always require a great many parameters to completely represent all relations [22,
47], increasing training complexity and impractical for large-scale KBs.

With solid theory and great performance, tensor decomposition models are more prevalent
methods. In this aspect, the KB modeling is framed as a 3rd-order binary tensor completion problem
with the KB tensor X € R"r*"X" yhere each element corresponds to a triple, one for true facts
while zero for false/missing facts respectively. Thus, various tensor decomposition models are
proposed to approximate the 3rd-order tensor X. For example, traditional canonical polyadic
(CP) decomposition [16] assigns two different factor matrices to entity embeddings at head and
tail of triplets, and one factor matrix to relation embeddings:

R
rel head tail
3C=Zar 0 a0 a, 3)
r=1

where R is the rank of tensor decomposition and @' € R, a*3d € R", and a!*! € R" are column
vectors from embedding matrices of relation, head, and tail, respectively.

Similarly, DistMult [52] uses CP decomposition [16] with the equivalence of head and tail
embeddings for the same entity, however, fails to capture the asymmetric relation:

R
_ rel ent ent
fXJ—Zar oca;" oa;, (4)
r=1

ent

where af

is column vector from embedding matrix of entity.
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Furthermore, SimplE [22] takes advantage of the inverse of relations to address the asymmetric
relation, with an inverse relation for each original relation proposed:

R
X = Z a;el ° ailead ° agall + al;el_lnv o atrall ° ailead’ (5)
r=1
Linv . . . .
where a;"-"" is column vector from embedding matrix of inverse relation.

ComplEx [43] leverages complex-valued embeddings for solution, in which the entity embeddings
used at head and tail are conjugate:

R
X =Re (Z aoa™o asnt) , (6)
r=1

where Re(+) denotes the real part, and @™ is the complex conjugate of @™ [25].

¢

Recently, Tucker decomposition [44] is adopted in TuckER [2] for KB modeling and achieves
the state-of-the-art performance. Compared with former works only using entity and relation
embeddings to capture the knowledge in KBs, TuckER additionally introduces the core tensor to

model interactions between entities and relations, which further improves the expressiveness:
X = 9 X1 Arel X5 Aent X3 Aent, (7)

where G € RR*RXR i5 the core tensor, A™ € R *R and A € R"*R gre embedding matrices of
relation and entity, respectively.

According to the discussion, generalizing tensor decomposition is promising for n-ary relational
KB modeling.

3.2 N-ary Relational KB Modeling

Existing works on n-ary relational KB modeling can be categorized into two classes based on the
scoring function: translational distance models [51, 53] and neural network models [14, 36].

The translational distance models of m-TransH [51] and RAE [54] are the first series of works
in this field. Based on the distance translation idea, m-TransH is proposed by extending TransH
[50] for the n-ary case, where entities are all projected onto the relation-specific hyperplane, and
the scoring function is defined by the weighted sum of projection results. RAE further improves
m-TransH with the relatedness assumption that, the likelihood of two entities co-participating
in a common n-ary relational fact is important for plausibility measure. MLP is utilized to model
the relatedness and coupled into the scoring function. Since these models are directly extended
from the binary case, the restrictions on relations are also inherited with limited representation
capability to KBs.

On the other hand, NaLP [14] was the first to introduce a neural network approach for n-ary
relational KB modeling. In NaLP, the entity embeddings of an n-ary relational fact are initially
processed through a convolutional layer for feature extraction, followed by a fully connected
network (FCN) that models the overall relatedness, producing an evaluation score as output.
Recent works, such as HINGE [36] and Neulnfer [13], build upon the principles established by NaLP
and achieve state-of-the-art performance. HINGE emphasizes the primary information encoded
in the triplet component of n-ary relational facts, utilizing convolutional neural networks
(CNNs) for this purpose. Similarly, StarE [12] and CoRelatE [17] apply graph convolutional
networks (GCNs) [37, 45] to model triplets; however, they fall short of capturing the entire n-ary
relational fact. A recent work TransEQ [27] combines GCNs and traditional scoring functions
for n-ary relational KB modeling. These neural network models typically involve a large number
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of parameters and require time-consuming pairwise operations, rendering the training process
intractable.

As previously discussed, tensor decomposition is a potential solution for n-ary relational KB
modeling, while directly extending current binary relational tensor decomposition models to the
n-ary case is challenging with various bottlenecks. First, most CP-based models achieve great
performance mainly due to carefully designed scoring functions with customized operations. For
instance, to model all types of relations, the relation inverse in SimplE [22] and complex-valued
embeddings in ComplEx [43] are all binary relation-constrained operations, which cannot find
equivalents when it comes to the n-ary case. Second, some direct extensions introduce tremendous
parameters like TuckER [2] to the n-ary case with exponential model complexity, which is imprac-
tical and easily affected by noise [22, 43]. Besides, other models like DistMult [52] force the relation
to be symmetric, thus are not able to completely represent n-ary relational KBs. HypE [11] explores
DistMult with convolution to the n-ary case, but the interaction between entities and relations is
not fully captured, leading to inferior empirical performance. Besides, RAM [30] identifies the role
semantics in n-ary relations and develops a multilinear product-based scoring function for n-ary
relational KB modeling. GETD [28, 29] applied Tucker decomposition and TR decomposition to
model the interaction in n-ary relational KBs, where the scoring function is written as:

X = TR(Zl, ey, Zk) X1 Arel X Aent X3+ Xpy1 Aent’ (8)

where 2, -+ , % are TR latent tensors.
S2S [9] develops automated learning to search sparse tensor decomposition for n-ary relational
KBs, which however is time-consuming due to search process:

X=Z" X1 14rEI Xo Aent X3+ Xpy1 Aent, (9)

where Z" is the sparse core tensor to be searched.

Compared with the preliminary version [28], this version investigates the comprehensive research
problem of n-ary relational KB modeling with both single-arity relations and mixed-arity relations.
Especially, this one comprises a substantial amount of additional algorithmic, theoretical, and
experimental efforts and contributions. First, we design a system framework, which further extends
preliminary work for modeling KBs with mixed-arity relations. The complete framework makes
our work more practical and systematic. Second, we provide the detailed theoretical proof of full
expressiveness to the proposed GETD framework including single-arity and mixed-arity cases,
which is valuable for future research on KB modeling expressiveness. Last but not least, we further
include two new datasets and baselines and report a series of experimental results that examine
the performance of GETD for mix-arity case and visualize parameters for better understanding on
n-ary relational KBs.

4 GETD: Design and Framework

Borrowing the concept of n-ary relation [7, 10], the n-ary relational fact can be defined as follows:

Definition 4.1 (n-ary Relational Fact). Given an n-ary relational KB with the set of relations R and

the set of entities &, an n-ary relational fact is an (n + 1)-tuple (i, i1, iz, - -+ ,in) SRXE X --- X &,
—_———
n
where R and & are called relation domain and entity domain.
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Especially, i; is the jth entity to the relation i, belonging to the jth entity domain. In the
binary case of (i, i1,12), i1 and i are head entity and tail entity, and i, is the relation, respec-
tively. For example, in the mixed-arity relational KB in Figure 1(c), there exist a binary rela-
tional fact of (friend, Hinton, LeCun) as well as a ternary relational fact of (receiveAwardlIn,
Hinton, Turing Award, 2018).

Then, the n-ary relational KB modeling can be specified as knowledge base completion (KBC)
problem, which is defined as follows,

PROBLEM 1 (n-ary Relational KBC). Given an incomplete n-ary relational KBS = {(iy, i1, iz -+ ,in)},
the n-ary relational KBC problem aims to infer missing facts with S.

In the following, we first provide insight on directly applying Tucker decomposition for n-ary
relational KB modeling, then introduce our proposed GETD framework for modeling single-arity
KBs and mixed-arity KBs, respectively. Furthermore, the negative sampling and corresponding
training procedure are presented.

4.1 Rethinking Tucker for KB Modeling

From the point view of tensor completion, an n-ary relational KB can be represented as a binary
valued (n + 1)th-order KB tensor X € {0, 1}"'r*feXteX"Xne (5 — |R|, n, = |E]|), whose 1st-mode is
the relation mode, while the other modes are entity modes in the n-ary relational fact. x; ;,s,...;,
equal to one means the specific n-ary relational fact is true, and zero for false/missing. Accordingly,
KB modeling is to calculate the approximated low-rank scoring tensor I € R7rXmeXneX " Xne yith
| - 5C|| minimized, where the parameters are learnt via gradient descent.

Especially, the state-of-the-art binary relational model TuckER [2] can be directly extended to
the n-ary case termed as n-TuckER, with relation embedding matrix R = A" € R"*% and entity
embedding matrix E that is equivalent for each mode entities, i.e., E = A® =... = A(nt]) ¢ Ruexde
where d, and d, represent the dimensionality of relation and entity embedding vectors respectively.
The scoring function is defined as,

Gir, ity b, -+ 5 dn) = Ripigigin = W X1 Tj, X2 €5 X3 €4, -+ Xpi1 €, (10)

where W € Ré-*dexdex-xde jq the (n + 1)th-order core tensor, r;, and {ei}?;il are the rows of R
and E representing the relation and the entity embedding vectors. Such a straightforward design
inevitably leads to a model complexity of

O(nede + nyd, +dd,),

which grows exponentially with d.. Besides the unacceptable complexity in parameters and in-
creased training difficulty, n-TuckER also faces the dilemma that, excessively complex models are
easily affected by noise and prone to overfitting, leading to poor testing performance [22, 43].

4.2 The GETD-S Model: Single-Arity KB Modeling

In this part, we introduce the GETD-S model for n-ary relational KBs with single-arity relations,
which is shown in Figure 2.

Despite the model complexity and overfitting, leveraging the (n + 1)th-order core tensor to
capture the interaction of entities and relations is instructive that the similarity between entities
and relations is encoded in core tensor element. Such Tucker interaction way ensures the strong
expressive capability of representing various facts in KBs. It can be envisioned that a model with the
Tucker interaction way as well as low complexity is promising for n-ary relational KB modeling.
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Fig. 2. The illustration of GETD-S model for single-arity KBs, consisting of two major components: the outer
layer with Tucker decomposition and the inner layer with TR decomposition.

To achieve this, TR decomposition draws our attention that a higher-order tensor can be decom-
posed by quite a few parameters in 3rd-order latent tensor sequences. This motivates the general
construction of GETD-S.

First, in the outer layer of GETD-S, the original KB tensor is decomposed via Tucker decom-
position following Equation (10), which reserves Tucker interaction way as well as strong ex-
pressiveness. Subsequently, to further reduce the parameter complexity of TR decomposition for
the core tensor, in the inner layer, the intermediate core tensor W is flexibly reshaped to a kth-
order tensor W € R™**" where k denotes the order of reshaped tensor with [[%, n; = d”d,
(k > n + 1) satisfied. Then TR decomposes the reshaped tensor ‘W into k latent 3rd-order tensors
{Z; | Z; € RMiXmiXTist p) = rk+1}f:1, reducing the number of parameters. The illustration of GETD-S
is shown in Figure 2 (in n = 2 case). Specifically, the left part of the figure depicts the construction of
outer layer with Tucker decomposition, while the right part presents the TR construction procedure
of inner layer. The corresponding expression is,

Wjijoji = trace{Zy(j1)Z2(j2) - - - Zic (i) }- (11)
Overall, the scoring function of GETD-S can be expressed as:
Giy, iy, dp, -+ ,0p) = W x; ri, Xz e X3 e, - Xpy1 €,
=TR(Zy, -+, 2) X1 1i, Xz €, X3 €5, Xpi1 €. (12)
The model complexity of GETD-S is

O(n.d. + n,d, + knsnax), S.t. Npax = Ar{laxk ni,
=1,

which is much lower than n-TuckER. 5. is the maximum TR-rank and discussed in detail later.
Accordingly, with Tucker interaction way as well as low model complexity, GETD-S not only guar-
antees strong expressive capability, but also avoids the overfitting problem with many parameters,
which improves the testing performance. Note that due to the fixed order (n + 1, and n represents a
constant) of core tensor W, GETD-S can only model n-ary relational KBs with single-arity relations.

4.3 The GETD-M Model: Mixed-Arity KB Modeling

To further model n-ary relational KBs with mixed-arity relations like the example in Figure 1(c),
here we present the GETD-M model, the extension of GETD-S.

As described before, the outer layer of GETD-S is constructed based on n-TuckER. According to
Equation (10), if we extend n-TuckER to mixed-arity KBs, the corresponding scoring function for
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m-ary relational facts in the mixed-arity KB can be defined as:
U (ipsins iz -+ o im) = WU X1 1y, Xp €1, X3 €5+ X1 €5, Y =2, M, (13)

where m is the arity of the considered relation, W) ¢ Rdrxde-xde jg (m + 1)-th order core tensor,
and M is the maximum arity of relations in the mixed-arity KB. However, the order of core tensor
‘W in n-TuckER is fixed to n + 1 when applied in n-ary relational KBs, which is not able to process
mixed-arity relational facts simultaneously. Besides, initializing multiple core tensors of different
orders for mixed-arity KBs is also impractical, which ignores the mutual effect across different
arities and further leads to inferior empirical performance. Thus, the key challenge of extending
GETD-S to the mixed-arity case is dealing with variable order core tensors with mutual effect
considered.

Motivated by the inner layer of GETD-S that TR decomposition represents an nth-order tensor
by n 3rd-order tensors, we introduce M 3rd-order TR tensors in GETD-M, termed as TR tensor
group {Z; % € R™X&> %, € Rr*x‘i@xr*}gf. The TR-ranks of TR tensors are set to r* for
flexible decomposition. Subsequently, with TR decomposition applied, GETD-M utilizes first three
TR tensors in the group to recover the 3rd-order core tensor W® for binary relational facts, and
utilizes first four TR tensors in the group to recover the 4th-order core tensor W for 3-ary
relational facts, etc. The whole group of TR tensors are utilized to recover the (M + 1)-th order
core tensor WM for M-ary relational facts.

Figure 3 illustrates the extension idea of GETD-M, which indicates the solution to mixed-arity
KBs. The node represents a tensor whose order is denoted by the number of edges and the number
beside the edges specifies the size of each mode. The connection between two nodes denotes a tensor
product on a specific mode. Since we consider the mixed-arity KBs with a maximum arity of M,
there are M KB tensor to be decomposed, as shown in blue circles. First, GETD-M leverages Tucker
decomposition to decompose the KB tensors for different arities. Moreover, GETD-M initializes TR
tensor group with M TR tensors, which are chosen for TR decomposition based on the relation arity.
Especially, the TR tensors used for lower-ary relational facts are the subset of that for higher-ary
relational facts. This operation can reduce parameter complexity as well as learn shared information
across relational facts in different arities. Therefore, TR tensor group as well as shared embeddings
in the outer layer encode the mutual effect across different arities.

Thus, the scoring function of GETD-M for m-ary relational facts in the mixed-arity KB can be
expressed as follows:

¢(m)(ir, il, Tt im)
=wim X1Ti, X2 € X3 €, Xyt €,
=TR(Z, -+, Zme1) X1 T7i, X2 €i; X3 €3 Xmy1 €5, Ym =2, M. (14)

Note that the reshape operation in Equation (12) is omitted for flexible processing across different
arities of relational facts. The model complexity of GETD-M is

O(nede + nyd, + dor*? + Md,r*?), (15)

which is comparable to GETD-S, and discussed in later section. Hence, with TR tensor group
developed, the GETD framework successfully extends GETD-S to GETD-M for mixed-arity KBs,
which is quite practical for KB modeling.

4.4 Model Training

In this part, we generalize negative sampling in binary relational KB modeling to the n-ary case
and present the modeling training algorithm for better understanding,.
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Fig. 3. The illustration of GETD-M model for mixed-arity KBs, consisting of TR tensor group and TR decom-
position for different arity cases. M is the maximum arity of mixed-arity KB. r* is the rank of TR tensors.

In KBs, we usually only have positive observations, i.e., which relation exists among different
sets of entities. Thus, even with the designed scoring functions, we cannot train an embedding
model due to a lack of negative observations. In binary relational KBs, given a positive triplet
(iy, i1, i2), good candidates of negative samples [33] are

Nepinin =N UNE = (i1 i0) € S i € 8Y U {(in i) ¢S € 8}, (16)
where the symbols of i; and i, denote the negations to i; and i,, respectively.

Following this, for one positive n-ary relational fact x := (i, i1, iz, - - - , in), n groups of negative
candidates are generated from corresponding n entity domains, defined as

NXEUINXMEUl{(ir,...,i-m,...)¢5|i;,ea}. (17)

As for the training loss, motivated by the gains of multiclass log-loss in binary relational KB
modeling [21, 25], we extend the loss to the n-ary case with all candidates in Equation (16) simulta-
neously considered, defined as

n
L= —log[e?® /(e + 3 W) (18)
Jj=1 yEN,ij )

Then both GETD-S and GETD-M are trained in a mini-batch way, where all observed facts and
each entity domain therein are considered for training. Algorithm 1 presents the pseudo-code of
the training algorithm for GETD-S. With the embedding dimensions and TR-ranks as input, the
embeddings of entities and relations as well as TR latent tensors, are randomly initialized before
training in line 1. During the training, line 3 samples a mini-batch Spatc of size my, in which each
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Algorithm 1: Training Algorithm for GETD-S
Input: training set S = {(iy, i1, 02+ ,in)},
reshaped tensor order k, TR-ranks r,
entity/relation embedding dimension d, /d,;
1 initialize embeddings E, R, TR tensors {Zi}le;

2 fort=1,2,--- ,nepocn do

3 sample a mini-batch Spatch € S of size my;
4 L« 0;

5 for x = (jr, j1, jo,*** » jn) € Sbatch do

6 construct negative sample set N;

~

¢(x) « compute the score using (12);

8 L, < compute the loss using (18)
9 L—L+ Ly
10 | update parameters of embeddings and TR latent tensors w.r.t. the gradients using V.£;

Output: embeddings E, R and TR tensors {Z,-}le.

observation is considered for training in lines 4-10. Specifically, for each n-ary relational fact in
Shatch, the algorithm constructs the negative candidates following Equation (17), as shown in line 6.
Then, the score of the observation as well as the negative candidates are computed using Equation
(12) in line 7, which are further utilized to compute the multiclass log-loss with Equation (18) in
lines 8-9. Finally, the algorithm updates the model parameters according to the loss gradients.
Similarly, Algorithm A1 in Appendix A presents the pseudo-code of the training algorithm for
GETD-M. The predefined TR tensor group {Zi}i.‘:1 is initialized in line 1. The major difference with
Algorithm 1 is that training data with different mixed-arity relational facts should be sampled
according to the arity, as shown in lines 3-4.

5 Theoretical Understanding

In this section, we present a detailed analysis on the complexity of the GETD framework for the
single-arity and mixed-arity cases, and further prove the full expressiveness.

5.1 Complexity Analysis

According the GETD-S model description in Section 4.2, the entity and relation embeddings cost
O(n.d. + n,d,) parameters. Since each TR latent tensor is 3rd-order with Z; € R"*"i*"i+1 and TR-
rank r; is usually smaller than n;, the k TR latent tensors cost O(kn ) parameters in sum, where

Amax = maxk n;. Thus, the model complexity of GETD-S is obtained as O(n.d, + n,d, + kn
=1,

3
max)'

Moreover, due to the constraint ]—[f:l n; = dyd, in GETD-S, if TR latent tensors are in the same
shape, we can obtain the equation of np., = (d"d,)'/¥. When applied in large-scale KBs with
over thousands of entities [4, 41], GETD-S with high reshaped tensor order (larger k) derives that
kn? .. < ned., which reduces to the linear model complexity of O (n.d, +n,d,) to KB sizes. Besides,
GETD-S also retains the efficiency benefits of tensor mode product in linear time complexity.

As for the mixed-arity KB with the maximum arity of M, the GETD-M model generalizes the
TR latent tensors in GETD-S with TR tensor group, which costs O (d,r** + Md,r*?) parameters. In
practical, the TR-rank r* is set much smaller than d, and the maximum arity is no more than 9,
which derives that d,r** + Md,r** < n.d,. Hence, GETD-M achieves linear model complexity to
KB sizes.
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Table 1. A Comparison of State-of-the-Art N-ary Relational KB Modeling Approaches

Type Model ‘ Fully Expressive ‘ Mixed-Arity ‘ Model Complexity
Translational m-TransH [51] X v O(nede +2n,d.)
Distance Model RAE [54] X v O(nede +2n,d.)
Neural NaLP [14] X v O(n.d. + Mn,d,)
Network Model HINGE [36] X v O(nede + Mn,d,)
n-CP v v O(Mnd. + n,d.)
n-DistMult X 51 O(ned, + n,d,)
TensorDecompositionModel |  n-TuckER 51 }'e O(ned, + n,d, + déw d,)
GETD-S (ours) v X O(ned, + nyd, +kn )
GETD-M (ours) v v O(nede + nyd, + dyr*? + Mder*?)

The mixed-arity indicates whether a model can model KBs with mixed-arity relations. n. and n, are the number
of entities and relations, while d, and d, are the dimensionality of entity and relation embeddings, respectively.
M is the maximum arity of relations in KBs. k and np,y are the number and maximum size of TR latent tensors.
r* is the TR-rank.

In Table 1, we compare the GETD framework with state-of-the-art n-ary relational modeling
approaches based on expressiveness, mixed-arity representation, and model complexity. The table
shows that both translational distance models and neural network models lack full expressiveness,
which limits their learning capacity and results in inferior performance. In contrast, the GETD
framework is fully expressive, as demonstrated later in the article. It’s important to note that
we only present the complexity of relation and entity-specific parameters here, while additional
parameters in neural network models are omitted. Among the compared models, n-CP, n-DistMult,
and n-TuckER extend CP [16], DistMult [52], and Tucker [2], respectively. n-CP requires different
embeddings for a single entity across various domains, resulting in a complexity of O(Mn.d, +
nyd.). Meanwhile, n-DistMult can only model symmetric relations and does not achieve full
expressiveness. n-TuckER incurs exponential complexity due to its higher-order core tensor, which
is impractical for large-scale n-ary relational KBs. Additionally, the large number of parameters in
n-TuckER makes it susceptible to overfitting, as shown in the experimental results in Section 6. In
contrast, both models in the GETD framework exhibit linear complexity with respect to KB size,
making the GETD framework superior in terms of both model complexity and expressiveness.

5.2 Full Expressiveness

For KB modeling, a model is fully expressive if for any ground truth over all entities and relations,
there exist embeddings that accurately separate the true n-ary relational facts from the false ones,
i.e., the model can recover any given KB tensors by the assignment of entity and relation embeddings
[2, 22, 43, 47]. In this part, we prove the full expressiveness of both models in the GETD framework.

The full expressiveness guarantees the completeness of KB modeling. Especially, if a model is not
fully expressive, it means that the model can only represent a part of KBs with prior constraints,
which leads to unwarranted inferences [15]. For instance, DistMult is not fully expressive, and
forces relations to be symmetric, i.e., it can represent KBs with only symmetric relations [22], while
KBs with asymmetric and inverse relations cannot be completely represented. Thus, the upper
bound of learning capacity from a not fully expressive model is low. In contrast, fully expressive
models enable KB representation with various types of relations, fully representing the knowledge.

Formally, we have the following theorem to establish the full expressiveness of GETD-S in the
GETD framework.
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THEOREM 5.1. For any ground truth over entities & and relations R in an n-ary relational KB with
single-arity relations, there exists a GETD-S model that represents that ground truth.

Moreover, the following theorem is introduced to establish full expressiveness of GETD-M in
the GETD framework.

THEOREM 5.2. For any ground truth over entities & and relations R in an n-ary relational KB with
mixed-arity relations, there exists a GETD-M model that represents that ground truth.

The full expressiveness is a desired property for model learning and generalization. Especially, in
practice, the embedding dimensionality for modeling KBs is much smaller than the bound stated
above, because the KB tensor follows a certain structure instead of random assignment [2]. The
proofs of two theorems are provided in Appendix B.

6 Experiments and Results

In this section, we first describe the experimental setup of datasets, metrics, baselines and imple-
mentation details. Then, we evaluate the proposed GETD-S model on single-arity KBs with model
performance and parameter impact investigated. Furthermore, we evaluate the proposed GETD-M
model on mixed-arity KBs from similar aspects and embedding visualization.

6.1 Experimental Setup

6.1.1  Datasets. We evaluate our model with two real datasets for mixed-arity KBs, one synthetic
dataset and two real datasets for single-arity KBs, as well as two benchmark datasets on binary
relations, which are introduced as follows.

WikiPeople [14]. Mixed-arity KB dataset. This is a public n-ary relational dataset extracted from
Wikidata concerning entities of type human.

JF17K [54]. Mixed-arity KB dataset. This is a public n-ary relational dataset from Freebase.

WikiPeople-3/4. Single-arity KB dataset. Due to the sparsity of higher-arity (>5) facts in WikiPeo-
ple, we filter out all 3-ary and 4-ary relational facts therein, named as WikiPeople-3 and
WikiPeople-4, respectively.

JF17K-3/4. Single-arity KB dataset. Similar to WikiPeople, the higher-arity facts in JF17K are also
sparse, thus we filter out all 3-ary and 4-ary relational facts therein, named JF17K-3 and JF17K-4,
respectively.

Synthetic10. To assess the relationship between the number of parameters and overfitting, we
construct the toy dataset across 3-ary and 4-ary relations, named Synthetic10-3 and Synthetic10-4,
whose KB tensors are randomly generated by CP decomposition with tensor rank equal to one
[24]. There are only 10 entities and 2 relations in Synthetic10.

WN18 [4]. Binary KB dataset is a subset of WordNet with lexical relations between words.

FB15k [5]. Binary KB dataset is a subset of Freebase, a database of real-world facts including
films, sports, etc.

The train/valid/test sets of WikiPeople provided in [14], of WN18 and FB15k provided in [6] are
used for evaluation. Since JF17K lacks a validation set, we randomly select 20% of the training set as
validation. The facts in other datasets are randomly split into train/valid/test sets by a proportion
of 8:1:1. The datasets statistics of mixed-arity KBs are summarized in Table 3, while the ones of
single-arity KBs are summarized in Table 2.

6.1.2  Metrics. We evaluate models on the KBC task with two standard metrics: mean reciprocal
rank (MRR) and Hits@k, k € {1,3,10} [2, 14, 22]. For each testing n-ary relational fact, one of its
entities is removed and replaced by all entities in &, leading to |&| tuples, which are scored by the
model. The entities in all entity domains are tested. The ranking of the testing fact is obtained by
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Table 2. Dataset Statistics

Dataset Arity  #Entities #Relations #Train #Valid #Test
WikiPeople 2-9 47,765 702 305,725 38,223 38,281
JF17K 28,645 2-6 322 61,104 15,275 24,568
WikiPeople-3 3 12,270 66 20,656 2,582 2,582
WikiPeople-4 4 9,528 50 12,150 1,519 1,519
JF17K-3 3 11,541 104 27,635 3,454 3,455
JF17K-4 4 6,536 23 7,607 951 951
Synthetic10-3 3 10 2 400 50 50
Synthetic10-4 4 10 2 1,200 150 150
WN18 2 40,943 18 141,442 5,000 5,000
FB15k 2 14,951 1,345 483,142 50,000 59,071

Here “-3” and “-4” denote the 3-ary and 4-ary relational KB datasets, respectively.

Table 3. Detailed Arity-based Statistics of Mixed-arity KBs

Dataset Arity #Arity-2 #Arity-3 #Arity-4 #Arity-5+

WikiPeople 2-9 337,914 25,820 15,188 3,307
JF17K 2-6 54,627 34,544 9,509 2,267

Here “#Arity-5+” denotes the number of facts whose relation is 5-ary and above.

sorting evaluation scores in descending order. MRR is the mean of the inverse of rankings over all
testing facts, while Hits@k measures the proportion of top k rankings. Both metrics are in filtered
setting [4]: the ranking of the testing fact is calculated among facts not appeared in train/valid/test
sets. The aim is to achieve high MRR and Hits@*k.

6.1.3 Baselines. We compare the GETD framework with the n-ary relational KB modeling
baselines:

—RAE [54] is a translational distance model, extending m-TransH [51] with relatedness further
considered.

— NaLP [14] is a neural network model, which utilizes 1D CNNs and FCNs for modeling KBs.

—n-CP is an extension of CP decomposition [16].

—n-TuckER is an extension of TuckER [2] with Tucker decomposition utilized.

—n-DistMult is an extension of DistMult [52] with symmetric scoring function design.

— HINGE [36] is a combination model of 2D CNNs and FCNs with primary information in
triplets considered.

— RAM [30] identifies role semantics in n-ary relations and applies multilinear product to capture
semantic interactions.

—S52S [9] uses neural architecture search techniques to search the scoring function for KB
modeling, which consumes much more time and computation resources.

Note that this article firstly proposes n-CP, n-TuckER, and n-DistMult for n-ary relational KB
modeling. Besides, we compare GETD-S with state-of-the-art models in binary relational KBs,
including TransE [6], DistMult [52], ConvE [8], ComplEx [43], SimplE [22], and TuckER [2].
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6.1.4 Implementation. The implementation code is available at Github.? For experimental fair-
ness, we fix entity and relation embedding sizes of the GETD framework and tensor decomposition
baselines, while the sizes of other baselines follow their original settings for model performance.
As for GETD-S model in single-arity KBC, in WikiPeople-3 and JF17K-3, we set entity and relation
embedding sizes to d. = d, = 50, reshaped tensor order to k = 4, TR-ranks and TR latent tensor
dimensions to r; = n; = 50, while due to the quite smaller numbers of entities and relations, the
settings in 4-ary relational datasets are d, = d, = 25, k =5, r; = n; = 25. As for GETD-M model
in mixed-arity KBC, the embedding sizes as well as TR latent tensor dimensions on WikiPeo-
ple are set to d, = d, = n; = 50 with TR-ranks r* equal to 10, and the settings on JF17K are
de = d, = n; =r" = 25. Due to the hardware limitation, we learn a small-scale GETD-M for 5-ary
and above relational facts on both datasets with d, = d, = n; = r* = 10. Besides, batch normalization
[18] and dropout [40] are used to control overfitting. All hyperparameters except embedding sizes
are tuned with Optuna [1], a Bayesian hyperparameter optimization framework, and the search
space of learning rate is [0.0001, 0.1] with learning rate decay chosen from {0.9,0.995,1}, and
dropout ranges from 0.0 to 0.5. Each model is evaluated with 50 groups of hyperparameter settings.
GETD and other tensor decomposition models are trained with Adam [23] using early stopping
based on validation set MRR with no improvement for 10 epochs. As for other baselines, we use
the optimal settings reported in their original papers.

6.2 Single-Arity KB Modeling Evaluation

In this part, we evaluate the KBC performance of the GETD framework especially GETD-S model
on single-arity KBs. Moreover, the overfitting phenomenon as well as parameter influence are
investigated. The binary relational KBC performance is also studied.

6.2.1 Single-Arity KBC. Table 4 presents the single-arity KBC results across two datasets for
3-ary and 4-ary relational KBs. The results indicate that GETD-S performs comparably to S2S on
all metrics, with a performance gap of less than 0.01 between the two models across benchmarks.
GETD-S is more efficient due to its use of tensor decomposition rather than resource-intensive
neural architecture search techniques. Tensor decomposition models like n-CP and n-TuckER
consistently outperform the translational distance model RAFE and the neural network model NaLP.
For instance, on the JF17K dataset, GETD-S improves the MRR by 0.22 and Hits@1 by 55% for
3-ary relational facts compared to NaLP, while improvements for 4-ary facts are 0.09 and 12%,
respectively. In the WikiPeople dataset, GETD-S enhances MRR by 0.07 and Hits@1 by 25% for
WikiPeople-3, and by 0.04 and 12% for WikiPeople-4. These significant improvements highlight
the strong expressive capability of the proposed tensor decomposition models. In contrast, the
recent RAM model struggles to generalize to single-arity benchmarks, performing worse than
many tensor decomposition models. The performance gap between RAM and GETD-S exceeds
0.03 across benchmarks, primarily due to RAM’s reliance on a shared latent space across arities,
which does not apply to single-arity contexts. The robust performance of GETD-S on WikiPeople
demonstrates its ability to address practical KB challenges, such as data incompleteness, insertion,
and updating. However, improvements on 4-ary relational facts are less pronounced than those
on 3-ary facts, likely due to the smaller training datasets available in JF17K-4 and WikiPeople-4
compared to JF17K-3 and WikiPeople-3.

As for the tensor decomposition models, n-CP is relatively weak due to the difference of embed-
dings in different entity domains [43], while GETD-S and n-TuckER capture the interaction between
entities and relations with TR latent tensors or core tensors. On the other hand, GETD-S also out-
performs n-TuckER owing to the simplicity with much fewer parameters, while the parameter-cost

Zhttps://github.com/liuyuaa/GETD
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Table 4. Single-arity KBC Results on WikiPeople and JF17K Datasets

WikiPeople-3 WikiPeople-4 JF17K-3 JF17K-4
MRR H@10 H@1 | MRR H@10 H@1 | MRR H@10 H@1 | MRR H@10 H@1
RAE [54] | 0.239 0.379 0.168 [ 0.150 0.273 0.080 | 0.505 0.644 0.430|0.707 0.835 0.636
NaLP [14] | 0.301 0.445 0.226 | 0.342 0.540 0.237 | 0.515 0.679 0.431[0.719 0.805 0.673
n-CP 0.330 0.496 0.250 | 0.265 0.445 0.169 [ 0.700 0.827 0.635|0.787 0.890 0.733
n-TuckER | 0.365 0.548 0.274 [ 0.362 0.570 0.246 | 0.727 0.852 0.664 | 0.804 0.902 0.748
RAM [30] | 0.339 0.480 0.269 |0.191 0.285 0.138|0.685 0.821 0.617|0.788 0.881 0.733

S2S[9] |0.386 0.559 0.299 [0.391 0.600 0.270 | 0.740 0.860 0.676 | 0.822 0.924 0.761
GETD-S |0.373 0.558 0.284|0.386 0.596 0.265|0.732 0.856 0.669 | 0.810 0.913 0.755
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Fig. 4. Overfitting in n-TuckER observed from MRR (left) and loss (right). Evaluated on WikiPeople-4.

core tensor in n-TuckER increases the complexity of optimization and further overfits. Without the
early stopping trick, the performance of n-TuckER seriously degrades and quickly overfits, which
is shown in the following. Besides, we run GETD-S on the largest dataset WikiPeople-3 with a
Titan-XP GPU. An epoch training takes about 28 s and total training takes 1 h, while inference
takes only 5 s. Overall, the results show efficiency and robustness of GETD-S for single-arity KBC.

6.2.2  Overfitting Phenomenon. Models like n-TuckER with a large amount of parameters easily
overfit to the training data, impairing the testing performance. To verify this, we cast the early
stopping trick in three tensor decomposition models, and test if there exists the overfitting phenom-
enon using WikiPeople-4. Accordingly, the training curves in terms of MRR and loss are plotted in
Figure 4(a) and (b), respectively.

From the results, we can clearly observe the overfitting phenomenon in training process of
n-TuckER. In Figure 4(a), as training going on, the MRR of n-TuckER increases first and then quickly
decreases, while the MRR of the other two models increases to convergence. Moreover, GETD-S
outperforms n-CP due to its strong expressive power. As for loss curves, the train losses of all
three models keep decreasing, while the test loss of n-TuckER increases after 20 epochs of training,
compared with the convergence in GETD-S and n-CP test loss curves. It is mainly caused by the
model complexity that, the numbers of parameters in GETD-S and n-CP are 0.4 million and 0.9
million, while 10 million in n-TuckER.

To further reveal the relationship between the overfitting and the number of parameters, we
evaluate the MRR for different embedding sizes on Synthetic10 in Figure 5. The early stopping
is cast, and the MRR after 200 epochs of training are reported. The results of n-TuckER in both
3-ary and 4-ary relational datasets show that, increasing of embedding sizes results in a quality
fall in the case of MRR, which means overfitting of n-TuckER. This phenomenon is mainly caused
by low-rank property of KB tensors. Taking d. = d, = 50 in Synthetic10-3 as an example, the
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Fig. 5. MRR for n-TuckER and GETD-S for different embedding sizes. Evaluated on Synthetic10-3 (left) and
Synthetic10-4 (right).
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Fig. 6. MRR (left) and number of parameters (right) under embedding sizes. Evaluated on WikiPeople-4.

core tensor in n-TuckER costs 50 X 50 X 50 X 50 = 6.25 million parameters, while the TR latent
tensors in GETD-S cost only 4 - 1 X 50 X 1 = 200 parameters with TR-ranks equal to one. Therefore,
using n-TuckER with large embedding sizes to approximate the low-rank KB tensors is intractable
and prone to overfitting. However, for general KBs, embedding sizes should be large enough for
strong expressive power, which is a contradiction. In comparison, GETD-S is capable of coping
with overfitting and expressiveness together based on embedding sizes as well as TR-ranks, which
is much more flexible. The flexibility as well as expressiveness thus support the great performance
of GETD-S in Table 4.

6.2.3  Influence of Parameters. Since the embedding sizes are important factors to link prediction
models with expressiveness [2, 8, 43], while TR-ranks, as well as the reshaped tensor order are
unique hyper-parameters of GETD-S, determining the model complexity and performance, now
we investigate the impacts of these parameters.

Influence of Embedding Sizes d.,d,. The MRR and the number of parameters of three tensor
decomposition models under different embedding sizes are evaluated on WikiPeople-4 with TR-
ranks equal to embedding sizes. The results are plotted in Figure 6.

According to Figure 6(a), GETD-S always outperforms n-TuckER and n-CP. The MRR of GETD-S
increases globally with the increase of embedding sizes, and gradually becomes smooth. While
the MRR of n-TuckER is not stable even with large embedding sizes when early stopping applied.
For example, at embedding size 35, GETD-S increases MRR by 49% for n-CP, and 2.8% for n-
TuckER. Moreover, the MRR of GETD-S reaches 0.372 at embedding size 15, which is better than
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Fig. 7. MRR of GETD on WikiPeople-4 (left) and JF17K-3 (right) under different TR-ranks.
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Fig. 8. MRR of GETD-S on WikiPeople-4 (left) and JF17K-3 (right) under different reshaped tensor orders.

the performance of n-TuckER at embedding size over 30. On the other hand, GETD-S uses the least
parameters in three models, which is shown in Figure 6(b). For embedding size 30, n-TuckER costs
24 million parameters with core tensor using 30° = 24.3 million, n-CP costs 1.14 million parameters,
while GETD-S only costs 0.42 million parameters with TR latent tensors using 5 - 30° = 0.13 million,
1.7% of n-TuckER parameters. The results are in accord with complexity analysis in Section 5.1
and further indicate that GETD-S with relatively small embedding sizes is able to obtain good
performance, which can be applied for large-scale KBs.

Influence of TR-ranks r. Since the TR-ranks can largely determine the number of TR latent
tensor parameters, and make GETD-S model more flexible, we reveal the relationship between link
prediction performance and TR-ranks on WikiPeople-4 and JF17K-3, as shown in Figure 7. From
the results, we can observe that the link prediction performance is affected only when TR-ranks
are very small (less than 5), indicating that GETD-S is not sensitive to TR-ranks. When TR-ranks
vary from 20 to 60 on JF17K-3, the MRR is rather stable, and a similar trend can be found on
WikiPeople-4. This implies that TR tensors with TR-ranks about 20 are often enough to capture the
latent interactions between entities and relations for given datasets. Based on this, the number of
parameters for GETD-S can be further reduced to control model complexity for large-scale KBs.

Influence of Reshaped Tensor Order k. As a key step of connecting Tucker and TR in GETD-S, the
effect of reshaped tensor order is investigated on WikiPeople-4 and JF17K-3, exhibited in Figure 8.

For WikiPeople-4, the embedding size is set to 25 and thus the original core tensor is W €
R2X25%X25%25%25 Jeading to the 5th-order reshaped tensor W e R25%X25%X23x25X25  the gth-order
reshaped tensor W e R9¥25%X25X25X25%5 otc Tt can be observed that, GETD-S with different orders
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Table 5. Binary Relational KBC Results on WN18 and FB15k

WN18 FB15k
MRR Hits@10 Hits@3 Hits@1 | MRR Hits@10 Hits@3 Hits@1
TransE [6] 0.454 0.934 0.823 0.089 0.380 0.641 0.472 0.231
DistMult [52] | 0.822 0.936 0.914 0.728 0.654 0.824 0.733 0.546
ConvE [8] 0.943 0.956 0.946 0.935 0.657 0.831 0.723 0.558
ComplEx [43] | 0.941 0.947 0.945 0.936 0.692 0.840 0.759 0.599
SimplE [22] 0.942 0.947 0.944 0.939 0.727 0.838 0.773 0.660
RotatE [42] 0.949 0.959 0.952 0.944 0.797 0.884 0.830 0.746
TuckER [2] 0.953 0.958 0.955 0.949 0.795 0.892 0.833 0.741

GETD-S ‘ 0.948 0.954 0.950 0.944 | 0.824 0.888 0.847 0.787

Model

Results of TransE and DistMult are copied from [43]. Other results are copied from the corresponding original papers
[2, 8, 22, 43].

of reshaped tensors always achieves higher MRR compared with n-TuckER, and the best one
increases MRR by 0.024, which is decomposed by 5 TR latent tensors. Overall, the expressive power
of GETD-S decreases with the increase of reshaped tensor order.

As for JF17K-3, the embedding size is set to 64 so that the reshaped tensor is cubic, i.e., each mode is
in the same size [24]. For example, the 6th-order reshaped tensor becomes W € R16X16X16x16x16x16
and the size of each mode for 8th-order tensor becomes 4. Similarly, GETD-S with the least order
of reshaped tensor achieves the highest MRR. Moreover, Figure 8(b) clearly shows the negative
correlation between MRR and reshaped tensor order, which is in accord with the above results. This
phenomenon is mainly because the higher order involves more TR latent tensors, increasing the
optimization complexity. On the other hand, since GETD-S requires that Hle n; = dyd,, the higher
order k also means the smaller n,,y, which reduces the number of parameters. Thus, the reshaped
tensor order in GETD-S should be appropriately determined considering both link prediction
performance and model complexity.

6.2.4 Binary Relational KBC. To investigate the robustness as well as representation capability
of our proposed GETD-S model, we evaluate the performance of GETD-S model on WN18 and
FB15k. The experimental settings are the same as in n-ary relational link prediction. The embedding
sizes of GETD-S are set to 200, which is similar to the setting in TuckER [44]. The reshaped tensor
order k is 3, TR-ranks r; and TR latent tensor dimensions n; are set to 50 and 200, respectively.

Table 5 summarizes the results of GETD-S and the state-of-the-art models on two datasets.
According to the results, GETD-S achieves the second-best performance on WN18, with a quite
small MRR gap of 0.005 to TuckER. Moreover, TR latent tensors in GETD-S costs 3-50x200%50 = 1.5
million parameters, only 1/8 of core tensor parameters in TuckER (200 X 200 X 200 = 8 million).
Thus, GETD-S is able to obtain better performance with larger embedding sizes but similar number
of parameters. As for FB15k, GETD-S outperforms all state-of-the-art models, and increases MRR by
0.03. Also, GETD-S increases the toughest metric Hits@1 by 4% on FB15k. These results demonstrate
that, GETD-S is robust and works well in representing KBs with different arity relations.

6.3 Mixed-Arity KB Modeling Evaluation

In this part, we evaluate the KBC performance of GETD-M on mixed-arity KBs. The parameter
study and embedding visualization are also presented for better understanding.
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Table 6. Mixed-arity KBC Results on WikiPeople and JF17K

WikiPeople JF17K

MRR Hits@10 Hits@3 Hits@1 | MRR Hits@10 Hits@3 Hits@1
RAE [54] 0.253 0.463 0.343 0.117 0.396 0.561 0.433 0.312
NaLP [14] 0.338 0.466 0.364 0.272 0.310 0.450 0.334 0.239
n-CP 0.313 0.451 0.372 0.223 0.400 0.542 0.431 0.324
n-DistMult | 0.318 0.478 0.391 0.213 0.452 0.599 0.482 0.375
HINGE [36] | 0.333 0.477 0.361 0.259 0.472 0.618 0.490 0.397
RAM [30] 0.380 0.539 0.445 0.279 0.539 0.690 0.573 0.463
S2S [9] 0.372 0.533 0.439 0.277 0.528 0.690 0.570 0.457

GETD-M ‘ 0.345 0.510 0.415 0.237 | 0.489 0.643 0.521 0.409

Model

Results of NaLP, HINGE, RAM, and S2S on WikiPeople are copied from original papers.

6.3.1 Mixed-Arity KBC. A comparison of the testing performance of GETD-M and state-of-
the-art n-ary modeling approaches is shown in Table 6. According to the results, GETD-M model
outperforms most baselines on both two datasets. On the other hand, with the latent space design
and role semantics further identified, RAM [30] outperforms baselines and our proposed GETD-M
model. Nevertheless, it should be mentioned that both latent space and role semantics can be
combined with GETD-M for performance improvement, which is beyond the scope of this work.
Specifically, the proposed designs in RAM focus on the input of scoring function, while the tensor
decomposition-based scoring function of GETD-M can be leveraged with these inputs for interaction
modeling. As for S2S [9], it performs worse than RAM even with NAS techniques used. Overall, we
can find that the SOTA model RAM [30] achieves better performance on mixed-arity benchmarks
but fails to generalize to single-arity benchmarks without information sharing, as compared in
Table 4. An interesting future work is combining the input designs of RAM with GETD-M for
performance improvement. As for the AutoML-based model S2S [9], due to its resource-consuming
property, it is unfair for performance comparison with GETD-M. Moreover, S2S only achieves
comparable performance with GETD-S on single-arity benchmarks, which implies the effectiveness
of the proposed GETD+ framework.

According to the design of n-CP, n-DistMult and GETD-M, these tensor decomposition models
similarly share the entity and relation embeddings across arities. However, the results in Table 6
show quite large gaps (over 7% with MRR) between the performance of GETD-M and other tensor
decomposition models, which owes to the gains of mutual effect encoded by the TR tensor group.
Simply sharing the embeddings in n-CP and n-DistMult may not be able to overcome the noise
caused by different arities of relational facts, while the TR tensor group plays a role of the base
space. By selecting certain tensors in the group for different arities, GETD-M successfully captures
the positive effect across arities with noise removed.

To analyze performance across different arities, we present the Hits@10 breakdown for both
datasets in Figure 9. Since 5-ary and higher relational facts are sparse in the testing sets, we focus on
lower-arity relations, specifically 2-ary, 3-ary, and 4-ary facts. Note that the breakdown performance
of NaLP on WikiPeople is not reported in [14]. The results show that GETD-M improves Hits@10
by 9% and 3% for 3-ary and 4-ary relational facts, respectively, compared to the baselines on JF17K.
Additionally, the prediction performance of all models on JF17K increases with higher arity. This
improvement occurs because the number of entities and relations in higher-arity relational facts is
much lower, making learning easier. In contrast, WikiPeople exhibits a different trend due to its
unique composition. Over 88% of the facts in WikiPeople involve binary relations, which simplifies
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Fig. 9. Breakdown performance across relations of different arities on WikiPeople and JF17K.
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Fig. 10. Comparison on clock time of model training vs. testing MRR between GETD-M and baselines on
WikiPeople and JF17K.

learning for these cases. Furthermore, 3-ary and 4-ary relational facts in WikiPeople often include
entities related to time and space points, which are more challenging to model and lead to lower
accuracy for higher arities. Despite this, GETD-M still achieves over a 7% increase in Hits@10 for
4-ary relational facts compared to the baselines, demonstrating its effectiveness in joint learning
within mixed-arity KBs and its strong expressiveness for time and space-related points.

To evaluate the training efficiency of our proposed GETD-M model compared with other baselines,
in Figure 10, we plot the clock time comparison of models (two best baselines are selected for
comparison). According to the results, GETD-M consistently outperforms the baselines on both
datasets and typically converges rapidly, thereby validating the effectiveness of TR decomposition
for complexity reduction. However, it’s worth noting that the convergence rate is also influenced
by factors such as the learning rate, scheduler, implementation, and so on. As a result, GETD-M
may exhibit slightly longer clock times initially compared to the baselines, as illustrated by the
clock time curves of GETD-M and HINGE on JF17K.

6.3.2 Influence of Parameters. As described before, both the embedding sizes and the TR-ranks
determine the expressiveness as well as model complexity of GETD-M. Therefore, we discuss the
influence of these parameters in this part.

Influence of Embedding Sizes d., d,. The performance of tensor decomposition models under
different embedding sizes is evaluated on JF17K with TR-ranks equal to embedding sizes. The results
are shown in Figure 11(a). The MRR of three models increases with the increase of embedding
sizes and converges at large embedding sizes. GETD-M outperforms baselines significantly when
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Fig. 11. Influence of embedding sizes and TR-ranks for GETD-M.

embedding sizes are over 10. For instance, GETD-M increases MRR by over 6% for baselines at
embedding size 30. Especially, GETD-M with embedding size 10 reaches comparable performance
to n-CP and n-DistMult with embedding size 30, which demonstrates the strong expressiveness.

Influence of TR-ranks r*. Considering the model complexity of GETD-M in Equation (15), the
parameter cost has quadratic relationship with TR-ranks r*. Thus, in Figure 11(b), we show the
performance of GETD-M with different TR-ranks evaluated on JF17K. The obtained results are in
accord with the results of GETD in Figure 7. The MRR increases slowly when TR-ranks exceed 5,
which indicates that even small TR-ranks for GETD-M are able to recover the core tensor with
complex interactions between entities and relations. Also, we can reduce TR-ranks of GETD-M for
storage space saving and training acceleration.

According to the results in Figure 11, embedding sizes play a much more important role in GETD-
M than TR-ranks. A possible explanation is that TR-ranks only determine the inner layer with TR
tensor groups, while embedding sizes determine the representation space of entities, relations and
the recovered core tensor, which are closely related to the interaction and expressiveness.

6.3.3 Embedding Visualization. To further confirm the expressiveness of GETD-M, the top 20
relation/entity embeddings of GETD-M and n-DistMult on WikiPeople are visualized in Figure 12
through principal component analysis (PCA).

From the first two figures we can observe that most similar relations such as birth/death place,
award received (@ time), and date of birth/death are correctly clustered by both models. However,
the anti-symmetric relation pair of father and child is visualized differently. Specifically, the child
(—0.4, 0.8) and the father (0.0, 0.2) relations are opposed spatially in GETD-M, while assigned closely
(—0.5, —0.4) in n-DistMult. As described before, DistMult based models cannot represent anti-
symmetric relations due to the same entity embeddings at different positions. Hence, n-DistMult
learns the close embeddings for child/father relations due to their sharing semantics, which leads to
wrong representation in practical use. In contrast, GETD-M correctly learns the opposite relations,
which further validates the strong expressiveness.

As for entity embedding visualization in Figure 12(c) and (d), most entities with similar semantics
are clustered correctly by both models. Note that there are three groups of entities with close
connections, the country group (red), the capital group (green), and the language group (blue).
Moreover, these groups of embeddings are all shown in the third quadrant of GETD-M embedding
visualization, while shown in a distance in n-DistMult embedding visualization. Considering the
co-occurrence of these entities in KBs, the learnt embeddings of GETD-M successfully capture this.
The visualization results indicate robustness and expressiveness of GETD-M in mixed-arity KBs.
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Fig. 12. Entity and relation embedding visualization of GETD-M and DistMult through PCA on WikiPeople
dataset (semantic-related entities are shown in the same color).

7 Conclusion

This work proposed GETD, a fully expressive tensor decomposition framework for n-ary relational
KB modeling including the single-arity and mixed-arity cases. Based on the expressiveness of
Tucker decomposition as well as the flexibility of TR decomposition, the framework designs GETD-
S for single-arity KBs to capture the latent interactions between entities and relations, costing a
small number of parameters. Furthermore, the framework extends to GETD-M for mixed-arity
KBs. Experimental results demonstrate that the GETD framework outperforms the state-of-the-art
models for n-ary relational KB modeling and achieves comparable performance on standard binary
relational KB datasets.

Considering the uneven distribution of different arities of relational facts in KBs, we plan to
improve the GETD framework by better modeling the mutual effect across arities. Besides, GETD
only uses observed facts for KB modeling, while incorporating GETD with background knowledge
such as logical rules and entity properties may bring performance enhancement.

References

[1] Takuya Akiba, Shotaro Sano, Toshihiko Yanase, Takeru Ohta, and Masanori Koyama. 2019. Optuna: A next-generation
hyperparameter optimization framework. In KDD, 2623-2631.

[2] Ivana Balazevi¢, Carl Allen, and Timothy M. Hospedales. 2019. TuckER: Tensor factorization for knowledge graph
completion. In EMNLP, 5184-5193.

ACM Transactions on Intelligent Systems and Technology, Vol. 16, No. 3, Article 61. Publication date: May 2025.



Modeling N-ary Relational Knowledge Bases with Tensor Decomposition 61:25

Kurt Bollacker, Colin Evans, Praveen Paritosh, Tim Sturge, and Jamie Taylor. 2008. Freebase: A collaboratively created
graph database for structuring human knowledge. In SIGMOD, 1247-1250.

Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. 2014. A semantic matching energy function for
learning with multi-relational data. Mach. Learn. 94, 2 (2014), 233-259.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Irreflexive and
hierarchical relations as translations. arXiv:1304.7158. Retrieved from https://arxiv.org/abs/1304.7158

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013. Translating
embeddings for modeling multi-relational data. In NeurIPS, 2787-2795.

E. F. Codd. 1970. A relational model of data for large shared data banks. Commun. ACM 13, 6 (1970), 377-387.

Tim Dettmers, Pasquale Minervini, Pontus Stenetorp, and Sebastian Riedel. 2018. Convolutional 2D knowledge graph
embeddings. In AAAI, 1811-1818.

Shimin Di, Quanming Yao, and Lei Chen. 2021. Searching to sparsify tensor decomposition for N-ary relational data.
In WWW, 4043-4054.

Patrick Ernst, Amy Siu, and Gerhard Weikum. 2018. HighLife: Higher-arity fact harvesting. In WWW, 1013-1022.
Bahare Fatemi, Perouz Taslakian, David Vazquez, and David Poole. 2021. Knowledge hypergraphs: Prediction beyond
binary relations, In IJCAI, 2191-2197.

Mikhail Galkin, Priyansh Trivedi, Gaurav Maheshwari, Ricardo Usbeck, and Jens Lehmann. 2020. Message passing for
hyper-relational knowledge graphs. In EMNLP, 7346-7359.

Saiping Guan, Xiaolong Jin, Jiafeng Guo, Yuanzhuo Wang, and Xueqi Cheng. 2020. Neuinfer: Knowledge inference on
N-ary facts. In ACL, 6141-6151.

Saiping Guan, Xiaolong Jin, Yuanzhuo Wang, and Xueqi Cheng. 2019. Link prediction on N-ary relational data. In
WWW, 583-593.

Victor Gutiérrez-Basulto and Steven Schockaert. 2018. From knowledge graph embedding to ontology embedding?
An analysis of the compatibility between vector space representations and rules. arXiv:1805.10461. Retrieved from
https://arxiv.org/abs/1805.10461

Frank L. Hitchcock. 1927. The expression of a tensor or a polyadic as a sum of products. J. Math. Phys. 6, 1-4 (1927),
164-189.

Yan Huang, Haili Sun, Ke Xu, Songfeng Lu, Tongyang Wang, and Xinfang Zhang. 2021. CoRelatE: Learning the
correlation in multi-fold relations for knowledge graph embedding. Knowl.-Based Syst. 213 (2021), 106601.

Sergey Ioffe and Christian Szegedy. 2015. Batch normalization: accelerating deep network training by reducing
internal covariate shift. In ICML, 448—456.

Guoliang Ji, Kang Liu, Shizhu He, and Jun Zhao. 2016. Knowledge graph completion with adaptive sparse transfer
matrix. In AAAI, 985-991.

Shaoxiong Ji, Shirui Pan, Erik Cambria, Pekka Marttinen, and S. Yu Philip. 2021. A survey on knowledge graphs:
Representation, acquisition and applications. IEEE TNNLS 33, 2 (2021), 494-514.

Armand Joulin, Edouard Grave, Piotr Bojanowski, Maximilian Nickel, and Tomas Mikolov. 2017. Fast linear model for
knowledge graph embeddings. arXiv:1710.10881. Retrieved from https://arxiv.org/abs/1710.10881

Seyed Mehran Kazemi and David Poole. 2018. Simple embedding for link prediction in knowledge graphs. In NeurIPS,
4289-4300.

] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A method for stochastic optimization. In ICLR, 1-15.

Tamara G. Kolda and Brett W. Bader. 2009. Tensor decompositions and applications. SIAM Rev. 51, 3 (2009), 455-500.
Timothee Lacroix, Nicolas Usunier, and Guillaume Obozinski. 2018. Canonical tensor decomposition for knowledge
base completion. In ICML, 2863-2872.

Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. 2015. Learning entity and relation embeddings for
knowledge graph completion. In AAAI, 2181-2187.

Yu Liu, Shu Yang, Jingtao Ding, Quanming Yao, and Yong Li. 2024. Generalizing hyperedge expansion for hyper-
relational knowledge graph modeling. arXiv:2411.06191. Retrieved from https://arxiv.org/abs/2411.06191

Yu Liu, Quanming Yao, and Yong Li. 2020. Generalizing tensor decomposition for N-ary relational knowledge bases.
In WWW, 1104-1114.

Yu Liu, Quanming Yao, and Yong Li. 2020. Multiary relational knowledge base completion via tensor decomposition.
In IJCAI Tensor Network Representations in Machine Learning Workshop, 1-4.

Yu Liu, Quanming Yao, and Yong Li. 2021. Role-aware modeling for N-ary relational knowledge bases. In WWW,
2660-2671.

Robert Logan, Nelson F. Liu, Matthew E. Peters, Matt Gardner, and Sameer Singh. 2019. Barack’s wife Hillary: Using
knowledge graphs for fact-aware language modeling. In ACL, 5962-5971.

Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Séren Auer. 2017. Neural network-based question answering
over knowledge graphs on word and character level. In WWW, 1211-1220.

ACM Transactions on Intelligent Systems and Technology, Vol. 16, No. 3, Article 61. Publication date: May 2025.


https://arxiv.org/abs/1304.7158
https://arxiv.org/abs/1304.7158
https://arxiv.org/abs/1805.10461
https://arxiv.org/abs/1805.10461
https://arxiv.org/abs/1710.10881
https://arxiv.org/abs/1710.10881
https://arxiv.org/abs/2411.06191
https://arxiv.org/abs/2411.06191

61:26 Y. Liu et al.

(33]
(34]
(35]
(36]
(37]
(38]
(39]
[40]
[41]
(42]
(43]

(44]
(45]

[46]
(47]
(48]
(49]

(50]

Maximilian Nickel, Kevin Murphy, Volker Tresp, and Evgeniy Gabrilovich. 2015. A review of relational machine
learning for knowledge graphs. Proc. IEEE 104, 1 (2015), 11-33.

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. 2011. A three-way model for collective learning on multi-
relational data. In ICML, 3104482-3104584.

Yu Pan, Jing Xu, Maolin Wang, Jinmian Ye, Fei Wang, Kun Bai, and Zenglin Xu. 2019. Compressing recurrent neural
networks with tensor ring for action recognition. In AAAI, 4683-4690.

Paolo Rosso, Dingqi Yang, and Philippe Cudré-Mauroux. 2020. Beyond triplets: Hyper-relational knowledge graph
embedding for link prediction. In WWW, 1885-1896.

Michael Schlichtkrull, Thomas N. Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max Welling. 2018.
Modeling relational data with graph convolutional networks. In ESWC, 593-607.

Amit Singhal. 2012. Introducing the knowledge graph: Things, not strings. Official Google Blog, 5. Rerieved from
https://blog.google/products/search/introducing-knowledge-graph-things-not/

Richard Socher, Danqi Chen, Christopher D. Manning, and Andrew Ng. 2013. Reasoning with neural tensor networks
for knowledge base completion. In NeurIPS, 926-934.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov. 2014. Dropout: A
simple way to prevent neural networks from overfitting. ¥ Mach Learn Res 15, 1 (2014), 1929-1958.

Fabian M. Suchanek, Gjergji Kasneci, and Gerhard Weikum. 2007. Yago: A core of semantic knowledge. In WWW,
697-706.

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. RotatE: Knowledge graph embedding by relational
rotation in complex space. In ICLR, 697-706.

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. 2016. Complex embeddings
for simple link prediction. In ICML, 2071-2080.

Ledyard R. Tucker. 1966. Some mathematical notes on three-mode factor analysis. Psychometrika 31, 3 (1966), 279-311.
Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, and Partha Talukdar. 2019. Composition-based multi-relational
graph convolutional networks. In ICLR, 1-15.

Denny Vrandeci¢ and Markus Krotzsch. 2014. Wikidata: A free collaborative knowledge base. Commun. ACM 57, 10
(2014), 78-85.

Quan Wang, Zhendong Mao, Bin Wang, and Li Guo. 2017. Knowledge graph embedding: A survey of approaches and
applications. In TKDE 29, 12 (2017), 2724-2743.

Wengi Wang, Yifan Sun, Brian Eriksson, Wenlin Wang, and Vaneet Aggarwal. 2018. Wide compression: Tensor ring
nets. In CVPR, 9329-9338.

Yanjie Wang, Rainer Gemulla, and Hui Li. 2018. On multi-relational link prediction with bilinear models. In AAAI,
4227-4234.

Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. 2014. Knowledge graph embedding by translating on
hyperplanes. In AAAI, 1112-1119.

[51] Jianfeng Wen, Jianxin Li, Yongyi Mao, Shini Chen, and Richong Zhang. 2016. On the representation and embedding

(52]
(53]
(54]

(55]

of knowledge bases beyond binary relations. In IJCAI, 1300-1307.

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embedding entities and relations for
learning and inference in knowledge bases. In ICLR, 1-12.

Fuzheng Zhang, Nicholas Jing Yuan, Defu Lian, Xing Xie, and Wei-Ying Ma. 2016. Collaborative knowledge base
embedding for recommender systems. In SIGKDD, 353-362.

Richong Zhang, Junpeng Li, Jiajie Mei, and Yongyi Mao. 2018. Scalable instance reconstruction in knowledge bases
via relatedness affiliated embedding. In WWW, 1185-1194.

Qibin Zhao, Guoxu Zhou, Shengli Xie, Liging Zhang, and Andrzej Cichocki. 2016. Tensor ring decomposition.
arXiv:1606.05535. Retrieved from https://arxiv.org/abs/1606.05535

Appendices

A Notation and Training Algorithm

The notation table and training algorithm of GETD-M are provided here.

B Proofs

Now, we prove Theorem 5.1 as follows.

Proor. Now, we first introduce a few lemmas.
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Algorithm A1: Training Algorithm for GETD-M

Input: training set S = {S3, S3, - -+ , S} with Sy, = {(ir, i1, d2, - - -, im) }, TR-ranks r,
entity/relation embedding dimension d./d,;
1 initialize embeddings E, R, TR tensors {Zi}?gl;
2 fort=1,2,-+ ,nepocn do

3 form=1,2,--- ,Mdo

4 sample a mini-batch Spatch € Sy of size my;

5 L «—0;

6 for x = (jr, j1. jos*** » jm) € Sbatch do

7 construct negative sample set Ny;

8 ¢(x) « compute the score using (14);

9 L, < compute the loss using (18)

10 L—L+ Ly
11 update parameters of embeddings and TR latent tensors w.r.t. the gradients using

VL

Output: embeddings E, R and TR tensors {%i}?ﬁl.

Table A1. List of Commonly Used Notations
Symbol ‘ Definition
X pth-order tensor € RI>
Xiyiye--ip (i1, g, - -+, ip)-th element of X
G pth-order core tensor € RAX )
A9 g-mode factor matrix € Rla*/a
a;q) jth column vector of A(?
Zq gth TR latent tensor € R"a*"a*7q+1
Z4(iq) ig-th lateral slice matrix of 2, € R"a*7a+
r=|[ry,rs---,ra] | TR-ranks
Ne, Ny The number of entities/relations in the KB
de, dy Entity/relation embedding dimensionality
n; 2nd-mode dimensionality of Z;
o Vector outer product
Xp Tensor p-mode product
) Multi-linear dot product
trace{-} Matrix trace operator

LeMMA B.1. For any ground truth over entities & and relations R, there exists an n-TuckER model
with entity embeddings of dimensionality d, = |E| and relation embeddings of dimensionality d, = |R|

that represents that ground truth.

PROOF. Let entity and relation embedding matrices be identity matrices of E = I € RI€IxI€l

and R = I € RIRIXIRI respectively. Further, we set the w; ;;,...;, of the core tensor to 1 if the fact
(ip, i1, B2, -+, ip) holds and 0 otherwise. Thus the tensor product of these entity embeddings and
the relation embedding with the core tensor, accurately represents the original KB tensor. O
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LemMa B.2. Given any kth-order binary tensor W € {0, 1}"1%"2X %1% there exists a CP model with
rank rcp = H{-‘zl n;, that exactly decomposes W.

PROOF. Since W € {0, 1}">mX "Xk we can use rcp = Hle n; zero/one-hot tensors {W(r) |

W) e {0, 1}mxn2x e }TCE to represent W, sit., wf )1 = wy...1, while other elements in W(!) are

(r) : (r) : (rcp) _
Zeros, w P = le(r)jz(r)“‘jkr), while other elements in W'/ are zeros, etc. Finally, wy, 5., =
k

Wnyng---nge> Whlle other elements in WP are zeros. Moreover, W) can be decomposed by rank-
one CP decomposition as,

W) = ugl) ° u}(?) 6.---0 uﬁk), (19)
(1 (2 k).
st. wj(sz jp =t G u () ' (), (20)
where u( D is the ni- dlmensmnal zero/one-hot vector, and u, )( Jj) is the jth element of the vector.
Therefore, by assigning u, )(] ) =ul? (H=--= =y® (P = w(f), e and other elements in u'”
being zeros, the blnary tensor W can be exactly decomposed by CP decomposmon via the set of
vectors {ur 9 li=1---,kr=1,--,rcp,tcp = H{F:l n;} as,
rcp
= w0 = S5l ol -
r=1 r=1

]

Lemma B.3 [55]. CP decomposition can be viewed as a special case of TR decomposition. Given a
kth-order binary tensor W € {0, 1}"X"2X X with jts CP decomposition as Equation (21), it can also
be written in TR decomposition form as,

rcpe

W = Zu,(.l) o u£2) 0.--0 uf,k) = TR(Z], Zg, - - ,Z’k)»
r=1
st. Z;(ji) = diag(u'? (j;)), Vi=1,2,---,m, (22)

where Z; € {0, 1yrerxmxrer @ () = [w (p), -+, ull) (o).

According to Lemma B.1, n-TuckER is fully expressive by setting the embeddings as well
as the core tensor, in which the core tensor is set to an (n + 1) -th order binary tensor W €
{0’ l}n,xnexnex---xne'

In GETD-S, W is reshaped into a kth-order reshaped tensor W e {0, 1} %" which is further
decomposed by TR decomposition. Keeping the embedding settings as the ones in Lemma B.1, we
only need to prove that TR decomposition is able to recover any given tensor W. On the other hand,
with Lemma B.2, W is able to be completely recovered via CP decomposition. Moreover, the CP
decomposition can be written as a special case of TR decomposition by Lemma B.3, which derives
TR latent tensors {Z; | Z; € {0, 1}7cp>nixrce }i;l. Overall, following the settings of embeddings in
Lemma B.1 and TR latent tensors in Lemma B.3, GETD-S is proved to be fully expressive with
entity embeddings of dimensionality n, = |&| and relation embeddings of dimensionality d, = |R].

]

We then prove Theorem 5.2 as follows.
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Proor. For GETD-M, the entity and relation embeddings follow the assignment in Lemma B.1.
We treat facts with the same arity relations as a sub KB, then the GETD-M model can been seen as an
ensemble of GETD-S models for different arity KBs. Especially, the TR tensor group is constructed
with separate subgroups of tensors for different arities, whose values follow the assignment in
Lemma B.3. Thus, based on Theorem 5.1, GETD-M is fully expressive. O
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