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Urban Knowledge Graph Aided Mobile User Profiling
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China

Nowadays, the explosive growth of personalized web applications and the rapid development of artificial
intelligence technology have flourished the recent research on mobile user profiling, i.e., inferring the user
profile from mobile behavioral data. Particularly, existing studies mainly follow the data-driven paradigm
to develop feature engineering and representation learning on such data, which however suffer from
the robustness issue, i.e., generalizing poorly across datasets and profiles without considering semantic
knowledge therein. In comparison, the rising knowledge-driven paradigm built upon the knowledge graph
(KG) offers a potential solution to mitigate such weakness. Therefore, in this article, we propose a Knowledge
Graph aided framework for Mobile User Profiling (KG-MUP). Specifically, to distil semantic knowledge
among data, we firstly construct an urban knowledge graph (UrbanKG) with domain entities like users,
regions, point of interests (POIs), and so on. identified, as well as semantic relations for home, workplace,
spatiality, and so on. extracted. Moreover, we leverage tensor decomposition and graph neural network to
obtain knowledgeable user representations from UrbanKG. In addition, we introduce several customized
features to quantify individual mobility characteristics for mobile user profiling. Extensive experiments on
three real-world mobility datasets demonstrate that KG-MUP achieves state-of-the-art performance on user
profile inference tasks. Moreover, further results also reveal the importance of various semantic knowledge
to user profile inference, which provides meaningful insights on user modeling with mobile behavioral data.
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1 INTRODUCTION

Owing to the booming personalized applications in recent years, the user profile, a summary of
the user’s demographics, interests and characteristics, has become essential for user experience
enhancement and company profit growth [9, 16, 37, 48, 70]. For example, online platforms such as
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Google and Alibaba benefit from the user’s demographics, e.g., gender and age, for personalized
recommendations as well as targeted advertisements [7]. To obtain user profiles, early studies are
performed in the form of interviews and questionnaires [12], in which case users are reluctant
to provide ground truth for privacy concern. In comparison, owing to the diverse behavior data
collected from user-centric web services, several studies explore the user profiling task [9, 70], to
infer the user profile from user-generated data. Especially, the prevalence of personalized mobile
applications as well as the accessibility of massive mobile behavioral data have attracted intense
research focus on mobile user profiling recently [3, 36, 46, 57–59, 63, 71], i.e., inferring the user
profile from mobile behavioral data.

Specifically, most existing mobile user profiling studies follow the data-driven paradigm, which
directly leverage massive data to extract the user profile, including the feature engineering based
and representation learning based studies. The feature engineering based studies [3, 29, 62, 67]
explicitly define mobility features like the radius of gyration, the mobility entropy, and so on, and
train a classifier like XGBoost [6] to classify the user profile, while the representation learning
based ones [46, 54, 57–59, 63] utilize various neural networks to implicitly learn low-dimensional
vectors for mobile user representations. However, such data-driven studies heavily depend on
training data and targeted profiles, leading to the robustness issue. For instance, the commonly
used radius of gyration characterizes the user’s mobility level, which fails in user gender inference
[67]. The neural networks with large parameter space are prone to overfit and lack interpretability,
which implies poor generalization across datasets [57]. Moreover, such data-driven studies largely
ignore the semantic knowledge in user mobile behaviors, e.g., the complex relationships between
different users and environment [55].

Meanwhile, several recent studies have introduced the knowledge-driven paradigm for other
user modeling applications [15, 30, 31, 55, 56, 76], built upon the knowledge graph (KG) where
domain entities and semantic relations form nodes and edges therein, respectively. Specifically,
these studies firstly construct specific KGs to extract knowledge from massive data, then employ
customized KG embedding techniques [60] for task-specific knowledge representations, such as
spatio-temporal KG for mobility prediction [55], urban movement KG for flow prediction [31, 76]
as well as KG for user recommendation [15, 30, 56]. Such knowledge-driven studies successfully
extract the semantic knowledge like complex relationships in various user behaviors, and thus mo-
tivate us to the knowledge-driven paradigm for mobile user profiling, while directly copying such
paradigm faces the incompleteness issue [38]. For example, the KG mainly focuses on modeling the
semantic interconnections between entities, but misses quantitative/numerical information like
the number of stay points in user mobility trajectories, which is definitely important and neces-
sary [62]. Moreover, how to construct the specific KG for mobile user profiling is still unclear and
underexplored. Consequently, leveraging the knowledge-driven paradigm for mobile user profil-
ing suffers from limitations, and it remains an open problem to be addressed.

Therefore, to fully exploit the advantages of knowledge-driven paradigm with limitations over-
come, in this article, we design a Knowledge Graph aided framework for Mobile User Profiling,
termed as KG-MUP. The designed framework consists of two main modules, i.e., KG-based module
and feature-based module. The KG-based module introduces the KG structure to capture the
semantic information in user mobile behaviors and urban environment with the robustness issue
solved, while the feature-based module builds upon the feature engineering explored by existing
data-driven studies with the incompleteness issue overcome. To be specific, for the KG-based
module, we firstly construct the Urban Knowledge Graph (UrbanKG), and then leverage rep-
resentative KG embedding techniques for knowledgeable user representations. Specifically, in Ur-
banKG, both users and environment elements like regions, points of interest (POIs), commercial
areas, and so on. form entities, while their complex relationships like home, workplace, spatiality,
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attribute, and so on. form relations, which together provide a knowledgeable description of users
and environment. Moreover, both tensor decomposition and graph neural network are adopted
in UrbanKG embedding for robustness. As for the feature-based module, to quantify the mobility
characteristics of users, we extract various features from user mobility trajectories with individual
property and environment status considered. Finally, the knowledgeable representations from
KG-based module and the mobility features from feature-based module are integrated together to
infer the user profile. On one hand, the KG-based module constructs the UrbanKG to extract the
semantic knowledge in user mobile behaviors, which potentially mitigates the robustness issue
of feature-based one. The identified semantic knowledge stands out as the novel point compared
with existing data-driven studies. On the other hand, the feature-based module quantifies several
mobility features to capture numerical information in massive data, which also mitigates the in-
completeness issue of KG-based one. Overall, both modules are integrated into a general KG-aided
framework with better mobile user profiling achieved, as validated by extensive experiments.

To conclude, the main contributions of this article lie in the following three aspects:

— To the best of our knowledge, we are the first to propose a KG-aided framework for mobile
user profiling, where KG-based module and feature-based module are designed to capture
semantic knowledge and mobility features, respectively. Especially, such general framework
also provides novel insights into integrating knowledge-driven paradigm with traditional
studies together for better user modeling research.

— We present a systematic investigation of extracting the semantic knowledge from mobile be-
havioral data for mobile user profiling, which identifies the essential entities of users, regions,
POIs, commercial areas, and so on. as well as their complex relationships of home, workplace,
spatiality, attribute, and so on, and further constructs the urban knowledge graph.

— We conduct extensive experiments on three datasets for mobile user profiling task of profile
inference, and our proposed KG-MUP framework achieves considerable performance across
three datasets and five user profiles, which outperforms the best baseline with a precision
margin of 2%–13%. Several in-depth studies further reveal the effectiveness and interpretabil-
ity of our framework design on various user profiles.

The rest of this article is organized as follows. We present preliminaries and problem statement
in Section 2, and then introduce the details of framework design in Section 3. We conduct exper-
iments and discuss empirical results in Section 4. After reviewing the related works in Section 5,
we summarize our article in Section 6.

2 PRELIMINARIES AND PROBLEM STATEMENT

In this section, we firstly introduce key concepts of mobile behavioral data as well as KG, and then
formally define our research problem. Specifically, the mobile behavioral data used in this study
mainly refers to the mobility trajectories of users, which are defined as follows.

Definition 2.1 (Mobility Record). A mobility record is defined as a triplet p = (u, l ,τ ), which
means that user u visits location l at time τ , and l = (lnд, lat ) is the longitude-latitude pair of the
location.

Definition 2.2 (Mobility Trajectory). Given the set of users U , the mobility trajectory of a user
u ∈ U is defined as a sequence of mobility records tru = {pu

1 ,p
u
2 , . . . ,p

u
n }, where pu

i = (u, lui ,τ
u
i ) is

a mobility record. Besides, the mobility records are in time order, i.e., for ∀i, j with 1 ≤ i ≤ j ≤ n,
we have τu

i ≤ τu
j . The mobile behavioral data is denoted as Dmobi = {tru |u ∈ U}.

In addition, to capture the interaction between users and the urban environment, we also explore
multi-source urban environmental data for mobile user profiling, which is defined as follows.
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Definition 2.3 (Urban Environmental Data). The urban environmental data Durban mainly cov-
ers spatial data Dspatial, attribute data Dattr and aggregated mobility data Dagg-m, denoted as
Durban = {Dspatial,Dattr,Dagg-m}. Dspatial includes spatial related concepts such as POI, commer-
cial area and road network, while Dattr records category attributes of POIs and other available
attribute information. Dagg-m is aggregated from individual mobility data, e.g., crowd flow data.

Since the knowledge-driven studies are built upon KG, here we present the definition of KG as
follows [17, 18, 60].

Definition 2.4 (Knowledge Graph). A KG is defined as a multi-relational graph G = (E,R,F ),
where E is the set of entities, R is the set of relations and F is the fact set with F = {(h, r , t ) |h, t ∈
E, r ∈ R}. Each triplet (h, r , t ) ∈ F denotes a directional edge in KG from entity h to entity t with
relation type r .

Furthermore, the user profiling task is traditionally defined as follows [9, 12, 70].

Definition 2.5 (User Profiling). The user profiling is to infer user profiles on demographics, inter-
ests and characteristics by observable information about users, e.g., users’ behavior data.

Based on the concepts above, we formally define our research problem as follows.

Problem 1 (Knowledge Graph Aided Mobile User Profiling Problem). Given a set of users

U , their mobile behavioral data Dmobi and urban environmental data Durban, the knowledge-aided

mobile user profiling problem aims at extracting semantic knowledge via KG construction and repre-

sentation method fKG, i.e., (G,XKG) = fKG (U ,Dmobi,Durban), quantify mobility characteristics via

feature extraction method ffea, i.e., Xfea = ffea (U ,Dmobi, Durban), and finally leverage the both to

infer a type of user profile yu ∈ {1, . . . ,K } (K is the number of classes for the profile.) via integration

method f , i.e., yu = f (G,XKG,Xfea).

3 METHODOLOGY

3.1 Design Motivation

To motivate our proposed KG-MUP framework, here we have an investigation of the real-world
dataset, which reveals the strong correlations between mobility data characteristics and user pro-
files, as well as the one between semantic knowledge and user profiles. The analysis is based on
two datasets with user trajectory records and profiles in Beijing collected by a local mobile oper-
ator and a social network platform, called Mobile Operator dataset and Social Network dataset,
respectively. The dataset details will be described in Section 4 later.

On one hand, the users with different profiles show significantly different mobility characteris-
tics, as validated in previous studies [62, 63, 66] and our data analysis. Specifically, we present the
radius of gyration distribution of users in different age groups and income levels in Figure 1(a) and
(b), respectively. The radius of gyration characterizes the user’s mobility level, and a large value
indicates a large mobility range. For example, in Figure 1(a), we find that young people usually
have a larger mobility range than older groups, which is in accord with our daily observations
that younger groups especially in age 30–40 have large-range movement for commuting and busi-
ness, while older groups might avoid overmuch activities for health reason. Note that students in
school take up a large part of people in age 0–30, and thus drag down the overall radius of gyration
for this group. As for the results of users with different income levels in Figure 1(b), we observe
a strong correlation between income level and mobility range, i.e., users with higher income level
have larger radius of gyration. A possible reason is that the income level has a strong positive cor-
relation with car ownership, and such private transportation further increases the mobility range
[8]. Thus, according to above data analysis, mobility data characteristics like the radius of gyration
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Fig. 1. The distribution of radius of gyration across users in (a) Age groups and (b) Income levels in Mobile

Operator dataset.

Fig. 2. The spatial distribution of (a) Workplace and (b) Home for users with the professional occupation in

Social Network dataset. The identified regions in (b) are major residential areas in Beijing, China.

are quite useful for mobile user profiling problem, which thus motivates our feature-based module
design in KG-MUP framework.

On the other hand, rich semantic knowledge also lies in mobile behavioral data, such as the
complex relationships between users and environment, as well as the venue preferences of users
with different profiles. In Figure 2, we visualize the spatial distribution of workplace and home for
users with professional occupations in areas of Internet, finance, business, education, and so on.
In particular, Figure 2(a) indicates that users’ workplaces usually imply their profiles especially
the occupation, e.g., users who work at Financial Street are probably financial professionals. More-
over, we observe that the spatial distribution of home in Figure 2(b) extends outward compared
with that of workplace in Figure 2(a), which agrees with the location theory in urban planning,
i.e., residential areas are further from city center than business areas for land price [23]. Besides,
such results also reveal the commonsense knowledge that people usually choose residential areas
near their workplaces. For example, most people working at China’s Internet industry gathering
place live in nearby residential areas of Huilongguan1 and Tiantongyuan.2 Similar connections
can be observed between the working areas of CBD/Administration and the residential areas of
Jingsong/Panjiayuan/Tongzhou. Hence, these observations indicate the importance of semantic

1https://en.wikipedia.org/wiki/Huilongguan.
2https://en.wikipedia.org/wiki/Tiantongyuan.
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Fig. 3. The architecture of our proposed KG-aided mobile user profiling framework.

knowledge to mobile user profiling problem, which supports our KG-based module design in KG-
MUP framework. Furthermore, based on above observations from both feature engineering and
semantic knowledge, a promising solution to mobile user profiling problem is to integrate both
aspects into our framework design.

3.2 Framework Overview

As illustrated in Figure 3, we propose a framework for mobile user profiling that consists of
KG-based and feature-based modules. Specifically, we first take a series of data preprocessing
procedures to denoise the mobile behavioral data, i.e., users’ trajectories, and extract meaningful
stay points therein. Secondly, for KG-based module, we combine urban environmental data
with user trajectories and construct an UrbanKG, which incorporates users, key elements in
the city as well as various relations between them, to capture urban knowledge relevant to user
profiles. The UrbanKG is then fed into a KG embedding model to learn knowledgeable user
representations that can preserve urban knowledge therein. Hence, the semantic information
among user mobile behaviors and urban environment is fully explored. Thirdly, we adopt feature
engineering to calculate point-level and sequence-level features in feature-based module, which
aims at characterizing quantitative features of trajectories that are missed in KG-based module.
Finally, users’ mobility features and knowledgeable representations are integrated together and
fed into a traditional classifier for user profile inference.

3.3 Data Preprocessing

3.3.1 Noise Filtering. Due to possible signal blockage, errors of mobile devices and other rea-
sons, noise probably exists in mobility records, which may badly influence mobile user profiling.
Thus, we take the following procedures to denoise the trajectory [67]. First, we calculate the user’s
speed of each mobility record according to contextual records and filter out the records with a
speed higher than 120 kilometers per hour. Then, we filter out users with less than 100 mobility
records since their trajectories are less representative.

3.3.2 Stay Point Detection. As investigated in previous works [19, 26, 41], the stay point, where
the user stays for a period of time, implies mobility semantics. Here, we identify users’ stay points
from their trajectories. Specifically, in a trajectory, if a sequence of consecutive points lie within a
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Fig. 4. The schema of urban knowledge graph, where solid edges and dash edges are relations between

entities in different types and the same type, respectively.

spatial threshold d0 and have a stay time longer than a time threshold τ0, these points are merged
into a stay point, whose location is set as the centroid of all these points. In our study, the spatial
threshold and temporal threshold are set as d = 500 meters and τ = 10 minutes, respectively. Once
a stay point is identified, we match it to the nearest POI in the city and define the stay point as the
user’s visit to the POI.

There are three reasons for using stay points instead of raw trajectories. Firstly, single noisy
points can be filtered out in this process because a stay point is identified only when a series
of trajectory points lie in the same location. Secondly, users’ raw trajectories within different
datasets may have different spatial and temporal granularities. By merging raw trajectories into
stay points with the same spatial and temporal thresholds, we can get trajectories with a rather
uniform granularity on different datasets, which helps data processing afterward. Thirdly, in our
study, we focus on locations a user visits instead of those the user simply passes by, because only
locations where a user stays for a period of time reflect the semantics of trajectory, i.e., the user’s
intention. For example, a student goes to school from home and passes by a supermarket. In this
case, if he intends to visit the supermarket first and spends more than 10 minutes shopping there,
then the supermarket will be identified as a stay point. On the contrary, if he does not intend to
go shopping and simply passes by the supermarket, then it will not be identified as a stay point.

3.4 KG-based Module for Mobile User Profiling

In this section, we introduce the KG-based module of mobile user profiling, including how we
construct the UrbanKG and how we learn knowledgeable user representations from UrbanKG.

3.4.1 UrbanKG Construction. Motivated by the KG application in previous urban computing
studies [33, 35, 55, 58, 74], here we construct the UrbanKG from both mobile behavioral data and
urban environmental data for urban knowledge. The high-level structure, i.e., schema of UrbanKG
is presented in Figure 4. The UrbanKG contains five types of entities including users and key
elements in the city, i.e., regions, commercial areas, POIs, and categories. Moreover, various se-
mantic relations between entities are also considered in UrbanKG, including user-to-environment
relations, user-to-user relations as well as environment-to-environment relations. Based on the de-
fined schema, the UrbanKG construction process is divided into two parts of entity identification
and relation extraction, which are described as follows:

Entity Identification. We first identify several types of entities from mobile behavioral data
and urban environmental data, including users, regions, commercial areas, POIs, and categories.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 28. Publication date: October 2023.
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Fig. 5. The visualization of region entities and commercial area entities within the Sixth Ring Road, Beijing,

China.

— Users. Users lie in the center of mobile user profiling problem, so it is essential to add users
into UrbanKG, and we identify each user as an entity in UrbanKG.

— Regions. Regions are identified by dividing the city into small areas according to the main
road network, which can represent basic functional areas in cities. We visualize the region
entities within the Sixth Ring Road, Beijing in Figure 5(a), from which we can observe that
in downtown areas the regions are rather smaller while in suburban areas the regions are
larger.

— Commercial Areas. Commercial areas are core areas of business and commercial activities
such as Sanlitun3 in Beijing, and we visualize the commercial area entities within the Sixth
Ring Road, Beijing in Figure 5(b). Accordingly, the commercial areas distribute mostly in
downtown areas, while much sparser in suburban areas.

— POIs. POIs represent the basic functional units in a city such as restaurants and parks, and
users’ activities can be seen as visits to different POIs. As a result, it is necessary to integrate
POIs into UrbanKG. Note that the number of POIs in a city is quite large, many of which are
not relevant to users, so in this study, we only consider POIs visited by users.

— Categories. POIs are classified into various categories, which indicate the function and
property. Specifically, we identify three levels of coarse-level, mid-level, and fine-grained
categories, e.g., Food Category, Western Food Category, and German Cuisine Category.

Relation Extraction. Now we introduce how to extract the complex relationships between
entities. The relations can be classified into three categories of user-to-environment relations,
user-to-user relations and environment-to-environment relations, which characterize the relation-
ships between entities from different aspects. Table 1 summarizes the relations and corresponding
knowledge in UrbanKG.

— User-to-Environment Relations. To link users with city elements that they interact
with, we first identify two meaningful types of stay points, i.e., user’s home and workplace.
Following previous study [19] and daily life patterns in megacities like Beijig and Shanghai
in China, the most frequently visited location during weekday nights (between 7pm of the
first day and 9am of the next day) is identified as the home of a user. Similarly, the workplace
is identified as the most frequently visited location during weekday daytime (between 8am
and 9pm). We also restrict that a user’s workplace should be at least 1km from the user’s
home. These two types of stay points represent long-term characteristics of users’ mobility

3https://en.wikipedia.org/wiki/Sanlitun.
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Table 1. The Triplet form and Corresponding Semantic Knowledge Captured in UrbanKG

Triplet Form Semantic Knowledge
(User, HomeAt, Region) The spatial knowledge about users’ home.
(User, WorkplaceAt, Region) The spatial knowledge about users’ workplace.
(User, Visit, POI) The visiting habits in users’ daily life.
(User, SimilarTP, User) The connectivity of users with similar temporal pattern in mobility.
(Region, NearBy, Region) The spatial knowledge about regions within certain distance.
(Region, BorderBy, Region) The spatial knowledge about regions sharing the boundary.
(Region, SimilarFunc, Region) The socioeconomic knowledge about regions with similar functional types.
(Region, ODFlow, Region) The significant population flow transition pattern between regions.
(CA, ProvideService, Region) The service relationships between commercial areas and regions.
(POI, CateOf, Category) The attribute knowledge of POIs.
(POI, CoCheckin, POI) The geographical influence between POIs with concurrent check-ins.
(POI, Competitive, POI) The competitive relationships between POIs.
(POI, LocateAt, Region) The spatial relationships between POIs and regions.
(POI, BelongTo, CA) The spatial relationships between POIs and commercial areas.

Here CA denotes commercial area.

behavior, and they also have explainable semantics, i.e., home and workplace. Therefore,
identifying these stay points is of significant importance to mobile user profiling. We then
identify the home and workplace of a user to physical regions they are located at, and use
relations HomeAt and WorkplaceAt to link them with the user.
In addition, we draw Visit relational links between each user and corresponding visited
POIs. By adding these relations, users are connected with city elements that they interact
with, which helps distil urban knowledge for mobile user profiling.

— User-to-User Relations. To capture the semantic similarity between user mobility
patterns, we identify similar users based on time partition (TP) proposed in [64], and link
users with the relation SimilarTP. The core idea of this algorithm is to consider only the
time allocation patterns of users instead of their physical locations. For example, two users
lead the same lifestyle that they both go to work from 9am to 6pm and stay at home from
6pm to 9am the next day. In this case, even if they live in different parts of the city, they
are identified as similar users because they have the same time allocation pattern. Hence,
the temporal patterns are decoupled from users’ locations to discover users with similar
lifestyles but totally different physical locations.

— Environment-to-Environment Relations. Since the urban environment is strongly
correlated with users’ daily life, we further extract various kinds of environment-to-
environment relations, i.e., relationships between city elements. For example, BorderBy

and NearBy depict the spatial relationship while SimilarFunc links regions with similar
functions. We also use ODFlow relation to link two regions with significant crowd flow
transition. Besides, a commercial area is connected to its served regions by ProvideService

relation. As for POIs, relations between POIs include CoCheckin and Competitive, which
model the geographical influence and competitive relationship between POIs, respectively.
Each POI is connected to category by relation CateOf. In addition, LocateAt and BelongTo

link the POI with the region and commercial area that it locates at, respectively.

Since the categories are in three levels, we link categories in different levels with the relations
of SubCateOfi j , where i and j denote category levels. In addition, for each relation, we further
introduce the corresponding reverse relation [21, 32–34] in UrbanKG construction.

3.4.2 UrbanKG Embedding Models. In order to obtain user representations that can describe
the knowledge in UrbanKG, we leverage KG embedding models for solution. A KG embedding
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model learns low-dimensional vectors for entities and relations in KG [60]. Specifically, for each
triplet (h, r , t ), the KG embedding model designs a scoring function ϕ with corresponding vectors
of eh ,er ,et ∈ Rd to measure the plausibility, so that the true fact obtains a high score ϕ (h, r , t ).
Here d is the embedding dimension. In this study, we leverage tensor decomposition and graph
neural network for UrbanKG embedding, which are described as follows:

Tensor Decomposition. A state-of-the-art model TuckER[2] leverages the Tucker decomposi-
tion to measure the plausibility of triplets, whose scoring function is designed as

ϕ (h, r , t ) =W ×1 eh ×2 er ×3 et , (1)

whereW ∈ Rd×d×d is the core tensor of Tucker decomposition, ×n represents the tensor product
along the nth dimension, and eh ,et ∈ Rd , er ∈ Rd are the embeddings of head entity h, tail entity
t and relation r , respectively.

Graph Neural Network. A recent study R-GCN [43] further considers the structural informa-
tion of KG, and develops an encoder-decoder framework for KG embedding. For the encoder part,
R-GCN applies relational-aware graph convolutional networks to aggregate structural informa-
tion from entity neighborhood, and then calculate the plausibility score via a bilinear product in
the decoder part, which is calculated as

ϕ (h, r , t ) = (eK
h � er )�eK

t , (2)

where eK
h

and eK
t are the representations of head entity h and tail entity t after K layers of graph

encoding. Specifically, the representation of entity ei at the (l + 1)-th layer can be obtained as

e (l+1)
i = σ ��

�

∑
r ∈R

∑
j ∈N r

i

W (l )
r e (l )

j +W
(l )

0 e (l )
i
��
�
,

where e (l )
i is the representation of entity ei in the lth graph encoding layer, N r

i stands for the set

of entities connected to entity ei via relation r andW (l )
r ,W (l )

0 are learnable weight matrices in the
lth graph encoding layer. σ can be a nonlinear activation function.

According to our problem statement in Section 2, to extract semantic knowledge for mobile user
profiling, here we design above KG-based module with UrbanKG construction process and embed-
ding models developed, which obtains user representationsXKG, corresponding to the knowledge-
driven method fKG .

3.5 Feature-based Module for Mobile User Profiling

To quantify individual mobility characteristics, we also propose a feature-based module for mobile
user profiling. Following previous studies [5, 13, 29, 62, 67], we design some features to characterize
users’ mobility patterns. Specifically, given a user u’s stay points Tu = (lu1 , . . . l

u
N u ) with lui =

(lnдu
i , lat

u
i ) as the longitude-latitude pair, the features can be classified into point-level features

and sequence-level features.
Point level features measure the characteristics of stay points, which are defined as follows:

— Number of stay points, Nu . The total number of stay points of a user u.
— Number of unique stay points, nu . The number of unique stay points among the total Nu

stay points for user u.
— Trajectory centroid, lu

C
. The average coordinates of all stay points in the trajectory, which

depicts the center of a user u’s activity area, and is computed as

luC = (lnдu
C , lat

u
C ) = �

�
1

Nu

N u∑
i=1

lnдu
i ,

1

Nu

N u∑
i=1

latu
i
�
�
. (3)
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— Radius of gyration, ρu . This feature measures the deviation of stay points from their cen-
troid lu

C
, depicting the range of trajectory, which is computed as

ρu =

√√√
1

N

N u∑
i=1

dist(lui , l
u
C

) · dist(lui , l
u
C

). (4)

Note that here we use dist(·, ·) to denote the distance calculation between to longitude-
latitude pairs.

— Stay point entropy, Eu
s . This feature measures the diversity of a useru’s stay points, which

is computed as

Eu
s = −

n∑
i=1

f req
(
lu ′i

)
log2 f req

(
lu ′i

)
, (5)

where lu ′1 , l
u ′
2 , . . . , l

u ′
n are unique stay points and f req(lu ′i ) is the visiting frequency to lu ′i .

Besides, users that mostly stay in the same location usually have a small stay point entropy.
— Region entropy, Eu

r . This feature measures the distribution entropy of a user’s visited re-
gions. For each stay point, we identify its located region. Let nu

r be the number of regions
user u visits, and nu

i be the times the user u visits the ith region. Then the region entropy is
defined as

Eu
r = 1 −

nu
r∑

i=1

(
nu

i

Nu

)2

. (6)

A small Eu
r implies that the user u’s stay points mostly lie in a small number of regions.

Especially, stay point entropy Eu
s and region entropy Eu

r reflect the heterogeneity of mobility
trajectories.

Apart from the point-level features above, we further design the following sequence-level fea-
tures to characterize the travel properties of user mobility.

— Travel distance, Du . A travel is defined as a transition part between two consecutive stay
points. Thus, the travel distance is defined as the total distance of all travels, i.e., trajectory
length, for the user u.

Du =

N u−1∑
i=1

Du
i =

N u−1∑
i=1

dist(lui , l
u
i+1). (7)

— Standard deviation of travel distances, σu . This feature measures the regularity of a user
u’s movement, which is computed as

σu =

√∑N u−1
i=1 (Du

i − D̄u )2

Nu − 1
, (8)

where D̄u =
∑

N
u−1

i=1 Du

i

N u−1 is the average of all travel distances. A large σu means that the travel
distance Du

i varies greatly, which indicates an irregular mobility pattern.
— Travel entropy, Eu

tr . This feature indicates the diversity of travels, which is computed as

Eu
tr = −

nu

tr∑
i=1

f req
(
lui → lui+1

)
log2 f req

(
lui → lui+1

)
, (9)

where nu
tr is the number of unique origin-destination travels of a user, and f req(lui → lui+1)

is the frequency of travel lui → lui+1 in all Nu -1 travels. The travel entropy Eu
tr will be small if

a few travels take up the majority of all travels. For example, a user goes to work from home
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and goes home from workplace everyday, and seldom visits other places, which results in a
small travel entropy.

The point-level features and sequence-level features introduced above are able to capture the
quantitative characteristics of users’ trajectories from different aspects, which correspond to Xfea

with the feature extraction method ffea. So far we have obtained users’ knowledgeable represen-
tations XKG via knowledge-driven method fKG and users’ mobility features Xfea through feature
extraction method ffea. After that, we use simple yet effective concatenation to combine XKG and
Xfea together and leverage traditional classifier f to infer the user profile. Without loss of general-
ity, we adopt the widely used random forests classifier in this study.

3.6 Framework Optimization

The proposed KG-MUP framework is optimized in a two-step training way. In the first step, the
KG-based module fKG is optimized with the objective in traditional KG embedding studies [2, 60],
while the feature-based module ffea is developed to extract features from mobile behavioral data,
both of which are independent with the user profile data. Then, in the second step, with users’
knowledgeable embeddings XKG and mobility features Xfea available, a supervised classifier f like
random forests [27] is trained for user profile inference.

Especially, for the KG-based module fKG, with UrbanKG G = (E,R,F ) constructed, the Ur-
banKG embedding model ϕ ∈ fKG is optimized to correctly measure the plausibility of triplets in
G, i.e., the true/positive triplet (h, r , t ) should be scored higher than the negative triplets (h, r , t ′)
with t ′ ∈ E \ {t }. Therefore, we adopt the cross-entropy loss for objective function [2, 20], which
is formulated as,

min
Θ

∑
(h,r,t )∈F

− log
eϕ (h,r,t )∑

t ′ ∈E eϕ (h,r,t ′)
+ λ · ‖Θ‖, (10)

where Θ is the learnable parameters in ϕ with XKG ∈ Θ, and λ is the regularization parameter.
Moreover, with the feature-based module ffea designed above, for the user u ∈ U , we leverage

the classifier f to infer the user profile yu , i.e.,

yu = arg max
k ∈{1, ...,K }

f (k,G,xKG
u ,x

fea
u ) (11)

s.t. xKG
u ∈ XKG, x

fea
u ∈ Xfea

(G,XKG) = fKG (U ,Dmobi,Durban)

Xfea = ffea (U ,Dmobi,Durban),

where K is the number of profile classes, xKG
u and x fea

u are the outputs of KG-based module and
feature-based module for u, respectively. Hence, Problem 1 is successfully solved by our proposed
KG-MUP framework.

We summarize the learning procedure of KG-MUP framework in Algorithm 1. We first use rep-
resentation learning and feature engineering methods to obtain user embeddings and features.
Specifically, for KG-based module in lines 4–12, we construct UrbanKG, and randomly initialize
the embeddings of all entities and relations therein, in lines 5–6. Then in lines 7–12, we calculate
the loss according to Equation (10) for each triplet in UrbanKG, and update the embeddings of
entities and relations based on the gradient of loss. As for feature-based module in lines 13–14, we
calculate users’ features from mobility trajectories. In lines 15–17, we train a classifier f with user
embeddings and features as well as observed user profile data, which is further used for profile
inference. According to the learning procedure, both time complexity and space complexity of the
algorithm are constrained by the representation learning in Step 1. To be specific, let ne and nr
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ALGORITHM 1: Learning procedure for KG-MUP framework.

1: Input: The user setU , mobile behavioral data Dmobi and urban environmental Durban

2: Output: The user profile yu ,∀u ∈ U .
3: Step 1: Representation Learning & Feature Engineering
4: � KG-based module, fKG

5: Construct UrbanKG G = (E,R,F ) from Dmobi and Durban;
6: Initialize entity embeddings E and relation embeddings R;
7: for i = 1, 2, . . . ,niter do

8: for (h, r , t ) ∈ F do

9: Compute the score ϕ (h, r , t ′) for all entities t ′ ∈ E according to (1) or (2);
10: Compute the loss according to (10);
11: Update parameters of embeddings through backward propagation;

12: Obtain user embeddding xKG
u from E, ∀u ∈ U ;

13: � feature-based module, ffea

14: Compute user features x fea
u from Dmobi and Durban, ∀u ∈ U , according to basic statistics

and (3)–(9) ;

15: Step 2: Profile Inference
16: Initialize the classifier f , and train f with observed user profile data;
17: Infer the user profile yu with f ,xKG

u and x fea
u , ∀u ∈ U , according to (11).

Table 2. The Basic Information of Three Real-world Mobile Behavioral Datasets

Source City Time Duration # User #Record #Stay Point Spatial Temporal

Mobile Operator Beijing
1st July -

31st August, 2017 4,255 3,612,165 264,409 1 m 1 min

Social Network
Platform Beijing

1st October -
31st December, 2019 100,000 57,794,023 1,536,797 425 m 1 s

Life Service
Platform Shanghai

1st July -
31st August, 2021 27,673 1,038,648 765,023 1 m 1 s

The column of “User” denote the number of original users in raw data. The columns of “Spatial” and “Temporal” denote
the resolution of raw data in space and time, respectively.

denote the number of entities and relations in UrbanKG, then the time complexity for tensor de-
composition model is O (d ) with effective tensor product, while the one for graph neural network
model is O (d2) with encoder-decoder framework. As for the space complexity, tensor decomposi-
tion model costs O (ned + nrd + d

3) parameters with entity/relation embeddings and core tensor
considered, while graph neural network model costs O (ned + nrd

2) with entity embeddings and
relation weight matrices considered. Owing to GPU acceleration, KG-MUP is in high efficiency in
practical, as shown in experiments later.

4 EXPERIMENTS AND RESULTS

4.1 Datasets

4.1.1 Real-world Datasets. We evaluate our models on three real-world mobile behavioral
datasets collected from three data sources across two cities of Beijing and Shanghai in China. Their
basic information is listed in Table 2, and other details are as follow.

— Mobile Operator Dataset. The dataset is from [29], collected from a local mobile operator,
China Mobile,4 which records the time and location of connected base station whenever

4http://www.10086.cn/index/bj/index_100_100.html.
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Table 3. User Profile Distribution in Mobile Operator Dataset

Profile Category

Income low(26.39%), lower medium(28.30%), upper medium(17.15%), high(28.16%)
Gender male(34.16%), female(65.84%)

Education
junior high school(8.82%), senior high school(21.95%),

undergraduate(58.15%), postgraduate(11.08%)
Age 0-30(13.34%), 30-40(24.84%), 40-60(43.97%), 60-99(17.85%)

Table 4. User Profile Distribution in Social Network Dataset

Profile Category

Income very low(2.72%), low(13.58%), medium(53.25%), high(28.75%), very high(1.70%)
Gender male(62.23%), female(37.77%)
Education senior high school(23.71%), undergraduate(59.70%), postgraduate(16.58%)
Age 20–25(26.56%), 25–30(24.92%), 30–40(38.60%), 40–50(9.92%)

Occupation
administration support(12.35%), healthcare and technicians(3.94%),

managers(0.80%), professionals(61.93%), sales workers(11.59%),
services(6.45%), transport and production(2.93%)

Table 5. User Profile Distribution in Life Service Dataset

Profile Category

Income low(6.17%), medium(36.05%), high(57.78%)
Gender male(41.55%), female(58.45%)

Age
0–20(3.14%), 20–25(24.35%), 25–30(30.30%),

30–35(18.21%), 35–40(11.15%), 40–99(12.85%)
Occupation white collars(76.68%), students(3.41%), others(19.90%)

users access cellular network. In addition, the user profiles are also collected through digital
questionnaires from 11 hospitals in Beijing, whose distribution is shown in Table 3.

— Social Network Dataset. The dataset is from [63], collected from a social network plat-
form, Tencent,5 and mobile behaviors are recorded when users invoke location-based ser-
vices. Besides, this dataset also collects user profile information through large-scale user
survey, where the occupations are merged into 7 categories following previous work [42, 63].
The distribution of user profiles is shown in Table 4.

— Life Service Dataset. The dataset is collected from a life service platform, Meituan,6 and
mobile behaviors are also recorded when users invoke location-based services. The user
profiles are collected through user survey as well as expert rules, whose distribution is shown
in Table 5.

It can be observed that the evaluated profiles vary across three datasets from different sources,
which guarantees the robust evaluation. Especially, for Mobile Operator dataset and Social Net-
work dataset in Beijing, we filter mobility records within the Sixth Ring Road in Beijing, which are
not far from downtown area. For Life Service dataset, we preserve mobility records in Shanghai.
The age profile in Social Network dataset is divided into four groups for group balance, while other
profiles in three datasets follow the divisions in their original articles or providers [29, 63].

5https://www.tencent.com.
6https://www.meituan.com.
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Table 6. The Basic Information of the Constructed UrbanKGs on Three Datasets

Dataset
Overall Statistics Entity Types

#Entity #Relation #Fact #User #Region #CA #POI #Category
Mobile Operator 13,164 19*2 11,097 1,417 1,195 226 10,108 12/37/169
Social Network 15,971 19*2 160,246 8,599 1,195 226 5,744 12/37/158
Life Service 100,701 18*2 659,318 7,733 2,488 265 89,970 12/37/196

Here CA denotes commercial area. #Category denotes the number of coarse-level/mid-level/fine-grained categories
for POIs. *2 in #Relation column considers reverse relations in statistics.

Fig. 6. The description of the synthetic dataset, including (a) Home regions and (b) Workplace regions of

users in the dataset and (c) The schema of simplified UrbanKG. The region color corresponds to the profile

category of users who live/work there.

Following the KG construction in Section 3.4.1 as well as the schema in Figure 4, we construct
three UrbanKGs for corresponding datasets, whose statistics are summarized in Table 6. The POI
data used for construction is collected in November, 2018 by Tencent [44], which can be accessed
via map service.7 The mobility records are rather sparse in Life Service dataset, thus we ignore
SimilarTP for simplicity.

4.1.2 Synthetic Datasets. As described before, the semantic knowledge in mobile user behaviors
like the distributions of home and workplace is important for user profile inference. To validate that
the KG-based module in KG-MUP framework can capture such knowledge, we further develop two
synthetic datasets, i.e., Balanced dataset and Unbalanced dataset. Both datasets contain 1,000 users
and each user belongs to one of four profile categories (Category I–IV), where users in Balanced
dataset are uniformly divided into each category, while users in Unbalanced dataset are divided
into Category I–IV with the ratio of 5%, 15%, 30%, and 50%, respectively. Moreover, we partition
a city into 6 × 6 regions, which are uniformly assigned to each category of users as their home
regions and workplace regions, as shown in Figure 6(a) and (b). Following the generation process
of synthetic datasets, we construct the simplified UrbanKG, whose schema is shown in Figure 6(c).

4.1.3 Privacy and Ethical Considerations. Given the importance and sensitivity of such mobile
behavioral data, we enforce the following three protocols for privacy and ethical concerns in this re-
search. First, all datasets are properly anonymized by data owners before sharing with researchers,
and real user IDs are never made available to researchers. Second, all researchers that have been au-
thorized to access the datasets are bounded by strict non-disclosure agreements, and the research
protocols are approved by the local institutional board. Third, we store all the data in a secure
off-line server, which only the authorized core researchers can access.

7https://lbs.qq.com/service/webService/webServiceGuide/webServiceSearch.
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Fig. 7. The CDF of mobility characteristics on three real-world datasets in respective of (a) Number of stay

points, N , (b) Number of unique stay points, n, (c) Stay point entropy, Es , (d) Region entropy Er .

On the other hand, inferring user profiles by mobile user profiling models might also face ethical
and moral concerns. First, such inferring progress is often defended as being legal, which however
is not in line with the society’s or users’ ethical and moral standings [39], e.g., the users resist
such passive inference on personal information. Second, the inferred results might be abused for a
number of purposes and further result in disclosure of personal information. Third, the overuse of
inferred results by web platforms especially recommender systems can aggravate the echo cham-
ber phenomenon [1], i.e., the users are exposed only to certain types of information. To mitigate
such risks associated with using mobile user profiling results, we encourage research to investigate
the impacts of using inferred results in particular real-world scenarios, and call for making legal
requirement on personal information usage like the General Data Protection Regulation [40].

4.1.4 Basic Statistics. To provide a comprehensive understanding of the datasets, we present
the cumulative distribution of some basic features on three datasets in Figure 7. It can be observed
in Figure 7(a) that the users’ number of stay points in two Beijing datasets, Mobile Operator dataset
and Social Network dataset, follow a similar distribution, and most of users have less than 500
stay points. In comparison, users’ stay points in Life Service dataset are much less. However, in
Figure 7(b), the users in Social Network dataset generally have a smaller number of unique stay
points than the other two datasets, which indicates that users in Social Network dataset are likely
to visit the same places many times. This phenomenon can be also reflected by stay point entropy
shown in Figure 7(c). Specifically, users’ stay point entropies in Social Network dataset are gener-
ally smaller, which shows that they have a smaller diversity in the place they visited. Nevertheless,
in Figure 7(d), the three datasets have a similar distribution in terms of region entropy. Note that
regions are partitioned by the main road networks in a city, which represent the basic functional
areas of cities. On one hand, the similar region entropy distribution shows that although users
come from different datasets or even cities, their mobility behaviors are similar in the diversity of
regions they visited. On the other hand, this finding also indicates that the partition of regions by
road networks is reasonable and appropriate for user movement modeling.
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4.2 Experiment Settings

4.2.1 Baseline. We choose several representative baselines for mobile user profiling to compare
with our model.

— Random Guess. This is the simplest method for prediction task. For each user, we randomly
choose a profile category as the prediction.

— DPLink [10]. A recurrent neural network based model designed for user identity linkage
task. Here we combine DPLink and multilayer perceptron to build an end-to-end model for
user profile inference.

— GCN [22]. A classic graph neural network based model that aggregates information from
neighbors for each node. Here we apply GCN on the heterogeneous graph proposed in SUME
[63], to obtain user embeddings.

— GAT [52]. A graph neural network based model that uses attention modules to aggregate
information from different neighbor nodes. Here, GAT adopts the same heterogeneous graph
with GCN as input.

— DGI [53] A graph neural network based model that summarizes subgraphs centered around
each node in an unsupervised manner for representation learning. Here, DGI follows the
same input graph with GCN.

— IMUP [58]. A reinforcement learning model for mobile user profiling, which trains an agent
to imitate a mobile user based on the user profiles.

— SUME [63]. It constructs a heterogeneous graph based on similarity between users and loca-
tions, and further proposes a network embedding algorithm to obtain user embeddings.

For our proposed KG-MUP framework, we develop two KG embedding models of TuckER [2]
and R-GCN [43] in the KG-based module, denoted as KG-MUP/T and KG-MUP/R, respectively.
Especially, all the models above except for Random Guess and DPLink, are trained in an unsu-
pervised way to obtain user embeddings/representations, which are further fed into the random
forests classifier for user profile inference task. To ensure fair comparison, the embedding dimen-
sions of all these models are set to 32. We tune all baselines following the reported settings in the
original study.

4.2.2 Evaluation Metrics. In our experiment, we use Precision, Recall and F1-score as evaluation
metrics, which are widely used in mobile user profiling studies [29, 46, 63]. Given a profile with M
categories, the metrics are calculated as,

Pre =
1

M

M∑
m=1

TPm

TPm + FPm
, Rec =

1

M

M∑
m=1

TPm

TPm + FNm
, F1 =

1

M

M∑
m=1

2 ·TPm

2 ·TPm + FPm + FNm
,

where TPm , FPm , and FNm stand for true positive, false positive and false negative rates for the
m-th category. Without loss of generality, we follow previous studies [29, 63] and adopt the top-
k profiles that a user exhibits for metric calculation, setting k = 2 for profiles with more than
three categories and k = 1 otherwise. In addition, we randomly split the datasets into five subsets
and report the average performance of 5-folds cross-validation to guarantee the robustness of the
results.

4.3 User Profile Inference

We present the overall performance of our model and baselines on three datasets in Tables 7–9,
respectively, from which we have the following findings. Firstly, it can be observed from the
results that our proposed model outperforms all the baselines on most profiles. For example, on
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Table 7. Performance Comparison with Baselines on Mobile Operator Dataset

Income Gender Education Age
Model Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
Random 0.509 0.514 0.508 0.501 0.500 0.486 0.439 0.497 0.435 0.469 0.492 0.465
DPLink 0.559 0.527 0.528 0.542 0.539 0.538 0.734 0.513 0.532 0.590 0.525 0.513
GCN 0.608 0.596 0.598 0.540 0.543 0.540 0.846 0.549 0.593 0.674 0.544 0.558
GAT 0.587 0.588 0.585 0.548 0.551 0.547 0.714 0.570 0.606 0.650 0.588 0.598
DGI 0.645 0.646 0.643 0.546 0.547 0.544 0.650 0.557 0.583 0.594 0.602 0.588
IMUP 0.551 0.534 0.535 0.525 0.525 0.524 0.836 0.522 0.571 0.736 0.515 0.533
SUME 0.587 0.582 0.582 0.551 0.543 0.541 0.820 0.547 0.593 0.701 0.620 0.635
KG-MUP/T 0.677 0.663 0.666 0.553 0.555 0.553 0.723 0.568 0.602 0.780 0.607 0.605
KG-MUP/R 0.687 0.667 0.673 0.569 0.545 0.534 0.904 0.541 0.586 0.709 0.632 0.650
Improv. 6.5% 3.3% 4.7% 3.3% 0.7% 1.1% 6.9% -0.4% -0.7% 6.0% 1.9% 2.4%

Best results are in bold and the second best results are underlined. The last row shows relative improvement in
percentage.

Table 8. Performance Comparison with Baselines on Social Network Dataset

Income Gender Education Age Occupation
Model Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
Random 0.340 0.386 0.300 0.489 0.489 0.481 0.336 0.336 0.310 0.481 0.499 0.477 0.229 0.275 0.203
DPLink 0.509 0.407 0.420 0.518 0.517 0.516 0.360 0.344 0.313 0.631 0.523 0.501 0.413 0.285 0.300
GCN 0.501 0.431 0.446 0.550 0.551 0.550 0.376 0.374 0.374 0.579 0.564 0.569 0.327 0.313 0.318
DGI 0.535 0.416 0.438 0.542 0.544 0.542 0.356 0.358 0.356 0.582 0.575 0.576 0.386 0.292 0.319
GAT 0.622 0.430 0.447 0.549 0.551 0.549 0.381 0.388 0.379 0.586 0.570 0.575 0.370 0.305 0.323
IMUP 0.468 0.418 0.433 0.503 0.503 0.503 0.349 0.349 0.349 0.523 0.511 0.514 0.413 0.286 0.316
SUME 0.451 0.432 0.436 0.544 0.542 0.542 0.374 0.386 0.371 0.624 0.558 0.571 0.370 0.300 0.314
KG-MUP/T 0.506 0.456 0.466 0.565 0.567 0.565 0.398 0.410 0.399 0.630 0.601 0.610 0.433 0.311 0.336
KG-MUP/R 0.629 0.431 0.442 0.561 0.564 0.560 0.389 0.399 0.390 0.669 0.581 0.598 0.429 0.306 0.324
Improv. 1.1% 5.6% 4.3% 2.7% 2.9% 2.6% 4.5% 5.7% 5.3% 6.0% 4.5% 5.9% 4.8% -0.6% 4.0%

Best results are in bold and the second best results are underlined. The last row shows relative improvement in
percentage.

Table 9. Performance Comparison with Baselines on Life Service Dataset

Income Gender Age Occupation
Model Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1
Random 0.328 0.331 0.287 0.494 0.494 0.491 0.318 0.334 0.306 0.330 0.309 0.257
DPLink 0.331 0.351 0.339 0.519 0.518 0.517 0.357 0.345 0.318 0.350 0.340 0.319
GCN 0.381 0.383 0.381 0.530 0.530 0.525 0.368 0.371 0.368 0.346 0.348 0.345
GAT 0.385 0.387 0.383 0.529 0.530 0.526 0.369 0.373 0.367 0.367 0.351 0.352
DGI 0.375 0.378 0.369 0.540 0.540 0.540 0.349 0.352 0.349 0.350 0.354 0.348
IMUP 0.343 0.345 0.343 0.518 0.519 0.518 0.368 0.350 0.350 0.352 0.356 0.352
SUME 0.406 0.414 0.408 0.514 0.514 0.513 0.382 0.388 0.381 0.360 0.357 0.357
KG-MUP/T 0.426 0.438 0.429 0.569 0.567 0.566 0.410 0.415 0.406 0.385 0.400 0.389
KG-MUP/R 0.417 0.420 0.416 0.570 0.567 0.567 0.406 0.406 0.400 0.383 0.385 0.382
Improv. 4.9% 5.8% 5.1% 5.6% 5.0% 5.0% 7.3% 7.0% 6.6% 4.9% 12.0% 9.0%

Best results are in bold and the second best results are underlined. The last row shows relative improvement in
percentage.

Mobile Operator dataset, our proposed KG-MUP framework improves baselines by 3.3%–6.9% with
precision. Such considerable performance gains demonstrate the superiority of knowledge-driven
paradigm to capture the user characteristics from different aspects. In addition, the two variants
of KG-MUP, i.e., KG-MUP/T and KG-MUP/R achieve close inference performance on most profiles
across datasets. Considering the three datasets from different sources and cities, the consistent
improvements on all datasets further show the robustness of our model and the effectiveness of
UrbanKG to model complex relationships between users and the environment.
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Fig. 8. Comparison on clock time of model training v.s. training loss.

Secondly, among baselines, the performance of DPLink model is rather worse since it only uti-
lizes user trajectories without complex environment considered. Meanwhile, we notice that al-
though IMUP model constructs a graph for mobile user profiling, its performance is still worse
than other graph based baselines, which is due to the lack of users considered in graph and thus
fails to model the relationship between users and the environment. Compared with GCN, GAT
and SUME, our proposed KG-MUP framework considers not only more semantic knowledge but
also relation-aware representation, which contributes to the relative improvements.

Thirdly, the performance improvement varies across different profiles. Taking Social Network
dataset as an example, the improvement on education inference achieves about 5%, while the im-
provement on gender inference is less than 3%. Note that we use the same user embeddings to
infer different user profiles on each dataset. On one hand, this finding shows the robustness of
learnt user embeddings in inferring different user profiles. On the other hand, it also suggests that
the correlations between mobility patterns and user profiles are different, which affects the perfor-
mance of inferring profiles. This will be further verified later in Section 4.4. Besides, the prediction
performance highly depend on the human behavior characteristics as well as profile semantics
captured in corresponding datasets.

Moreover, we also plot the learning curves of KG-MUP/T and KG-MUP/R on three datasets
in Figure 8. The results show that both models reach convergence within half an hour on Mobile
Operator dataset and Social Network dataset with over ten thousands of entities. Since the number
of entities in Life Service dataset is over one hundred, the corresponding convergence time costs
about five hours. Therefore, both models achieve nearly linear time complexity with the number
of entities in training dataset, which is in accord with theoretical analysis aforementioned.

Overall, our proposed KG-MUP framework achieves both effective and robust performance on
various user profile inference tasks across three datasets, and the significant performance gain
validates the capability of UrbanKG to capture the urban knowledge in mobile behavioral data for
mobile user profiling.

4.4 Effectiveness of KG-based Module

As the core part of our proposed KG-MUP framework design, KG-based module unleashes the
power of UrbanKG for mobile user profiling, and thus here we present experiments on two syn-
thetic datasets to verify its effectiveness. Specifically, a direct validation is to examine whether
KG-based module can help mobile user profiling under the profile-region knowledge assumption,
i.e., users’ homes and workplaces are correlated to their profiles.

We first compare the performance of two traditional graph neural network models (GCN, GAT)
and two KG embedding models (TuckER, R-GCN). Note that here we only use the KG-based module
in KG-MUP. As shown in Table 10, in both balanced and unbalanced datasets, all these models
achieve great performance gains over random guess, which shows that the learnt embeddings
can help infer user profiles to some degree. What’s more, KG embedding models significantly
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Table 10. Performance Comparison on Synthetic Datasets

Balanced Unbalanced

Model Pre Rec F1 Pre Rec F1
Random 0.234 0.237 0.235 0.261 0.268 0.233
GCN 0.555 0.560 0.553 0.668 0.578 0.601
GAT 0.871 0.872 0.869 0.917 0.759 0.793
TuckER 1.000 1.000 1.000 0.994 0.967 0.978
R-GCN 0.994 0.994 0.994 0.986 0.963 0.972

Fig. 9. Performance on synthetic datasets un-

der different matching parameters.

outperform graph neural network models on both datasets, which indicates that taking relation
types into consideration is quite important to learn better representations. Note that in real world,
users with the same profile may not live or work in the same set of regions. To simulate this case,
we define a matching parameter α to measure how much the targeted profiles match with profile-
region assumption. Specifically, for each user, its home and workplace have a probability α to lie
in one of the candidate regions shown in Figure 6, and a probability 1−α to locate in other regions.
The results in Table 10 introduced above are actually an ideal case where α = 1.

Therefore, we examine the performance of TuckER model under different matching parameters
as shown in Figure 9. We observe that on both balanced and unbalanced datasets, as α decreases
from 1.0 to about 0.3, the F1-score of profile inference drops greatly to around 0.3, which suggests
that although KG can model the semantic knowledge between users and city elements, the per-
formance is greatly affected by how strong the profile-region assumption holds. In addition, the
F1-score slightly increases when α decreases from 0.3 to 0, which is because the correlation be-
tween user profile and home, workplace actually becomes stronger then. Taking the α = 0 case
as an example, it is actually equivalent to the case that the home and work regions of each user
are selected from the other 27 candidate regions. In summary, KG can perfectly model the seman-
tic knowledge between users and city elements in the ideal case (α = 1). As long as there exists
a correlation between users’ profiles and their home and workplace, KG-based module can learn
user representations that help for profile inference, while traditional graph neural network models
cannot achieve that good performance without semantic relations considered.

In real-world datasets, some profiles are strongly correlated to the homes and workplaces of
users such as income and occupation, which corresponds to a larger matching parameter α , while
this correlation on some other profiles such as gender may be weaker with a smaller α . Conse-
quently, the performance gain of our model on different profiles may be quite different, as depicted
in Tables 7–9 and result analysis before.

4.5 Ablation Study

We conduct the ablation study to verify the effectiveness of KG-based and feature-based modules
as well as various semantic knowledge in UrbanKG. In Figure 10, we visualize the performance of
our framework and two variants that only contains one of the modules, i.e., w/o KG-based module
and w/o feature-based module. To avoid redundancy, we only show the F1-score of each profile
on three real-world datasets, and similar observations are made on other metrics.

As shown in Figure 10, the performance becomes worse on almost all profiles when omitting
KG-based or feature-based modules, which demonstrates the effectiveness of integrating both KG
and feature engineering. For example, in Mobile Operator dataset with Figure 10(a), the perfor-
mance drops without KG-based module are in 0.17%–12.46% across profiles, while the ones without
feature-based module are in 4.15%–18.62%. Similarly, the corresponding performance drops in
Social Network dataset (Figure 10(b)) and Life Service dataset (Figure 10(c)) are 2.48%–6.85% (w/o
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Fig. 10. Performance comparison of models without KG-based or feature-based module. KG. and fea. repre-

sent KG-based module and feature-based module, respectively.

Fig. 11. Performance comparison of models without a specific relation in UrbanKG.

KG.)/4.25%–8.80% (w/o fea.) and 1.59%–9.00% (w/o KG.)/5.13%–10.25% (w/o fea.), respectively.
Besides, we observe that on some profiles, like income and age on Mobile Operator dataset, the
performance of feature-based module is better than that of KG-based module, while on some
other profiles like gender and education, KG-based module performs better. This further indicates
that KG-based and feature-based modules are both essential because they actually depict the
characteristics of users from different aspects. For example, in feature-based module, we can easily
calculate some quantitative features of a user like the total distance of its trajectory, which is hard
to integrate into KG-based module. On the other hand, KG-based module can model the complex
relationship between users and city elements but feature-based module cannot. Hence these two
modules are actually complementary to each other for better mobile user profiling performance.

Besides, we analyze the effectiveness of different semantic knowledge in UrbanKG by removing
one of the relations directly relevant to users, i.e., HomeAt, WorkplaceAt, Visit, and SimilarTP.
As shown in Figure 11, the performance drops on most profiles on all three datasets when
removing each relation, demonstrating the importance of such semantic knowledge to infer user
profiles, which furthers validate the effectiveness of UrbanKG construction. Especially, on both
Social Network dataset and Life Service dataset, we observe significant performance drops on
occupation inference when removing relation WorkplacAt, which implies that the workplace
is highly correlated to a user’s occupation. Moreover, relations show diverse effects on three
datasets, e.g., the relation HomeAt on Mobile Operator dataset (Figure 11(a)) with performance
drop of 1.05%–9.22% across profiles, and the relation Visit on Life Service dataset (Figure 11(c))
with performance drop of 1.59%–4.88% across profiles. Also, we notice that the gains by some
relations are not significant on certain profile prediction, which might be attributed to the
dataset characteristics and profile semantics. Hence, we build the KG-MUP framework as well as
UrbanKG for an overall prediction performance on three datasets across multiple profiles.

Furthermore, we remove different types of entities in UrbanKG that are not directly linked to
users, i.e., POI categories and commercial areas. As shown in Figure 12, the performance on most
profiles reduces when removing these entities, which shows that although these entities are not
directly linked to users, they are important in the UrbanKG and can help enrich semantics of users.

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 1, Article 28. Publication date: October 2023.



28:22 Y. Liu et al.

Fig. 12. Performance comparison of models without a certain type of entities in UrbanKG.

Table 11. Gender Profile Inference Performance Comparison of KG-MUP/T Model Trained and

Tested on Different Datasets

F1-score
Testing Dataset

Mobile Operator Social Network Life Service

Training Dataset

Mobile Operator 0.553 0.505 0.510
Social Network 0.399 0.565 0.473

Life Service 0.521 0.501 0.566

For example, commercial areas are places where people usually do shopping, thus closely related
to users’ income level. As a result, removing commercial areas affects the performance of income
inference on all datasets. In addition, the performance of gender inference on Mobile Operator
dataset greatly decreased when removing POI categories, which indicates that the preference for
POIs is quite different among males and females.

4.6 Generalization Study

The experiment results above validate the effectiveness of KG-MUP framework trained and tested
on the same dataset. In this part, we consider a more practical case of out-of-sample scenario, where
the proposed KG-MUP/T model is trained on one dataset, and tested on another dataset. Such case
can validate the model generalization capability, and Table 11 summarizes the prediction results
across three datasets on gender profile inference.

According to the results, the values in diagonal blocks are obtained from models trained and
tested on the same dataset, which achieve reasonably best result. Moreover, the results in the first
and third rows indicate that models trained on Mobile Operator dataset and Life Service dataset
achieve comparable performance on other datasets, which further confirm the model generaliza-
tion capability. This is because UrbanKG successfully capture the essential relationships between
users, which help generalize to user profile inference across datasets. However, models trained on
Social Network dataset perform poorly on other datasets, which might be explained by different
mobility characteristics between Social Network dataset and others, as shown in Figure 7(b)–(c).
Therefore, the proposed KG-MUP framework can generalize to datasets with similar character-
istics/distribution, while further modifications are necessary for generalization across dissimilar
datasets, which can be a further work.

4.7 Interpretability Study

4.7.1 User Profile & Visiting Pattern. To further investigate the capability of KG-based module
to capture the semantics of user trajectories, we analyze the visiting preference of users with dif-
ferent profiles based on their embeddings in UrbanKG. Specifically, we calculate the average user
embeddings in UrbanKG with the same category of profile, and then select the top-5 regions based
on cosine similarity between region embeddings and user embeddings. After that, we calculate the
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Fig. 13. The distribution of POI categories in the top-5 regions related to user profiles. Service represents life

services.

POI category distribution in the top-5 regions, and visualize the results on Mobile Operator dataset
in Figure 13. Note that the cosine similarity of embeddings measures the correlation between en-
tities in UrbanKG, and POI category distribution reflects the function of a region. Therefore, the
values in heatmap actually depict users’ visiting preferences.

For users with different income levels, it can be observed from Figure 13(a) that users with
higher income levels are more likely to visit places related to business and shopping. Besides, users
with lower income levels are more closely related to POIs in residence and life service categories,
suggesting that they tend to stay at home and travel less, which is also consistent with our findings
in Figure 1(b). Furthermore, we can observe from Figure 13(b) that old people are likely to visit POIs
in residence and life service categories, and their relationships with business are much weaker than
younger ones. This is because many old people have retired and mostly stay at home. In addition,
there is a strong correlation between users aging from 40 to 60 and POIs in shopping category,
which results from the shopping inclination of most females in the middle age [72]. The findings
above are all reasonable with commonsense knowledge, which further demonstrates that the learnt
KG embeddings can successfully capture semantics in user mobility trajectories, and provide an
understanding of the influence of user profiles to their daily activities in urban environment.

4.7.2 UrbanKG Embedding Visualization. To further examine the capability of our learnt
embeddings for mobile user profiling, we use t-SNE [50] to visualize the embeddings of different
types of entities on three real-world datasets, as shown in Figure 14. Specifically, we randomly
sample 1000 POIs and preserve all entities of other types. It can be obviously observed that
there are several clusters in space and entities with the same type mostly cluster together, which
demonstrates the learning capability of our proposed KG-based module.

Moreover, we visualize the learnt user embeddings from our KG-MUP framework on Mobile
Operator dataset. As shown in Figure 15, users with different profiles are plotted in different colors.
Specifically, in Figure 15(a), users aging from 30 to 40 mostly lie in the upper right part of the
figure while users over 60 distribute more in the lower left part. Similarly, as shown in Figure 15(b),
embeddings of users with low income level are spatially separated from those in high income levels,
which indicates the feasibility of KG-aided mobile user profiling, i.e., constructing UrbanKG and
leveraging knowledgeable representations for user profile inference.

4.8 Parameter Study

As described in Section 3.3, we first adopt the stay point detection algorithm to identify the stay
points in user trajectories, which includes spatial threshold and temporal threshold of d and τ ,
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Fig. 14. Visualization of different types of entities in UrbanKG.

Fig. 15. Visualization of learnt user embeddings with different profiles on Mobile Operator dataset.

Fig. 16. Effects of (a) spatial threshold, (b) temporal threshold, and (c) home-workplace threshold on Life

Service dataset across profiles.

respectively. Moreover, in user-to-environment relations extraction, we restrict the distance be-
tween user home and workplace to be larger than a threshold of 1 km. Since the whole KG-MUP
framework and experiment validation are built upon such data preprocessing, here we investigate
the influence of such threshold parameters to KG-MUP/T model on Life Service dataset across
profiles, as shown in Figure 16.

According to the curves in Figure 16(a) and (b), the profile inference performances under
different spatial thresholds and temporal thresholds are consistent, i.e., the proposed KG-MUP
framework is robust to the stay point detection processing. The choice of d = 500 meters and
τ = 10 min can achieve the best performance across different profiles. As for the home-workplace
threshold in Figure 16(c), the results show similar robustness with aforementioned results.
Specifically, on occupation inference task, the F1-score drops when we gradually relax the
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restriction, which indicates that such restriction can help identify workplace more accurately and
thus improve occupation inference performance.

5 RELATED WORKS AND DISCUSSION

In this section, we present a detailed review of related works to our study, especially from the two
aspects of mobile user profiling as well as KG embedding and application.

5.1 Mobile User Profiling

As described before, user profiling aims to infer the user profile from user-generated data, and our
study focuses on mobile user profiling, by applying mobile behavioral data for the task. Especially,
previous studies on mobile user profiling can be categorized into explicit modeling with feature
engineering [3, 14, 24, 25, 28, 29, 62, 67, 68] and implicit modeling with representation learning
[46, 46, 54, 57, 58, 63].

The explicit modeling studies manually define features or rules to characterize mobility char-
acteristics, which are then fed into classifiers for profile inference. For example, a representative
work [62] defines spatiotemporal features from user trajectories and semantic features from geo-
graphical context to infer user profiles like gender and age, while another work [3] extracts the
significant stay points in user trajectories with their semantic descriptions to infer personal infor-
mation such as religious beliefs and political opinions [3]. Moreover, some studies [14, 28] extract
features with geographical and social influence considered to infer user’s home location. People’s
health conditions can also be inferred with several mobility features extracted from trajectories,
as investigated in [29, 67, 68]. In addition, other types of mobile behavioral data like vehicle mo-
bility data [25] and travel data [24] are also explored to infer social relationships as well as basic
attributes.

In comparison, the implicit modeling studies leverage various neural networks and tensor de-
composition techniques to learn latent representations for users, which can be applied for profile
inference. In early studies [59, 73], user trajectories are represented in a three-order tensor to in-
dicate users, spatial points and temporal points, where various tensor decomposition techniques
are utilized to obtain user latent representations. Furthermore, the Word2vec algorithm as well
as recurrent neural network are applied for trajectory encoding and user representation learning
[45, 46]. Recently, several studies leverage advanced learning frameworks for mobile user profiling,
such as adversarial training [57], reinforcement learning [58], imitation learning [54], and graph
embedding [63]. Specifically, StructRL [57] constructs activity graphs to represent user behaviors,
on which a deep adversarial substructured learning framework is developed for user representa-
tions. IMUP [58] formulates the mobile user profiling problem into a reinforcement learning task
where users are modeled as agents and spatial entities like POIs and commercial areas are inte-
grated as a spatial KG, then updates user representations in an incremental learning way. RIRL [54]
proposes an imitation-based framework with reinforcement learning, where the agent is trained
to imitate users’ mobile behaviors in order to achieve optimal mobile user profiling. Moreover, the
state-of-the-art model SUME [63] constructs three types of graphs from user trajectories to cap-
ture user-user, user-location and location-location interactions, and further proposes a semantic-
enhance embedding algorithm to learn user representations. In addition, there are some recent
studies of applying deep neural networks for trajectory representations [10, 11], which can be
further extended to mobile user profiling.

While many efforts have been made for mobile user profiling, existing studies above still fol-
low the data-driven paradigm, which suffers from the robustness issue. For the explicit modeling
studies, the effectiveness of the feature engineering highly depends on the researchers’ manually
defined features, which is labor-intensive and time-consuming [33]. Moreover, the importance of
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features significantly varies on different user profiles, and important information like semantic
connectivity in mobile behavioral data is missed, leading to inferior performance [58]. As for the
implicit modeling studies, neural network based models with tremendous parameters usually over-
fit the training data and thus generalize poorly across datasets and user profiles [57]. Besides, deep
neural networks are often limited by the black box problem, and thus seem unreliable in practical
mobile user profiling applications. In contrast, our study introduces KG aided framework, which
mitigates the robustness issue, providing both effective and interpretable performance.

5.2 Knowledge Graph Embedding and Application

The KG is usually stored in symbolic triplets, which are hard to manipulate for specific applications.
Thus, KG embedding is proposed to represent entities and relations therein into low-dimensional
vector spaces, i.e., embeddings, with inherent semantics preserved [17, 18, 60]. Existing studies
on KG embedding are categorized into three types of translation distance models [4, 61], tensor
decomposition models [2, 21, 49], and neural network models [43, 51, 65, 69, 75]. The translation
distance models such as TransE [4] and TransH [61] translate entity embeddings into relation-
specific space via various operations like addition and hyperplane, and measure the correspond-
ing triplet plausibility for embedding learning. The tensor decomposition models formulate the
KG embedding problem into a tensor decomposition task, with typical Canonical Polyadic (CP)
decomposition and Tucker decomposition utilized. For example, ComplEx [49] and SimplE [21]
extend CP decomposition for KG embedding with complex-valued embeddings and inverse rela-
tion embeddings, respectively, while TuckER [2] extends Tucker decomposition for KG embedding
with entity and relation embeddings as factor matrices therein, which achieves competitive perfor-
mance across benchmarks. Moreover, several studies leverage neural networks especially graph
neural networks to capture the structural information for KG embedding. Especially, R-GCN [43]
proposes relational graph convolutional networks to the multi-relational structure of KG, while
both CompGCN [51] and KE-GCN [65] design relation-specific message passing mechanisms for
both semantic and structural information encoding. Besides, a recent study NBFNet [75] gener-
alizes Bellman-Ford algorithm to graph neural networks for KG embedding. Since our proposed
KG-MUP framework is generally based on UrbanKG, various KG embedding models above can be
flexibly applied for knowledgeable representations, and we choose two representative models of
TuckER [2] and R-GCN [43] for effective and efficient performance.

Owing to powerful KG embedding techniques as well as semantic knowledge therein, KG
has been widely applied in various downstream applications, including recommender system
[15, 30, 56], mobility prediction [55], flow prediction [31, 76], traffic prediction [47] and site se-
lection [33]. Specifically, KGNN-LS [56] investigates the utility of item KG for graph neural net-
work based recommendation, while UKGC [30] and KnowSite [33] construct an urban KG for
location recommendation and site selection, respectively. Furthermore, several studies extract the
movement knowledge from mobile behavioral data for spatio-temporal applications. For example,
STKG [55] constructs a spatio-temporal KG and extends ComplEx [49] to predict user trajectory
with the KG. Both KGPMF [76] and RFP-KMN [31] transform flow transitions into relations of KG,
which are further utilized to predict unobserved flow patterns. Besides, a recent study [47] bene-
fits from the interpretability of KG to understanding urban traffic like road congestion and traffic
relationship discovery. Hence, these studies motivate our study to firstly introduce the UrbanKG
as well as the knowledge-driven paradigm for mobile user profiling.

6 CONCLUSION AND FUTURE WORK

In this article, we propose KG-MUP, a KG aided framework for mobile user profiling problem.
To capture the semantic knowledge in mobile user behaviors, we identify the essential entities
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and complex relationships with UrbanKG constructed, and further develop KG embedding models
for knowledgeable user representations in a knowledge-driven paradigm. Moreover, we introduce
representative features to quantify mobility characteristics for individual mobility behaviors. Fur-
thermore, both knowledgeable representations and quantified features are cohesively fused for
user profile inference. Extensive experiments demonstrate that KG-MUP outperforms the state-of-
the-art baselines with both effectiveness and interpretability achieved.

As for future work, one promising direction is to embed quantified features into UrbanKG con-
struction so as to solve the mobile user profiling problem directly built upon the KG. We further
consider to distil more semantic knowledge from multi-source user-generated data for more gen-
eralized UrbanKG construction and corresponding downstream applications.
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