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With the rapid development of location acquisition technologies, massive mobile trajectories have been
collected and made available to us, which support a fantastic way of understanding and modeling individuals’
mobility. However, existing data-driven methods either fail to capture the long-range dependency or suffer
from a high computational cost. To overcome these issues, we propose a knowledge-driven framework for
mobility prediction, which leverages knowledge graphs (KG) to formulate the mobility prediction task into
the KG completion problem through integrating the structured “knowledge” from the mobility data. However,
most related mobility prediction works only focus on the structured information encoded in existing triples,
which ignores the rich semantic information of relation paths composed of multiple relation triples. In this
article, we apply a dedicated module to extract the supplementary semantic structure of paths in KG, which
contributes to the interpretability and accuracy of our model. Specifically, the extracted rules are applied
to capture the dependencies between relational facts. Moreover, by incorporating user information in the
entity-relation space with the corresponding hyperplane, our method could capture diverse user mobility
patterns and model the personal characteristics of users to improve the accuracy of mobility prediction.
Extensive evaluations illustrate that our proposed model beats state-of-the-art mobility prediction algorithms,
which verifies the superiority of utilizing logical rules and user hyperplanes. Our implementation code is
available at https://github.com/tsinghua-fib-lab/RulekG-MobiPre.git
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1 Introduction

Rapidly evolving mobile localization technology has enabled us to access enormous spatio-temporal
user mobility data, which helps us better analyze and model people’s mobility [30, 36, 43]. Currently,
most existing approaches adopt data-driven methods to predict users’ future movement. As shown
in Figure 1(a), these methods utilize powerful machine learning models to implement future mobility
prediction based on information propagated along empirical physical paths, e.g., along the historical
trajectories [14], or directly from all historical mobility records in a fully connected manner [7].
However, these methods either fail to capture the long-range dependency of trajectories [14] or
suffer from a large computational cost [7], whose reason is that the utilized information propagation
paths in these data-driven methods are either ineffective or inefficient.

Meanwhile, the emerging techniques of knowledge graphs (KG) offer a promising approach for
extracting structured “knowledge” from the massive spatio-temporal mobility data [16]. A variety
of applications based on KG methods, including user profiling and recommendation systems, have
achieved considerable success [18, 27, 33, 36]. Thus, one intriguing research question is whether
we can solve the mobility prediction problem in the knowledge-driven paradigm. As shown in
Figure 1(b), based on KG, we are able to describe the mobility behavior of users in the form of
relational facts in the KG and utilize powerful knowledge graph embedding (KGE) techniques
to extract features from massive trajectory data. Then, logical rules between relational facts can be
further extracted to serve as the information propagation paths. For example, just as the second
rule example, assuming that one user visited location p; at time #; and location p, at time #,, there
must be a potential transfer relationship between these two locations. By injecting this logical rule
into our constructed knowledge graph, we can predict future user mobility behavior accurately,
e.g., ps in Figure 1(b). In this way, the structured “knowledge” in terms of KGEs and logic paths
can predict future user mobility behavior by examining the plausibility of potential facts, which
exhibits a promising way to achieve effective and efficient mobility prediction.

However, utilizing KG to model the spatio-temporal mobility behavior of users is also difficult
due to a number of key challenges. First, there exists significant diversity between the mobility
patterns of different users. For example, the home place of one user might be the workplace of
another user, leading to their different mobility patterns across these two places. How to model
the diverse spatio-temporal mobility patterns of different users in a uniform manner based on
KG techniques is the first challenge. Second, the mobility patterns of users can be represented by
multiple types of relational facts describing the different aspects of interactions between the location
and time. For example, the fact of visiting some location at some time characterizes the interaction
between location entities and time entities, while the fact of moving from one location to another
location characterizes the interactions between different locations. Overall, both these complicated
relational facts and the dependency between them reflect important aspects of human mobility,
while the latter can be well captured via logical rules, which describe the logical relationship
between relations in KG. How to extract and utilize useful underlying logical rules to model these
multiple types of relational facts is another challenge.

In this article, we focus on utilizing the knowledge graph technique to model the spatio-temporal
mobility behavior of users. Specifically, the spatio-temporal mobility patterns of users are modeled
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Fig. 1. lllustration of data-driven paradigm and knowledge-driven paradigm for mobility prediction.

by the facts belonging to elaborately designed relation types reflecting different aspects of human
mobility. Further, in order to characterize the diversity of mobility patterns across different users,
we introduce the concept of “user hyperplane.” The plausibility of fact is evaluated based on the
projected embedding vectors of entities on different “user hyperplane,” which has a strong ability
to characterize their difference. What’s more, in order to collaboratively learn different types of
relational facts, we utilize the structure of logical rules and paths, which capture interpretable
relationships and dependencies between differential relational facts. Through dedicated design on
the logical rules extraction, more efficient logical rules are captured to characterize users’ complex
mobility patterns. Besides, by using the logical rules to regularize the embedding vector of a fact
and the path that can derive the fact based on the logic rules, different types of relational facts can
be modeled in a cohesive manner by extracting the rich semantic structure between them.
In summary, our article makes the following contributions:

—We adopt a novel framework to model the user’s spatio-temporal mobility patterns as multi-
type relational facts in the knowledge graph. Specifically, the mobility patterns are charac-
terized by the relation between temporal entities and location entities under different “user
hyperplanes” Then, the mobility prediction task is solved by estimating the plausibility of the
corresponding facts.

—We apply a dedicated logical rule extraction method to capture the valid logical rules, after
that, creatively inject these rules and corresponding paths into the knowledge graph to
collaboratively learn different types of relational facts in a cohesive manner, which is able to
extract the rich semantic structure between them and better characterize the different aspects
of mobility patterns.

—Extensive evaluations show that our proposed model beats state-of-the-art mobility prediction
algorithms. Specifically, the mean reciprocal rank (MRR) is relatively improved by 7.78%
on average. What’s more, logical rules have been verified to be beneficial, i.e., the MRR is
relatively improved by 6.31% on average by introducing logical rules, demonstrating the
effectiveness of our proposed model.

The structure of this article is as follows. We begin by briefly reviewing the related works
systematically and underlining the difference of our work. Further, we introduce a mathematical
model and formulate the problem. We then present details of our methodology and propose

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 215. Publication date: October 2024.



215:4 Q. Yu et al.

the mobility prediction. Following our methodology, we evaluate and validate the prediction
performance of our proposed approach. Finally, we conclude with a summary and possible future
work.

2 Related Work
2.1 Mobility Prediction

In the past decade, mobility prediction has been widely investigated in spatio-temporal data mining
[34], which aims to predict users’ future mobility based on historical trajectories. Especially, the early
methods focus on Markov model and its variations, representing locations as states while leveraging
the transition matrix for prediction. For example, based on the clustered historical trajectories,
hidden Markov models (HMM:s) are firstly utilized to predict the user’s next location [21]. Further,
GMove [42] characterizes group-level mobility regularity via the ensemble of HMMs. Besides, Multi-
Chain [32] builds several interconnected Markov chains to model various mobility patterns for
prediction. On the other hand, several recent works explore deep learning for mobility prediction.
Long- and Short-Term Preference Modeling [26] focuses on the temporal and spatial correlations
between historical and current trajectories, and modifies RNN for robust prediction. DeepMove [7]
combines recurrent neural network (RNN) and attention mechanism for interpretable mobility
prediction. Following the similar design, Deep]JMT [3] further performs joint mobility and time
prediction. GETNext [40] incorporates users’ preference, spatio-temporal context, and other relevant
features together into a transformer model to better capture the mobility characteristics. SSDL
[8] introduces a novel disentangled representation learning architecture to understand human
time-independent and time-dependent mobility patterns. GaGASAN [35] utilizes a multi-scale time
encoding technique and a self-attention mechanism to model different temporal patterns and capture
long and short range contexts of sequence transitions, respectively. However, most existing mobility
prediction models focus on sequence modeling, while ignore the semantic relationships among
locations, time points as well as user behaviors, which is exactly what our proposed model achieves.

2.2 Knowledge Graph

Due to the limited observations, KG is incomplete and thus needs to be completed, which motivates
several important related works [23]. For instance, TransE [1] completes missing links by measuring
the distance between head and tail entities via relation translation. DistMult [37] and ComplEx
[28] extend Canonical Polyadic decomposition for completion with symmetric and complex-valued
embedding adopted, respectively. Recently, more works have begun to develop dynamic knowl-
edge graph models instead of static KG. HyTE [5] achieves the temporal KG completion through
projecting entities and relations to the timestamp space. DE-SimplE [9] put forward diachronic
entity embeddings to characterize the features timely with high expressive ability. TNTComplEx
extends ComplEx to temporal KG, and achieves the state-of-the-art performance. Such works
above only focus on the direct link in KG, while recent works further consider the logic rule in
KG. Specifically, PTransE [13] extracts rule-based relation paths, which are combined with TransE
to infer missing links between entities. RJPE [22] uses Horn rules to associate relations at the
semantic level, and provides an interpretable KG completion framework. Moreover, both Neural LP
[39] and DRUM [24] combine first-order logic with RNN to learn logic rules in KG for completion.
Hence, such methods motivate our rule-enhanced KG for mobility prediction. Besides, there is also
some research applying KG for user behavior modeling. For example, KGPMF [44] learns an urban
movement KG via a multi-view learning framework. IMUP [33] constructs a spatial KG for mobile
user profiling in a reinforcement learning framework, while KG-MUP [18] combines both KG and
feature engineering for mobile user profiling. However, such constructed KG largely ignores the
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temporal information, thus not applicable in our scenario. Other approaches incorporate temporal
information in user behavior modeling. Specifically, STKG [31] constructs a spatio-temporal urban
KG for user mobility prediction. STKGRec [2] builds a spatial-temporal KG from check-in sequences
to implement the next point-of-interest (POI) recommendation. Although temporal information
is considered in these approaches, they describe user behavior based on only a single type of
relations, and thus are limited in describing the multiple aspects of user behavior. Different from
them, we utilize multiple types of relations to describe the different aspects of user behavior, and
further extract logical rules between relations to model their dependency.

3 System Overview
3.1 Knowledge Graph

The knowledge graph is a directed graph structure defined on the nodes of entities. The edges
connecting different entities correspond to the relational facts, of which the types are defined to the
relations. Specifically, each relational fact in the knowledge graph is represented by a three-tuple
(ep, 7, ;) consisting of the head entity ey, tail entity e;, and relation r. The set of possible entities
and relation types are organized to be the schema of the knowledge graph. Due to the strong
ability of the knowledge graph model in terms of extracting structured knowledge from data and
modeling multiple types of relations in a uniform manner, it has shown great success in numerous
applications including language understanding and recommendation systems [15, 27]. In this article,
we aim to model the human mobility behavior based on the knowledge graph model.

3.2 System Overview

We show the workflow of our proposed system in Figure 2. As we can observe, our system first
defines the mobility-based schema to point out the formats and types of entities and relations,
which is then used to extract the corresponding relational facts in the constructed knowledge graph
owing to the characteristics of multivariate relational facts in the spatio-temporal mobility data, we
propose a KGE model based on the concept of user hyperplane. Besides, we extract and inject the
logical rules into the knowledge graph to learn semantic information between paths and relations,
which helps to capture efficient high-order information and diverse user. Finally, according to the
learned embeddings of entities and relations in our knowledge graph, the obtained embedding
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model is used to predict user future movement by evaluating the plausibility of the corresponding
relational facts.

4 Knowledge Graph Construction

In order to characterize the spatio-temporal mobility behavior based on the knowledge graph
model, we must first design the mobility-based schema to define the entities and relations in the
knowledge graph explicitly. Specifically, four different types of entities are considered, including
the spatial venues, the regions, the categories, and the time units. The spatial venues represent the
specific Pol, and we denote the set of spatial venues as £. Moreover, the regions and categories
denote the pre-divided areas and pre-defined Pol categories, respectively, which are denoted as R
and C. As for the time units, following the extensively used timestamp preprocessing mechanism
used in existing methods [36, 44], we divide one day into half-hour time intervals, and we further
distinguish time bins belonging to working day and non-working day, i.e., totally 96 time units. We
further represent the set of time units as 7. In addition, we define the set of all entities as &. Then,
between these entities, we define six different types of relations, including the spatio-temporal
visitation relation, spatial transition relation, temporal closeness relation, spatial affiliation relation,
spatial category relation, and similar visitation relation, to characterize the mobility behavior of
users in the form of relational facts. The definitions of these relations are introduced in detail in
the following.

The spatio-temporal visitation relation is defined to describe the visiting behavior to different
locations at different times, which characterizes the interaction between locations and time units,
where the locations can be Pols, regions, or categories. Specifically, it can be formally defined
as follows.

Definition 1 (Spatio-Temporal Visitation Relation). The spatio-temporal visitation relation ry
exists between the location [ and time ¢ if and only if a user visits the location [ at time ¢, of which
the corresponding fact is represented by a three-tuple (¢, ry, ).

The spatial transition relation is defined to describe the transiting behavior of users between
different locations, which characterizes the interaction between locations. Specifically, it can be
formally defined as follows.

Definition 2 (Spatial Transition Relation). The spatial transition rr exists between two different
location /; and I, if and only if a user moves from the location /; and I, within a predefined temporal
threshold Tpnax, of which the corresponding fact is represented by a three-tuple (I, rr, I2).

In addition, we also define the temporal closeness relation to characterize the fine-grained
structure between different time units. For example, two close time units should have similar
embedding vectors. What’s more, the temporal closeness relation can be used as a bridge to build
path structure based on which the rich semantic information can be transmitted and extracted. The
details will be introduced in the methodology section. Overall, the temporal closeness relation is
formally defined as follows.

Definition 3 (Temporal Closeness Relation). The temporal closeness relation ry (At) exists between
two time units t; and t; if and only if the time gap between t; and t; is less than T4 and At = |t;—1,].
Without loss of generality, we assume t; < t,, then the corresponding relational fact is denoted by
a three-tuple (t1, ryy (2 — t1), t2).

The spatial affiliation relation is defined to describe the affiliation property to different regions
at different locations, which characterizes the interaction between spatial venues and regions.
Specifically, it can be formally defined as follows.
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Definition 4 (Spatial Affiliation Relation). The spatial affiliation relation r, exists between the
location /; and the region r; if and only if an arbitrary location [; is located at the region ry, of
which the corresponding fact is represented by a three-tuple (I3, r, r1).

The spatial category relation is defined as describing the category property to different categories
at different locations, which characterizes the interaction between spatial venues and categories.
Specifically, it can be formally defined as follows.

Definition 5 (Spatial Category Relation). The spatial category relation rc exists between the
location [; and the category c; if and only if the category of an arbitrary location I; is the category
c1, of which the corresponding fact is represented by a three-tuple (I3, r¢, ¢1).

The similar visitation relation is defined to describe the similar visitation property for two users
who visit the same Pols or have a higher cosine similarity of Pol category sequence, if and only if
one user owns much historical data and the other user has scarce data. Generally speaking, two
users sharing the same Pol visitation record or similar Pol category distribution should have similar
mobility characteristics. Additionally, the defined relationship plays a significant role in assisting
in embedding learning of users with scarce data. Overall, it can be formally defined as follows.

Definition 6 (Similar Visitation Relation). The similar visitation relation rs exists between the
user u; and the other u, if and only if the user u; and user u, have visited more than T identical
Pols or the cosine similarity of the visited Pol category sequence is greater than 6 and the number
of one user’ records is less than N, of which the corresponding fact is represented by a three-tuple
(u1,rs, ua).

Based on the above-defined relations, we can extract relational facts from the observed spatio-
temporal user mobility data. Further, users’ future movements can also be represented by unobserved
relational facts. Then, predicting users’ future mobility can be converted to evaluating the plausibility
of possible relational facts.

5 Methodology
5.1 Embedding Model Based on User Hyperplane

In order to predict the plausibility of unobserved relational facts, we follow the common practices
of knowledge graph completion methods and utilize an embedding model to map each entity or
relation type into a low-dimensional vector. Then, a scoring function of relational facts is defined
based on the embedding vectors of entities and relations to measure the plausibility of relational
facts. By training the embedding model on the observed facts, the scoring function is able to
evaluate the plausibility of arbitrary unobserved relational facts.

Further, in order to characterize the diverse mobility patterns of different users in the framework
of the knowledge graph, we model different users as different hyperplanes [5]. Then, the knowledge
subgraph composed of relational facts belonging to each user is projected to the hyperplane to
learn the personalized mobility patterns of the corresponding user.

For an arbitrary relational fact (e, r, e;) belonging to the subgraph of user u, its plausibility is
also evaluated on the hyperplane of user u. Specifically, we denote their embedding vectors as
en, e;, and r, respectively, and the subgraph of user u is denoted by G*. The user hyperplane is
modeled by the normal vector denoted by u. Based on the above definitions, we first compute their
projected embedding vectors on the user hyperplane u as Equation (1)

e, =en—(ulen)u,
e, = e, — (uTe,)u, (1)
ri = p - (uTr)u
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Further, we adopt the complex-domain scoring function to evaluate the plausibility of relational
facts, which have been proven to have a strong ability in capturing antisymmetric relations [12,
28]. Specifically, we convert each real-valued embedding vector e, into the complex-valued vector
() - [A;lu), é;l”)] A(u) + le(”) Further, e( W

by splitting it into two equal-sized parts, i.e., e, is used

as the real component, and e(u) is used as the imaginary component to jointly form a complex

vector in calculating the scormg function. Similar operations are also implemented on the relation
r and entity e,. Then, the scoring function of each tuple (ey, r, e;) under the user hyperplane u is
computed by Equation (2)

£ (ep,r,e) = Re((é}(lu) + ze(u) A O A(u) + ze(u)))
— (é(u) ,@(u) é(u)) + <e(u),f‘(u),é§u)>
(e # ) — e 1 e), 2)

where (-) is the multi-linear dot product. For an arbitrary complex number z, Z is its complex
conjugate, and Re(z) is its real component. Furthermore, the plausibility of whether the fact
(ep, 7, €;) exists is modeled to be in proportion to its score f*) (ep,r,e;), i.e., Equation (2). The
cross-entropy loss function can evaluate the difference between the probability distribution output
by the model and the true probability distribution. The larger the difference, the more punishment.
By minimizing the gap between model predictions and labels, the prediction results are more
accurate. Thus, the cross-entropy loss function is widely used in multi-classification problems [12,
29]. Then, the embedding model is trained by using the cross entropy of the tail entity as its loss,
which can be calculated as Equation (3)

t’(”)(eh, r,e;) = —f(”)(eh, r,e;) +log Z of ™ enrep) | (3)
e,€&

Then, based on Equation (3) to calculate the relational fact loss, the total loss for all relational

facts can be expressed by:
Le=) Y, tlewren. (4)
ueU (ep,re;)eGH

5.2 Logical Rules Extraction

Learning the embedding model based on the loss function Equation (4) cannot well capture the
dependence between relational facts. For example, the combination of several relational facts is
possible to derive another relational fact, which is ignored by the optimization only based on
Equation (4). On the other hand, the dependence between relational facts can serve as the efficient
information propagation path. For example, we can infer whether the relationship exists in the KG
by integrating high-order information from other relational facts. Thus, the dependence between
relational facts should be learned to extract rich semantics and high-order information. In order to
achieve this goal, we utilize the structure of logical rules and paths [13, 22].

For example, the structure of two entities connected by a certain multi-step path can be used to
derive another relational fact between these two entities. Specifically, the multi-step paths in the
knowledge graph contain rich semantic information. Thus, by injecting logic rules in the knowledge
graph, interpretable relationships and dependencies between differential relational facts can be
captured [22].

To obtain the explainable and implicit rules from the knowledge graph, we utilize Neural LP
[39] to extract logical rules and corresponding confidence automatically, which overcomes the
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disadvantages of utilizing fixed rules in previous papers [17]. Specifically, the relation path extraction
is to retrieve a ranked list of the relational facts by maximizing the score of the query. For example,
as shown in Equation (5), suppose given the query (Iy, rr,l3), i.e., a user visits two different spatial
venues [; and [, at time units t; and t, within the temporal threshold T,,,x, we can obtain a weighted
relation path (I, r‘jl, t1) A (t1, rw, ) A (ta, 1y, 1), where r;! is the inverse relation of ry and the
weight denotes the confidence correlated with this path

|4

query(l, rr, ) — (I, ry ' 1) A (B rw, t2) A (ta, 1y, ). 5

Thus, our purpose is to obtain the rules and corresponding confidences a. Specifically, followed
the operator Mg representing each relation R in TensorLog [4], what we want to learn is shown

as follows,
Dl [ | M, (©)

1 keﬁ’l

where [ contains all possible rules, ¢; is the confidence of the rule [ and f; is an ordered list of all
relations in rule [. Then, the score candidate entity e; given an arbitrary entity e;, equals the inner
products between the logical rules and head entity embedding ey, just as Equation (7)

score(e;|ep) =e,T Z ag n Mg, en ||| (7)

1 kEﬂl

where e, and e; denote the embeddings of e, and e;, respectively. Owing to the prediction task, we
only focus on the two types of queries, i.e., relational facts including spatio-temporal visitation
relation rr and spatial transition relation ry. Thus, we can optimize the model by maximizing the
score of the query in our constructed knowledge graph, as shown in Equation (8)

T
§ = § § | | M, . 8
[nax score(e:ep) [nax € a Re€h 8)
{(en.er)} {(en.er)} ) kepi

Finally, we can recover the logical rules and confidences according to the optimized parameters
a; and f;.

5.3 Injecting Logic Rules

In order to utilize the rule structure, we first learn the representation of paths corresponding to
different rules. Different from the common path representation method adopted in [13, 22], which
only utilizes the embedding of the relations of facts along the path, we argue that the entities
along the path are also important. For example, in the second rule shown in Figure 1(b), if [
and I, are the home and workplace of a user, respectively, the spatial transition relational facts
between them occur with larger probability with certain time gaps, e.g., 8 hours. The intuition here
is that the entities #; and t, in this path play a critical role in determining the plausibility of the
corresponding facts. Thus, the entities along the paths should also be considered in calculating
the path representations. Thus, we utilize separate neural networks to extract the embedding of
paths with different lengths. By defining p as the concatenated vector of all entities and relations
along the path p except the head entity of the first fact and the tail entity of the last fact, the path
representation vector C(p) can be calculated as follows:

C(p) = MLP(p). ©)
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Algorithm 1: Training Algorithm

Input: Constructed knowledge graph G as the training set.
Output: embeddings UE, 75, LERE.
Initialize: initialise embeddings UE, 7F, LE RE.
for i€ {1,..., Nepoch } do
S—gG;
while § # 0 do
Sample a mini-batch Spupep € S
S« S/Sbatch;
L < 0;
for (ep,r,e;) € Spasch do
f(en, 1, e;) < compute the score using Equation (2);
{(ep, 7, e;) « compute the loss using Equation (3);
L — L+1t(epr,e:);
if P(ep,e;) # 0 then

for p € P(ep, e;) do

| L— L+E(p,r);

end

end
end

Update parameters of embeddings w.r.t the gradients using v.£;
end

end

Then, based on the obtained path representation, the similarity between paths and relations is
evaluated by the following energy function [22]

E(p,r) = |C™ (p) - r™]I. (10)

We further denote the set of paths that satisfy the form listed in Table 4 and link entities e, and e;
as P(ep, e;). Then, the loss function derived from the rule structure can be represented as follows

Lr= > a*E(p,r), (11)

(en.r.er)EGAPEP (ep.er)

where a represents the confidence of the corresponding relation path.
Due to the above equation of the loss regarding reconstructing the knowledge graph and modeling
the dependence between relational facts based on rules, the total loss can be presented as follows:

L=Le+ALg, (12)

where A > 0 is used to balance the loss function of reconstruction loss and logical rule loss.
Overall, we can train our model by minimizing the total loss Equation (12), and obtain the em-
bedding vectors of all entities in the knowledge graph, which will be further used in the mobility
prediction task.

We present the pseudocode describing the process of learning embedding vectors of all entities
and relations in the constructed knowledge graph in Algorithm 1. As we can observe, in each epoch,
this algorithm samples a mini-batch of facts in the training set S. For each fact in the mini-batch,
its loss is calculated based on reconstruction loss and logical rule loss. First, the proposed model
evaluates the plausibility of the existence of the relational fact and calculates the reconstruction
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Algorithm 2: Mobility Prediction Based on KG
Input: User u, the target time ¢ or the previously visited spatial venue [y and the
corresponding time #, (unknown variables with the value of 0).
Output: The mobility prediction result l € L.
if t # 0 Aly =0 then
l=arg maxf(”)(t, rv,1);
1

end

ift =0 Al # 0; then

I = argmax f@ (Iy, rr, 1);
I

end

ift # 0 A ly # 0 then

I = argmax £ (t,ry, 1) + f (I, rr, 1);
1

end

loss based on Equations (2) and (3), respectively. Then, according to the given head entity e; and
tail entity e;, judge whether its relational path set P (ey, e;) is empty. If not empty, traverse all the
paths to calculate the logical rule loss derived from the rule structure according to Equation (11).
Finally, this algorithm updates embeddings of entities and relations based on the gradient of the
total loss.

5.4 Mobility Prediction

Similarly, the pseudocode describing the process of implementing mobility prediction based on
the knowledge graph model is shown in Algorithm 2. As we can observe, given user u and the
corresponding target time t or the previously visited location [, this algorithm will implement
mobility prediction based on different types of relational facts. Specifically, if only the target time
is given, the future movement is predicted by evaluating the plausibility of the corresponding
spatio-temporal visitation relational fact. The approach is similar when only the previously visited
spatial venue is given. Differently, if both the target time and the previously visited spatial venue
are given, the mobility prediction result is given by maximizing the plausibility of the two different
relational facts simultaneously, which is derived from the total loss function Equation (12). Note
the loss in terms of the utilized rules is not calculated in the mobility prediction task, since it is
only influenced by the embedding vectors of the relations and the passing entities of the paths,
which is not the function of the tail entities of the paths. Thus, it can be ignored in Algorithm 2.

6 Experiments
6.1 Experiment Settings

6.1.1 Datasets. In our experiment, two representative real-world mobility datasets are processed
to evaluate the performance of our proposed model. The first one is a real-world mobile application
dataset collected when users request location service through their applications in Beijing. The
mobile application dataset contains users’ trajectories between 17 September and 31 October in
2016. Each record consists of the user ID, timestamp, and Pol, i.e., the user requests location service
of WeChat like search, check-in, etc. Table 1 illustrates two example mobility records of user u; and
user up, where Iy, I, I3 are different spatial venues and time is defined in like manner. We can observe
that the different users hold distinguishing granularity and length and various mobility patterns.
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Table 1. Two Simple Example Trajectories of Users

User Trajectories
user uy | (t1,h) | (t2,13) | (83,15) - -
user Uy | (t1, 1) | (t2, 1) | (t3,12) | (ta, 11) | (ts5.13)

Table 2. Statistics of Datasets Used in the Experiments

Dataset #Users | #Pols | #Regions | #categories | #Records
Beijing 1,027 | 8,168 256 14 206,551
Foursquare 1,082 | 16,945 1,611 11 46,041

The other is the public Foursquare check-in data from New York, collected from Foursquare API
from 3 April 2012, to 16 February 2013. This dataset spans almost one year and contains various
mobility patterns, collected from a previous work [38]. In Foursquare, the location information is
collected when users actively share their corresponding locations with their friends and the public,
resulting in the sparsity of the Foursquare dataset and few records for some users.

Finally, the experiments are conducted in terms of the 7:1:2 division mode. Specifically, the
recorded trajectories of each user are ranked according to the time series first, then, the first 70% of
each user’s trajectory data are trained on our proposed model, and the last 20% are leveraged to
evaluate the performance of our method, i.e., predicting the users’ future location based on their
historical trajectories.

The statistics of datasets are shown in Table 2.

6.1.2  Evaluation Protocols. Four principle evaluation metrics are introduced to assess the per-
formance on mobility prediction of our proposed model: the MRR and Accuracy@k (k = 1, 5, 10).
The mathematical formula is shown as follows

1 LY
MRR = U-N Z Z rank,;’ 13

u=1 i=1

rank,; <k, (149)

M=

U

1
A k=—2>
ceuracy@k = 59 2 4

u=1 i

I
—_

where U represents the number of users, and N denotes the length of user u’ mobile records,
rank, ; represents the rank of i;;, ground truth in the whole candidate locations of user u’ tra-
jectories. We evaluate the performance by computing the mean results of all the users in terms
of all metrics. MRR is the average reciprocal of ranks of predicting results, ranging from 0 to 1.
Specifically, achieving high MRR means the effectiveness of our proposed method. Accuracy@k
demonstrates the average probability of the ground truth appearing in the top-k candidate loca-
tions. Similarly, higher Accuracy@k can verify the superiority of the proposed method. In general,
MRR and Accuracy@k metrics are utilized widely in prediction problems like link prediction [22],
destination prediction [26], etc. Furthermore, the accurate prediction is meaningful significantly
not only for the location recommendations for business [41] and the government’s regulation on
transportation [20].

6.1.3  Baselines for Comparison. To testify the superiority of our proposed approach, we compare
it with the following two types of baselines, where the first three baselines are widely used mobility
prediction algorithms, and the others are representative knowledge graph completion models.
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Table 3. Comparison on Methodology

Models Structured “Knowledge” | Long-Range Dependency | User Diversity | Data Imbalance
APHMP X v X X
DeepMove X v 4 X
STAN X v X X
SACN 4 X v X
CompGCN v X X X
De-Distmult 4 X X X
xERTE 4 v v X
TNTComplEx v X X X
Our v v v 4

RNN-Based Models. DeepMove [7] considers the attention module into the RNN to capture well
the long-term dependencies between the future mobility and the historical trajectories. APHMP
[6] applies an attention module to capture useful information in historical mobility records and
integrates it into the RNN to model users’ mobility patterns.

Self Attention-Based Model. STAN [19] aggregates all relevant visits in human mobility records
and recalls the most plausible location candidates through weighted representations to achieve
location prediction.

GNN-Based Models. SACN [25] utilizes a weighted graph convolutional network as an encoder to
learn the graph connectivity structure, and learned weights to represent the information propagation
from neighbors. CompGCN [29] jointly embeds nodes and relations in a graph to learn embeddings
by leveraging composition operations and demonstrates superiority on the link prediction task.

KG-Based Models. TNTComplEx [12] proposes a ComplEx [28] decomposition of four-order tensor
characterizing the temporal scopes of each triple and incorporates a non-temporal component to
represent the static component, which improves accuracy greatly on the temporal knowledge graph
completion task. DE-Distmult [9] leverages a diachronic entity embedding function to characterize
the entities in the corresponding time for temporal knowledge graph completion. xERTE [11]
iteratively samples relevant edges of entities in the subgraph and applies an attention mechanism
on the sampled edges to achieve temporal knowledge graph completion.

6.1.4 Qualitative Analysis. Before conducting the experiments, we first analyze the differences
between our proposed model and the baselines from a qualitative perspective, containing complexity
and methodology.

Considering the complexity, the models of APHMP, DeepMove, and STAN all have about a
quadratic growth of the time complexity with the length of the historical trajectories due to the
quadratic computational complexity of the attention mechanism, while GNN-based models and KG-
based models do not have this issue. These models only require to iterate over each record without
the computational time influenced by the historical trajectories, indicating linear complexity with
the problem size.

As for methodology, Table 3 illustrates the ability of our proposed model and baselines in terms
of four aspects, containing Structured “Knowledge,” Long-Range Dependency, User Diversity, and
Data Imbalance. Structured “Knowledge” means incorporating “knowledge” from multiple sources
in a cohesive manner to better model user mobility behaviors. Long-range dependency and User
Diversity mean capturing the long-range dependency and user-personalized mobility patterns of
trajectories, respectively. The algorithm with a check mark in the column Data Imbalance indicates
that it can alleviate the data imbalance issue and better model users with scarce data.
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Table 4. The Extracted Top-5 Rules on Two Datasets

Beijing Foursquare
Confidence Confidence Paths Derived Relations
0974 0.561 (l],r‘;l,tl) A (tl,rW(At), tz) A\ (tz, ry, lz) (ll,rT, lz)
0.887 0.926 (tl,rV, ll) AN (ll,rL, rl) (tl,rV, r1)
0.396 0.474 (ty, rv, 1) A (L, re, c1) (ty,rv,c1)
0.087 0.278 (ll, rr, lz) A (lg, rL, rz) (l], rr, rz)
0.670 0.456 (ll, rr, lz) A (lz, re, Cz) (ll, rr, Cz)

0.8 M wj/o rules 0.g] HEE w/o rules
s top-3 I top-3
s top-5 I top-5

0.7 top-10 0.7 top-10

Performance
o
[e)]
Performance
o
[e)]

0.5 0.5
0.4- 0.4
MRR Acc@l Acc@5 Acc@l0 MRR Acc@l Acc@5 Acc@l0
Metrics Metrics
(a) Location-based prediction (b) Time-based prediction

Fig. 3. The performance with top-k rules on two scenarios in terms of four metrics.

6.1.5 Parameter Setting. In our experiments, the default embedding dimension of users, locations,
and relations are all set as 40. In these two datasets, the embedding regularization is 0.01, and the
learning rate ranges from 0.0005 to 0.01. Besides, the predefined temporal threshold T, is set as
24. In addition, we apply grid search to select the hyper-parameter A. We manually finetune the
hyper-parameter A in 0, 0.5, 1, 2 to balance the loss in terms of reconstructing the knowledge graph
and modeling the dependence between relational facts based on rules. The hyper-parameter A is
assigned as 0.5, where our proposed algorithm achieves the optimal results on validation sets.

6.2 Experiment Results

In this section, we demonstrate the extracted rules and evaluate the performance of our proposed
approach and baselines on the two datasets in terms of four metrics and two scenarios, including
the comparative experiments, ablation study, case study, etc.

6.2.1 Extracted Rules. Table 4 in Appendix demonstrates the extracted five rules in our experi-
ments, where the first and second rows present the confidences of the corresponding rules on the
two datasets, respectively. From the extracted rules, we can observe that there exist complicated
and implicit interactions between times and locations as well as locations and locations, which are
stored in the relation paths. Besides, we select the top-k (k = 0,3,5,10) rules from the extracted rules
for mobility prediction to analyze the performance variation with the number of rules. From the
evaluation results displayed in Figure 3, we can observe two interesting insights. (1) our model
based on rules acquires much semantic information from the extracted rules and achieves better
performance than without rules in terms of four metrics; (2) the extracted rules with higher confi-
dence are more efficient on mobility prediction than lower confidence. For example, our model

ACM Transactions on Knowledge Discovery from Data, Vol. 18, No. 9, Article 215. Publication date: October 2024.



Mobility Prediction via Rule-enhanced Knowledge Graph 215:15

Table 5. Performance on the Beijing Dataset

Location-based Prediction Time-based Prediction
Accuracy@k Accuracy@k
k=1 k=5 | k=10 MRR k=1 k=5 | k=10 MRR

APHMP 47.20% | 67.69% | 70.48% | 56.45% - - - -
RNN-based DeepMove 16.33% | 68.38% | 70.80% | 56.48% - - - -
Self attention-based | STAN 48.33% | 68.67% | 72.24% | 58.21% - - - -
GNN-based SACN 49.91% 71.2% 74.9% 59.38% 48.40% | 70.20% | 74.47% | 58.30%

CompGCN 51.73% | 68.86% | 72.61% | 59.44% 49.65% | 67.63% 71.0% 57.56%

De-Distmult 48.4% 69.18% | 71.74% | 57.69% 48.71% | 69.01% | 71.16% | 58.47%
KG-based xERTE 49.79% | 70.66% | 72.78% | 59.14% 50.19% | 71.63% | 73.88% | 59.78%

TNTComplEx || 49.86% | 73.67% | 76.53% | 60.15% 49.93% | 72.22% | 74.89% | 59.87%

Our 52.15% | 77.32% | 80.96% | 63.09% || 51.41% | 77.24% | 79.41% | 62.87%

Bold denotes best (highest) results, and italic indicates different metrics.

with top-5 rules obtains better performance than with top-10 rules. The reason may be that the
lower-confidence rules have side effects on embedding learning and then influence prediction
performance. Thus, the following experiments are all conducted on the situation using top-5 rules
to evaluate the performance of mobility prediction.

6.2.2 Overall Performance. Considering different prediction methods, the Location-based pre-
diction represents predicting users’ future location given a previously visited location, and the
Time-based prediction means predicting users’ location at the given time. From the compara-
tive results in Table 5, we can draw several significant conclusions. First, compared with the
RNN-based model, the KG embedding models most achieve better performance on the Beijing
dataset. Compared with the RNN-based and Self attention-based baselines, our proposed method
obtains an improvement of 6.11% and 4.38% in terms of MRR on the Location-based prediction. This
demonstrates that KG embedding models could better learn user embeddings, time, and locations
by integrating the structured “knowledge” to achieve better mobility prediction. In addition, our
proposed model consistently outperforms other KG embedding models in terms of all metrics. In
particular, our model achieves a 4.9% performance gain on the Location-based Prediction compared
with De-Distmult. It demonstrates that the relation paths indeed supply an excellent supplement for
representation learning and capture the rich semantic information of mobile trajectories. Besides,
owing to the restrictions on the symmetric relations of Distmult [37], TNTComplEx achieves
better performance than De-Distmult, which demonstrates the effectiveness of the complex vectors.
GNN-based models apply GCNs as the encoder to characterize the graph structure and KGE models
to capture the interactions between entities and relations. CompGCN jointly generates expressive
entity and relation embeddings, contributing to capturing the interactions between entities and
relations and achieving higher accuracy than SACN, but still less effective than our model, which
verifies the superiority of simultaneously capturing the semantic information of paths and entities
and relations properties of our proposed model. Generally, the results illustrate that our proposed
model outperforms all the baselines in terms of all metrics, which verifies the superiority of the
KGE methods. Besides, the results also illustrate the rules indeed extract rich semantic information
from the paths and construct the semantic association between relations, assisting learning relation
embeddings and achieving better performance.

Furthermore, we implement the experiments on the Foursquare dataset, where the mobility
records are sparser. As shown in Table 6, the superiority of KG embedding is not apparent compared
with the Beijing dataset. The reason may be that RNN-based and Self attention-based models capture
users’ mobility patterns more effectively on the long-term user behavior modeling problem. Even so,
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Table 6. Performance on the Foursquare Dataset

Location-based Prediction Time-based Prediction
Accuracy@k Accuracy@k
k=1 [ k=5 [k=10] "BR |F=1 ] k=5 [ k=10 "R

APHMP 6.11% 13.14% | 16.21% 9.49% - - - -
RNN-based DeepMove 8.36% 14.99% | 16.76% | 11.28% - : : -
Self attention-based | STAN 7.89% 15.65% | 19.83% | 12.72% - - - -
GNN-based SACN 8.13%16.84% | 19.59% | 12.22% 9.52% 22.48% | 26.85% | 15.39%

CompGCN 8.66% 14.15% | 16.71% | 11.45% 11.57% | 17.72% | 19.45% | 14.43%

De-Distmult 8.83% 15.0% 16.81% | 11.29% 9.35% 17.11% | 22.61% | 14.07%
KG-based XERTE 8.18% 18.62% | 20.88% | 12.76% 10.94% | 19.67% | 22.85% | 15.28%

TNTComplEx 8.31% 17.97% | 21.69% | 12.85% 12.76% | 19.81% | 22.73% | 16.23%

Our 9.43% 21.43% | 25.12% | 15.09% || 13.87% | 25.28% | 29.37% | 19.24%

Bold denotes best (highest) results, and italic indicates different metrics.

Table 7. Prediction Performance of Ablation Study

Models Location-based Prediction Time-based Prediction
Accuracy@k Accuracy@k
k=1 k=5 k=10 MRR k=1 k=5 k=10 MRR
Our 52.15% | 77.32% | 80.96% | 63.09% || 51.41% | 77.24% | 79.41% | 62.87%
-User hyperplane || 49.17% | 68.46% | 71.55% | 57.89% 48.32% | 66.35% | 68.72% | 56.57%
-MLP 50.65% | 75.67% | 78.49% | 61.67% 50.34% 75.5% 78.33% | 61.36%
-Rule 49.49% 72.8% 74.76% | 58.80% 48.42% | 70.73% | 73.56% | 58.50%

Bold denotes best (highest) results, and italic indicates different metrics. MLP, multilayer perceptron.

our model achieves 4.07% and 4.03% performance gain in terms of Accuracy@5 and Accuracy@10
compared with STAN. Generally, as can be expected, our proposed method could learn better
embeddings and achieve more accurate prediction than baselines without the limitation of the
dataset’s characteristics, which further demonstrates the effectiveness of employing rules for
integrating paths to solve the mobility prediction problem.

6.2.3 Ablation Study. To verify the effectiveness of different components of our proposed model,
we implement the ablation study on the Beijing dataset. Specifically, -User hyperplane means
removing the module of the user hyperplane, i.e., without user information. In the experiment,
we define p as the concatenated vector of all the entities and relations along the path p to obtain
the path representation vector except the head entity and tail entity of two sides. -Multilayer
Perceptron (MLP) means characterizing the path representation with only the relations along
the path p, abandoning the middle entities within the path. Finally, -Rule means removing the
extracted rules and corresponding relation paths and modeling the defined relationships without
injecting logical rules.

As shown in Table 7, we can observe that removing the user hyperplane will lead to significant
performance degradation with 4.7% and 5.78% in terms of MRR on the Location-based Prediction
and Time-based Prediction. The user hyperplane module is proposed to characterize the diverse
mobility patterns of different users. From the results, we can conclude that our proposed method
captures the characteristics of personalized mobility patterns and consistently achieves better
performance in terms of four metrics by constructing the subgraph of the corresponding user.

Furthermore, the performance variation of the model discarding the MLP operator demonstrates
the entities of the middle facts in the path contain important semantic information of mobility
behaviors. Last, we attempt to delete the extracted rules and corresponding relation paths to
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Fig. 4. Performance variation with or without similar visitation relation defined on the Beijing dataset in
terms of four metrics.

evaluate the performance. As we can find, our proposed model obtains an improvement of 3.79%
and 3.85% in terms of MRR on Location-based Prediction and Time-based Prediction, respectively,
compared to the models without rules. This demonstrates that employing rules for extracting more
semantic information and integrating paths facilitates relation embeddings and mobility prediction.

6.2.4 Imbalance Study. Considering the situation that some users have abundant data in the
mobile records, while some have scarce records, directly training the embedding model easily
leads to the data imbalance issue. Our proposed model defines the similar visitation relation in the
constructed knowledge graph to alleviate the above problem. To verify the efficiency of our model,
we filter the users whose records are less than 30 and observe the model performance variation with
or without the similar visitation relation. Figure 4 shows the comparison results of the prediction
performance in terms of four evaluation metrics, where w/ sim denotes to include the similar
visitation relation when constructing the knowledge graph, and w/o sim means not to include. It
can be seen that after including this relation, users with scarce data have obvious performance
gains in the four metrics, and achieve 2.03% and 3.07% in terms of Acc@5 and Acc@10, respectively.
This experiment demonstrates that our model indeed captures the dependencies between users
efficiently and assists the embedding learning of users with scarce data. Further, it also verifies
that our model has indeed alleviated the problem of data imbalance to a certain extent by utilizing
the similar visitation relation to capture the dependencies between users with similar visitation
properties.

6.3 Case Study

To explore and analyze the performance variation of different users and Pols, we utilize two rules
to select parts of the mobility records and conduct case study experiments. Specifically, the users
are clustered into different groups by record number and the radius of gyration [10]. Besides, each
user constructs their own knowledge graph independently from one another to demonstrate the
capability of capturing user mobility characteristics; similarly, the Pols are divided by Pol visit
frequency and At between the adjacent mobility records. The number of records indicates the
length of the corresponding user’s mobility records. Specifically, a larger number of records means
a denser trajectory during the same period, reflecting the sparsity level of the user’s mobility on the
temporal dimension. The radius of gyration reflects the spatial range of user mobility, representing
the entropy of locations in the spatial dimension. For the group of Pols, Pol visit frequency denotes
the visit frequency of certain Pol, representing the visitation popularity of users, while the At
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Fig. 5. Performance varies with the number of mobility records/radius of gyration (rg)/Pol visit frequency/At
on the Beijing dataset in terms of four metrics.

records the time intervals between adjacent mobility records, characterizing the temporal closeness
level. The units of At and the radius of gyration are hours and kilometers, respectively.

From the evaluation performance in terms of four metrics in Figure 5, we can observe that our
model achieves better performance as the number of records and Pol visit frequency increase.
Conversely, the prediction accuracy decreases gradually as the radius of gyration and At increase.
Specifically, from Figure 5(a) and (c), we can infer that entity and relations in the constructed knowl-
edge graph with denser trajectories and higher Pol visit frequency can learn better embeddings
and more mobility characteristics, which helps to achieve higher mobility prediction accuracy and
also verifies the necessity of defining the similar mobility relation introduced before. Figure 5(b)
demonstrates that the expansion of the spatial range of mobility brings more noises and bigger
entropy, which influences the performance of mobility prediction, that is, the user tending to visit
distant spatial venues has a bigger radius of gyration, making their mobility hard to predict. From
Figure 5(d), we can draw the conclusion that the performance variation of At reflects that the
spatial transition relation does not work with longer intervals between mobility records. Overall,
the current mobility is mostly not affected by long-ago trajectories, but only related to the needs
of the corresponding time, which is also consistent with two patterns about mobility prediction.
Generally speaking, the experiments analyze the prediction performance through clustering the
mobility records based on users and Pols, which is the basis of model design.
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7 Conclusions and Future Work

In this article, we focus on modeling human mobility behavior based on the knowledge graph
technique. By proposing six different types of relations characterizing various aspects of human
mobility in terms of temporal and spatial dimensions, we further propose an embedding model
based on user hyperplane to model the diversity of mobility patterns of different users. Additionally,
the logic rules are injected into the knowledge graph to model the semantic information between
multi-step paths and relations. Then, the obtained embedding vectors of entities and relations
are used to predict users’ future movement by evaluating the plausibility of corresponding facts.
Extensive experimental results show that our proposed model beats the state-of-the-art mobility
prediction algorithm by improving the prediction accuracy for around 7.78% relatively on average
in terms of MRR, demonstrating its effectiveness. In future work, we will consider combining
much more information about the locations, such as the latitude and longitude. On the other
hand, considering more fine-grained user features to derive a better user hyperplane model is one
research direction.
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