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Abstract—With the rapid development of mobile applications,
mobile edge computing (MEC), which provides various cloud
resources (e.g., computation and storage resources) closer to
mobile and IoT devices for computation offloading, has been
broadly studied in both academia and industry. However, due to
the limited coverage of static edge servers, the traditional MEC
technology performs badly in nowadays environment. To adapt
the diverse demands, in this paper, we propose a novel mobile
edge mechanism with a vehicle-mounted edge (V-edge) deployed.
Aiming at maximizing completed tasks of V-edge with sensitive
deadline, the problem of joint path planning and resource
allocation is formulated into a mixed integer nonlinear program
(MINLP). By utilizing the piecewise linear approximation and
linear relaxation, we transform the MINLP into a mixed integer
linear program (MILP). To obtain the near-optimal solution,
we further develop a gap-adjusted branch & bound algorithm,
also called GA-B&B algorithm. Moreover, we propose a low-
complexity L-step lookahead branch scheme (referred to as L-
step scheme) for efficient scheduling in large-scale scenarios.
Extensive evaluations demonstrate the superior performance
of the proposed scheme compared with the traditional static
edge mechanism. Furthermore, the proposed L-step scheme
achieves close performance to the near-optimal solution, and
significantly improves the task completion percentage of state-
of-the-art schemes by over 10%.

Index Terms—Mobile edge computing, vehicles, computation
task offloading, path planning, piecewise linear approximation.

I. INTRODUCTION

The increasing popularity in smartphones and IoT devices
is driving the development of mobile applications includ-
ing face/speech recognition, image/video processing, real-
time online gaming, etc., most of which are computation-
intensive as well as latency-critical. Thus, these resource-
intensive requirements pose significant challenges to mobile
and IoT devices with limited processing capability. To address
challenges above, mobile edge computing (MEC) has been
proposed and widely studied [1]-[3]. With the concept of
pushing mobile computing, cache and other network functions
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to the network edges, MEC is committed as a promising tech-
nology to relieve the prominent contradiction between service
requirement and resource shortage. Especially, computation
offloading is the most popular user-oriented use case in MEC.
By offloading computation tasks to the edge server instead
of local execution, the system performance (e.g., computation
and latency requirements) will be greatly enhanced.

Many works about MEC have been published [4]-[19].
According to the state of edge servers, we can classify them
into two types of mechanisms. In particular, the first kind of
works focuses on the static edge connected with base stations
(BS) or access points (AP) [4]-[9], which are deployed at fixed
locations, while the other kind of works studies the mobile
edge mounted on vehicles or unmanned aerial vehicles (UAVs)
[10]-[19].

In recent years, the optimization research for the static sce-
nario has become mature [4]-[9]. Due to the static deployment
of edge servers, these works mainly considered the resource
allocation with the optimization of system delay, energy
consumption, as well as the quality of service requirements.
Specially, the resource allocation with deadline sensitive tasks
attracted much attention for its utility and importance. For
instance, Yin et al. [4] proposed a multi-resource allocation
algorithm to accommodate deadline sensitive tasks, where
service level agreements were considered. Munoz et al. [5]
developed the joint optimization of the radio and computa-
tional resource usage, in which the tradeoff between energy
and latency was exploited with task completion deadline
satisfied. Moreover, Fan et al. [6] presented a deadline-aware
task scheduling mechanism for edge computing, where the
collaboration between edge nodes and rented cloud resources
was exploited by edge service providers. An ant colony
optimization based heuristic algorithm was also proposed in
[6] to maximize the profits of edge service provider while
meeting the tasks’ deadline. On the other hand, there are
also some related works on joint optimization in the resource
allocation. For example, Mao et al. [7] designed a sub-
optimal algorithm for single-user MEC systems to jointly
optimize the task offloading scheduling and device energy
consumption. Zhang et al. [8] built a distributed potential
game to jointly optimize the computation offloading strategy
policy and computation resource scheduling with the existence
of Nash equilibrium proved. Besides, Liu et al. [9] utilized
the queuing theory to give a thorough study on the system
delay, energy consumption, and monetary cost of offloading
process in multi-user MEC systems. What’s more, these three
system objectives are jointly optimized by finding the optimal
offloading probability and transmission power for each user.
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Nevertheless, the limited coverage of the static edge yields
new serious issues in MEC. As for realistic urban environ-
ments, due to path loss and complicated radio environments,
the static edge cannot support too many offloading tasks in
a large region. Consequently, it is not able to cope with
regular huge computation demands generated by urban intelli-
gent transportation systems and sensor information collection.
Moreover, it is envisioned that densely deploying static edges
for realistic urban environments would be impractical in mon-
etary cost. On the other hand, a more flexible MEC mechanism
is quite necessary for areas with limited available infrastructure
of BSs and APs, such as in rural environments, disaster relief
as well as military applications. In these scenarios, users may
not be able to move towards the vicinity of static edge, instead
requiring the edge to move towards users [10]. Therefore,
the mobile edge mechanism attracted attention and developed
recently [10]-[19].

As a matter of fact, the similar idea of mobile mechanism
has been applied in the communication field by Project Loon
[20]. The project built the balloon network in the stratosphere,
and high speed internet was accessible via the balloon relaying
and transmission. Up to now, researchers have demonstrated
connection speeds of up to 10 Mbps between balloons over
100 km apart. Inspired by the mobile mechanism, the mobile
edge mechanism with UAVs and vehicles come into our
sight. For example, Sathiaseelan et al. [11] firstly presented
a preliminary idea of Cloudrone, where UAVs are deployed
in the sky to provide various services for ground users. Later,
a mobile edge infrastructure adopting UAVs was proposed in
[12], and the authors evaluated the performance of the UAV-
mounted edge in terms of coverage to users. In addition, an
UAV-mounted edge was introduced in [13], and successive
convex approximation strategies were introduced to optimize
the bit allocation and moving trajectory of the mobile edge.
Natalizio et al. [14] also introduced a Sport Event Filming
problem, where UAVs are deployed for filming a sport event.
By utilizing two families of algorithms including the nearest
neighbor and the ball movement interception, the satisfaction
of event viewers is maximized with the UAV travelling dis-
tance minimized. Meanwhile, vehicular edge (a.k.a vehicular
fog) also received considerable attention. Wang et al. [15]
proposed a vehicular edge computing (VEC) caching scheme,
where parked vehicles were considered as edges, and an auc-
tion game based caching algorithm was presented to minimize
the average latency to mobile users. Similarly, the concept
of vehicular fog computing (VFC) was proposed in [16] by
utilizing vehicles as the infrastructures for communication
and computation. By contributing their computing resources,
vehicles act like fog nodes in the context of fog computing, and
different scenarios were also discussed to show the capacities
of VFC. Furthermore, Cao et al. [17] leveraged connected
vehicles as the edge computing platform to enhance the quality
of experience (QoE), and designed a QoE based node selection
strategy. Both [10] and [18] focused on the scheduling of a
vehicle with powerful computing resources, applied in military
and battlefield environments. Recently, Zhou et al. [19] also
exploited moving intelligence in vehicular fog networks, where
computing resources of vehicles provide diverse fog comput-

ing services and applications for vehicles and pedestrians.

According to the related works above, the flexible mobile
edge mechanism can be broadly applied in the intelligent
transportation systems, sensor systems, large-scale events, and
emergency scenarios, where the static edge resource may be
not available. On the other hand, intelligent connected vehicles
equipped with strong computation power, are expected to be
the promising paradigm of future vehicles [19]. Therefore, the
mobile edge mechanism is promising to integrate with vehic-
ular networks in the future, fully exploiting the computation
resources in urban environments.

Unfortunately, in the area of mobile edge mechanism, few
existing works consider the deadline sensitive tasks, which
are important to realistic environments. Besides, most works
ignore the downloading of computation results at edges for
relatively small data size, while the downloading result size
is actually significant for quite a few computation-intensive
applications. Additionally, most works in VEC and VFC are
based on parked vehicles, which are not mobile in fact.
Overall, taking both the path planning and resource allocation
for mobile edges into consideration is much more difficult than
the only resource allocation in the static edge scenario.

Motivated by the limitations of existing literature as well as
the promising gains of mobile edge mechanism, we propose
a novel vehicle-mounted edge mechanism in this paper. Espe-
cially, we consider several hotspots with multiple independent
tasks demanding for computation support, and a mobile V-
edge for computation offloading. Moreover, both the deadline
sensitive tasks and downloading process are considered for
practical scenarios. Furthermore, we study the total returned
data maximization problem, and jointly optimize the mobile
edge’s path and resource allocation. The contributions of the
paper are three-fold, which are summarized as follows.

« We propose the novel vehicle-mounted edge mechanism,
and formulate the total returned data maximization prob-
lem into a mixed integer nonlinear program (MINLP),
with V-edge’s path and resource allocation optimized.
Furthermore, the MINLP problem is transformed into a
mixed integer linear program (MILP), by utilizing the
piecewise linear approximation and linear relaxation. We
further propose the GA-B&B algorithm to obtain the
near-optimal solution.

e We design a low-complexity L-step lookahead branch
scheme (L-step scheme), which consists of a reward
model and a computation offloading scheduling to solve
the problem. The reward model is combined with a path
planning criterion to plan V-edge’s path. Besides, trans-
mission bandwidths are fully exploited in the offloading
process with V-edge’s proximity to hotspots.

« Extensive evaluations under various system parameters
are carried out to evaluate the proposed vehicle-mounted
edge mechanism and validate the performance of our
proposed algorithms. The results demonstrate that our
proposed mobile edge mechanism with the near-optimal
GA-B&B algorithm achieves better performance com-
pared with the static edge mechanism, and about 20% of
task completion percentage is improved in some cases.
Evaluations also show that our proposed L-step scheme
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Fig. 1. Illustration of the system scenario with a V-edge in mobile edge computing. Due to the malfunction or the overload of nearby base stations, some
hotspots offload tasks to V-edge. With path planning, V-edge also executes tasks for hotspots in concerts as well as sensor information collection.

gains close performance to the near-optimal solution
with much lower complexity, and it outperforms the
other existing scheduling schemes with over 10% of task
completion percentage increased.

We organize the rest of this paper as follows. Section II
introduces the system model and gives a problem overview
with an example. Section III formulates the joint path planning
and resource allocation optimization problem into a MINLP
problem, and transforms the problem into a MILP problem.
Section IV and V develop the near-optimal GA-B&B al-
gorithm and the low-complexity L-step scheme. Section VI
evaluates the performance under various system parameters.
In light of our results, this paper is concluded in Section VII.

II. SYSTEM OVERVIEW
A. System Model

As shown in Fig. 1, we consider a realistic urban envi-
ronment with a V-edge and K hotspots, indexed by K =
{1,2,..., K}. Let py, = (xk, yx) denote the location of hotspot
k. On the one hand, emergencies such as malfunction and
the overload of nearby base stations lead to the shortage of
computation resource. On the other hand, large-scale events
like concerts, as well as massive data processing in sensor
regions, also cause task congestions at hotspots. Therefore,
V-edge is demanded by each hotspot for computation support
with a hard completion deadline, which means that the hotspot
will search for other kinds of computation support or compute
locally if V-edge fails to finish its task before deadline, and
the task exceeding the deadline becomes invalid for V-edge,
respectively. To enable tractable analysis and obtain useful
insights, we employ a quasi-static network scenario [21],
where all hotspots offload their task requests at the beginning
of the computation offloading period, and the number of
hotspots remains unchanged during the period while it may
change across different periods. Based on this, we study the
offloading process between the moving edge and hotspots with
the goal of maximizing the total returned data by V-edge.

To determine the offloading process as well as V-edge’s
trajectory, the total system time period 1’ is partitioned into NV
non-overlapping time slots of equal length with # seconds, i.e.,
T = Nt. Moreover, the length 7 is chosen to be sufficiently
small for V-edge’s position to be approximately constant in
each time slot. The position of V-edge in the n-th time slot
is denoted as p& = (22,y%), for n € N = {1,2,...,N}.
According to the realistic environment, the initial position of
V-edge are predetermined by p§ = (2§, y7), and its maximum
speed is defined as vi,ax. Thus, we can obtain the trajectory
of V-edge by {p¢ },cn (shown as the blue line in Fig. 1).
In addition, the velocity vector in the n-th time slot can be
acquired as, . .
e b n+1 b,

v, 7

(D

B. Computation Task Offloading Model

With the downloading of computation results considered,
we adopt the four-field task model in [13] to describe the
computation task at hotspots. The task at hotspot k can be
represented by the notation Ay (Ix, Y, 7',?7 Oy,), which contains
the task input-data size [ (in bits), the computation intensity
7, (in CPU cycles per bit), the completion deadline 7
(in second), and the output/input ratio Oj. Especially, the
maximum completion deadline determines the number of time
slots, i.e., N = max {|7d/¢] }eexc- Besides, Oy means the
number of output bits produced by per input bit, which is
relevant with the task property. Accordingly, the output result
size of task Ay is I - Og. For example, the ratio is low for
compression tasks, while high for processing tasks of VR/AR
applications.

As for computation resources of V-edge, it is equipped
with a server of maximum CPU frequency F° (in CPU
cycles per second), and can provide parallel computation
for multiple tasks from multiple users simultaneously using
processor sharing [22]. In addition, there is a bootstrapping
program run in the system [23], from which V-edge knows
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the locations of hotspots and their corresponding task profiles
Ay. Especially, hotspots first transmit task requests with task
profiles A to nearby base stations, then base stations forward
the information to V-edge. V-edge starts computation task
offloading after receiving requests.

To enable the task offloading for hotspot k, the offloading
process is divided into three steps; () hotspot k transmits input
data to V-edge via the uplink (shown as the red line in Fig. 1);
(i1) V-edge executes computation for the input data (shown as
orange squares in Fig. II); (z2¢) V-edge returns output data
(shown as green squares in Fig. II) to the hotspot k via the
downlink (shown as the green line in Fig. 1).

C. Communication Model

Considering the path loss and randomness effects in prac-
tice, communication channels between V-edge and hotspots
are typically modeled as i.i.d frequency-flat block fading
channels [24], [25]. Denote the small-scale fading channel
power gain between V-edge and hotspot k£ in the n-th time
slot as hy,_,,, which is assumed to have a bounded mean value,
ie., E[hgn] £ hr < oo [24]. Thus, the channel power gain
between V-edge and hotspot k£ in the n-th time slot can be
expressed as follows,

Hyo = hinko ||k — 057, )

where we denote the path loss exponent by 6, and kg is a
constant coefficient and proportional to (£)2.

Therefore, the maximum achievable transmission rate R},
(uplink) or Rg)n (downlink) between V-edge and hotspot & in
the n-th time slot can be obtained as,

P"Hy, ,
= Wlog, <1—|—lt 2k’ ),
o

where we denote the bandwidth by W (Hz), the noise power
by o2, the transmission power by P/ (W), and m = u for
uplink while m = d for downlink.

Based on (2) and (3), R}, can also be expressed as,

P hy, ko ||pe — 92|
t 0 ’(|T2 H ) . (4)

3)

o = Wlog, (1 +

Additionally, V-edge is assumed to be half-duplex, i.e.,
V-edge has at most one transmission link with one hotspot
simultaneously, either the uplink or downlink.

D. Problem Overview

In this subsection, we discuss the key idea in the vehicle-
mounted edge mechanism by an example shown in Fig. 2. The
four subfigures exhibit the network topology and mechanism
operation in four time slots successively. For simplicity, we
just consider one hotspot with computation demand. Besides,
its task can be divided into four subtasks for execution, shown
as the initialization part in Fig. 2(a).

Fig. 2(a) shows the topology and operation in the first time
slot. Due to the channel state limitation, the hotspot offloads
three subtasks (shown as orange blocks 1, 2, 3) to V-edge via
the uplink, and the computation process starts upon subtask

arrival. Then in the second time slot, V-edge processes the
first subtask (shown as yellow block 1), and receives the
last subtask from the hotspot, as shown in Fig. 2(b). In the
third time slot, V-edge further computes two subtasks, and
returns part computation results (shown as green blocks 1, 2)
to the hotspot via the downlink, as shown in Fig. 2(c). Finally,
in Fig. 2(d), the fourth subtask is finished processing and
remaining computation results are downloaded by the hotspot.
It should be mentioned that V-edge keeps moving in the whole
procedure, and the whole task is completed before its deadline.

As can be observed, to maximize the total returned data
to hotspots (shown as green blocks in Fig. 2), the problem
involves the path planning and resource allocation for V-
edge. Besides, in the vehicle-mounted edge mechanism, the
computation and transmission can happen concurrently. Owing
to the flexibility of the mobile edge, the channel rate between
the edge and hotspots can be significantly improved. There-
fore, path planning greatly affects the system performance.
Moreover, due to the high correlation among offloading tasks,
hotspot positions, and V-edge status, the computation offload-
ing scheduling also plays an important role in the multi-hotspot
scenario.

III. PROBLEM FORMULATION & ANALYSIS
A. Problem Formulation

According to the three steps of offloading process intro-
duced in Section II-B, in the n-th time slot, for n € N, we
denote Dy, as the size of input data via the uplink from the
hotspot k to V-edge, Dy, ,, as the size of data processed for
the hotspot k£ by V-edge, and Dk » as the size of output data
via the downlink from V-edge to the hotspot k. Moreover,
two decision variables aj; ,, and ak ,, are defined to indicate
whether the transmission link between V- edge and the hotspot
k is scheduled in the n-th time slot, where aj , is for the
uplink, and aZ,n for the downlink. For instance, the uplink is
scheduled in the n-th time slot when aj ,, is equal to 1.

Since our objective function is the total valid returned data
by V-edge which also means the total amount of downlink
data before the corresponding deadline, we should calculate
the downlink data from V-edge to each hotspot in each time
slot, i.e., D,‘in Hence, by summing all D,m together, the
objective function can be expressed as,

K N
> Dila 5)
k=1n=1
We now consider the system constraints. Due to the non-
negative data offloading, we have the basic constraint,

Dy .. DD, >0, VkEK, VneN. (6)

However, the task becomes invalid when exceeding the
deadline. Thus, for each hotspot, neither transmission links
nor computation exists after the deadline time slot, which can
be obtained as,

koo kn,Dkn—O vk e K, Vn—LTk/tj @)

Besides, both the uplink and downlink data in each time
slot is limited by the channel conditions, which means that
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Fig. 2. An example of the vehicle-mounted edge mechanism with one hotspot in four time slots. V-edge finishes the three steps of uplink, computation
and downlink for each subtask from the hotspot during the move. The orange, yellow and green blocks show the uplink, computation and downlink data,

respectively.

the size of transmission data should not exceed the maximum

achievable transmission rate. Such requirement yields the
following,

kn < Rints

d d 7

D k,n < Rk:,nt7

Vk € K, Vn e N.
Vk e K, VneN.

®)
)

In addition, the amount of transmission data is also con-
strained by the decision variables. For example, when the
decision variable ay , = 1, the uplink data is non-negative,
which is limited by channel conditions in constraint (8).
Otherwise, the uplink transmission from hotspot k to V-edge is
unavailable, i.e., Dy, = 0. By employing the “big-M” method
in [26], we can write the constraint as follows,

wo < May,, VkeK, VneN,
Dy, <Ma},, VkeK,VneN,

(10)
Y

where M is a number safely bigger than any of the numbers
that may appear on any side of the inequalities. Note that
when aj; ,, = 1, the parameter M is sufficiently large so that
the associated constraint becomes redundant. Otherwise, it is
enforced that D, can only be equal to zero with constraint
(6) considered. The “big-M” has the same effect to aﬁyn.

Since the data is offloaded through three steps including
the uplink, computation, and downlink, there are numerical
relationships among these variables, which can be formulated
as,

N
> Di,<I, VkeKk,

n=1

12)

ipg,i < XH:D}:@ Vk € K, Vn e N,

=1 i=1

> Di,<O> Di,, VEEK, VneN, (14)

i=1 =1

13)

where (12) ensures that the total uplink data by hotspot k£ do
not exceed its task input-data size. For the hotspot k£ € K and
time slot n € N, the size of data processed in first n time
slots is required not larger than the size of data received by
V-edge in these n time slots, as shown in (13). While (14)
imposes that the size of data returned to the hotspot is no
larger than the size of available data computed in these n
time slots.

Considering the finite computation resources at V-edge, the
total allocated CPU cycles for hotspots should be limited. Then
we construct the constraint as follows,

K
ZD;CC,nd < F, VYneN.
k=1

(15)

According to the half-duplex assumption, V-edge is sched-
uled with no more than one transmission link in the time slot,

which is acquired as,
K
(ak, +af,) <1, VneN. (16)

k=1

As previously mentioned, we have the constraint on the
initial position a well as the maximum speed of V-edge, which
can be written as,
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pS = (21, 1) - (17)
[P =23

; < Umax, Vn€{1,2,...,. N —1}.

(18)

Therefore, the design problem is formulated as follows,

K N
P1: max D¢ .
(o (B ot 2 2

o {ai b {akn}

s.t. Constraints (6)—(18).

The first major challenge to solve problem P1 is the nonlin-
ear term in constraint (8), caused by the nonlinear expression
of transmission rate and edge mobility. Besides, constraint (18)
is a quadratic constraint due to the norm expression of position
change. Accordingly, problem P1 is a MINLP, where aj ; and
a¢ . are binary variables, while other variables are continuous.
Since problem P1 is more complex than the NP-complete 0-1
Knapsack problem [27], it is computationally unacceptable to
utilize an exhaustive search for solving problem P1. Therefore,
we introduce the piecewise linear approximation in the next
subsection for approximately solving the MINLP.

e|l —
lonll =

19)

B. Problem Transformation

Piecewise linear approximation is a widely used method
to approximate the nonlinearities with piecewise linear func-
tions, where the variable space is partitioned into a finite
number of non-overlapping regions with linear expressions
[28]. Moreover, the approach has the potential to approximate
the nonlinear functions arbitrarily close by introducing enough
regions.

As for the problem P1, the original nonlinear function form
of R}Zn is already at hand with (4), which can be further
written as,

_e
P{" iy ko (Ax%n + Ayin) ’

2 9

1+

m _
kn — W log, pu
(20)
where Az, =z, — ), is the X-axis difference between the
hotspot k and V-edge in the n-th time slot, and Ay, =
yr — Yy, 1s the Y-axis difference, respectively.The value of
nonlinear term ka)n is determined by Az}, ,, and Ayy, ,,, noted
as function kam(A;vk_,n, Ayg.n), and m = u for uplink while
m = d for downlink.

To approximate the nonlinear function R}, (Azy, n, Ayk,n)
by a piecewise linear function Rzln(Aka, Ayy ), we first
define a 2-D grid over the space,of {Azy n}keic,nen and
{AYin}rek nen. Especially, we let Azpi, = Az <
Aze < ... < Azpy, = Azpax be a uniform partition of
{Axk,n}kEIC,neN’ and Aymin = Ayl < Ay2 < .. <
Aym, = AYmax be a uniform partition of {Ayx n }reic,nen
in which M, and M, determine the grid width. The cor-
responding R}, (Azi, Ayj)ic(1,2,... .M, }.je{1,2,... .M, } €an ob-
tained by (20). In this way, the nonlinearity is approximated
by the 2-D grid, as illustrated in Fig. 3.
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Fig. 3. [Illustration of the piecewise linear approximation using the 2-D
grid. The nonlinear function RTk"n(Amkm, Ayp . i.., the continued surface

is approximated by the piecewise function R?H(Awkﬁn, Ayk ), ie., the
discrete grids.

With the piecewise linear approximation, the problem P1
is transformed. However, the traditional modeling on the grid
implies the introduction of auxiliary binary variables as well
as combinatorial conditions, which may lead to intractable
models. Hence, a special ordered set of variables of type II
(SOS2) is introduced to make it easier to find global optimal
solutions to the transformed problem containing piecewise lin-
ear approximations [29]. Especially, an ordered set of variables
A= (A1, A2, ..., \p) is said to be SOS2 if at most two of the
variables in the set are nonzero and the nonzero variables are
adjacent [30]. Besides, the SOS2 variables can be declared in
most mixed integer program solvers [31], [32], which makes
the piecewise linear approximation more convenient.

Based on the approximation process and introduced SOS2
sets, the nonlinear constraint (8) is replaced by,

b S RE Az, Ayen)l, YEEK, YRneN (2D
Df,, < RY,(Akn, Aypn)t, VEEK, YneN (22
M,
ATpn =3 A D, V€K, ¥neN (23)
m=1
My
Ayin = > N By, VhEK, YneN (24)
m=1
M, M,
S Nam=L Y XN, .. =1 VEeK, VneN (25)
m=1 m=1

knm 20, VEEK, Vne N, Vme {1,2,..,M,} (26)
\Y >0, VkeK, Vne N, Vme {1,2,...,M,} (27)

k,n,m

(Afn1s Men2s - Nenoar, ) 18 SOS2, Vk € K, Vne N
(28)

()\Zm,l, /\ZJL,Q’ cey /\Zm,My) is SOS2, Vke K, Vne N
(29)

where  constraint (21) is the piecewise linear

approximation to constraint (8), and the introduced

SOS2  variables (AF 1> Abn2s s X, JkEK neN

and (A, 1, AL, 00 AL g, Jhekcnen  are  utilized  to
adequately approximate the nonlinear function with the
linear interpolation on the 2-D grid, as shown in constraints
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(23)-(29).

On the other hand, quadratic constraint (18) limits V-edge’s
moving range between adjacent time slots into a circular
region with the radius of Umaxt. For the sake of simplicity of
formulation, we adopt the linear relaxation, and approximate
the circular region by a square region, which can be formulated
as,

vne{1,2,..,N —1}.
vne{1,2,..,N —1}.

(30)
€29

’foJrl - .%‘,Z‘ S Umax£7
’ny-l - yre1| < Umaxga

Based on the piecewise linear approximation and linear
relaxation, the transformed problem to P1 can be defined as,
K N
S > nL
k=1n=

n=1

P2: max

{Ditn b {DEn pA{DE 0 T
oy {ai o {akn}
s.t. Constraints (6)—(7), (10)—(17), (21)-(31).
According to the piecewise linear approximation to the
nonlinear constraints as well as the relaxation of quadratic
constraints, problem P2 is a MILP. The number of constraints
is O(K N Myax), where My, is the bigger one between M,
and M,,. The number of decision variables is O(KN), and
the number of ordered variables for SOS2 is O(K N Mpax).
Although MILP is generally still NP-hard, plenty of research
has been made on efficient algorithms and solvers for MILP
[28], [30]-[32]. Thus, we solve problem P2 with the branch
& bound algorithm in Section IV.

(32)

C. Problem Formulation in Static Edge Mechanism

To compare the performance of our proposed vehicle-
mounted edge mechanism with the traditional static edge
mechanism, as well as understand the difficulties of solving
problem P2, we first formulate the same problem in static edge
scenario.

The main difference of mobile and static edge mechanisms
is the state of the edge. Due to the edge mobility in the mobile
mechanism, time-varying channel (4) and nonlinear constraint
(8) are introduced in problem P1. However, the static edge
mechanism can remove these constraints for no mobility. The
transmission rate between the static edge and hotspot k is
fixed, which can be obtained as,

mp el|—?
+Pt hkk0||pk’_p1|| >’ (33)

o2

R;™ = Wlog, (1

where p$ is the position of the static edge as well as the initial
position of V-edge in the mobile edge mechanism, and m = u
for uplink while m = d for downlink.

Thus, the constraint (8) in the static edge mechanism can
be written as,

Dy, < Ri*t, VkeK, VneN.
Di, <R}, VkeK, VneN.

(34)
(35)

7

As a result, the same problem in the static edge scenario is
formulated as,

K N
ax Z Z D .. (36)

: m
(08, 1P LD

w
A n 51 %,n

s.t. Constraints (6)—(7), (10)—(16), (34)—(35).
Without the nonlinear constraint or quadratic constraint in
the mobile edge mechanism, problem P3 is a MILP. The
number of both constraints and decision variables is O(K N).
Obviously, problem P3 is much easier than P2, and we solve
it with the optimization tools [31], [32] in Section VL.

IV. GAP-ADJUSTED BRANCH & BOUND ALGORITHM

In this section, we consider global optimization for problem
P2, within the limits imposed by the grid points and piecewise
linear approximation. To achieve this, we propose a gap-
adjusted branch & bound algorithm.

The first proposal of the branch & bound algorithm dates
back to the work of [33] for discrete programming. Nowadays,
this approach has become the most commonly used tool for
solving NP-hard optimization problems, especially the MILP
problems. The two fundamental concepts of the branch &
bound algorithm are relaxation and constraint enforcement.
More specifically, for a maximization problem, the relaxation
is utilized to obtain the upper bound of the optimal solution,
while constraint enforcement is utilized to exclude solutions
that are feasible to the relaxation but not to the original MILP
problem [30].

As for the problem P2, both integer constraints (10)—(11),
(16) and SOS2 constraints (28)—(29) are relaxed to obtain a
linear program (LP) problem. The upper bound of the optimal
solution for problem P2 can be obtained by solving the relaxed
LP problem. Then we partition the set of feasible solutions
into subsets, i.e., the original MILP problem P2 is branched
into several sub-MILP problems. By enforcing the integer and
SOS2 constraints on sub-MILP problems, we can obtain the
lower bound of the problem P2, as well as bound the value of
the best feasible solution in subsets and discard subsets worse
than the lower bound. Moreover, we can apply the same idea
to those sub-MILP problems, solving the corresponding LP
relaxations. The optimality is demonstrated until the difference
between the current upper and lower bounds, also known as
the gap, is zero.

Therefore, a tradeoff between the convergent gap and execu-
tion time can be observed. The branch & bound algorithm has
the potential to approximate the optimal solution arbitrarily
close with a small enough gap. On the other hand, the
introduction of small gap implies the additional search time
in the algorithm execution, and thus we should adjust the gap
according to the expected time cost with the approximation
error under control. Here we consider the relative gap, defined
as the gap divided by the upper bound, and propose the GA-
B&B algorithm.

The pseudo-code for the GA-B&B algorithm is presented in
Algorithm 1. We denote ¢ as the initial value for relative gap
rGap, o (greater than 1) as the adjustment parameter to the
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Algorithm 1: GA-B&B Algorithm

Algorithm 2: The Framework of L-step Scheme

1 Input: K, I,7%,7,0, vmax, P§, My, My, 1, e, 0, t";

2 Initialization: rGap = ¢, F = 0;

3 Set the 2-D grid by M, and M, with the piecewise
linear approximation;

4 Set constraints (10)—(17), (21)—(31) as Con.

5 Set the objective function (32) as Obj;

6 while ' == 0 do

7 optimize(Obj, Con,rGap, t*);

8 if solution obtained then

9 L F=1;

10 else

1 | rGap =rGap - a;

12 Return: D%, D¢, D% p.

1 Input: K, I,7% v, 0, 0max, P¢, 8, L, J;
2 Initialization: n =1, =1,H = K;
3 while n < N && |H| > 0 do
a | [k*] = Algd (n,pg,1,1);
5 [n*, {Pf}ieN*,{DZ*,p Ii*,i? Dg*,i}iEN*] = Alg3
(n,pi,I,k*);
L« =0, H=H — {k’*},
for each hotspot ¢ € H do
if n* > |7¢/t| then
L | H=H—{i};

10 | Update D D¢, D4, pe;

11 n=n"

12 Return: D%, D¢, D%, p.

6
7
8
9

relative gap, and t* as the expected time cost. The branch
and bound process is denoted by the function optimize.
For simplicity, the system model variables are expressed in
vector form, as in line 1. The 2-D grid for the piecewise
linear approximation is defined in line 3. Then, we define the
constraints as well as objective function in lines 4-5. Based
on the branch & bound algorithm [28], [30], the formulated
problem P2 is solved with the relative gap and expected time
cost conditions satisfied, as in line 7. Furthermore, the solving
process terminates if the optimal solution is found or execution
time exceeds t*. If the MILP problem is successfully solved
in expected time, the algorithm returns the path planning
and resource allocation results, as in lines 8-9 and line 12.
Otherwise, the algorithm relaxes the convergent condition by
multiplying the gap with «, and iteratively searches the optimal
solution, as in lines 10-11.

According to [34], the computational complexity of the
branch and bound algorithm for the 0-1 Knapsack problem
is O(2N). Therefore, due to time cost of global search and
optimality proof in the branch & bound algorithm, the GA-
B&B algorithm is not applicable for large-scale problems in
practice. Besides, the algorithm complexity is analyzed with
numerical simulations in Section VI.

V. L-STEP LOOKAHEAD BRANCH SCHEME

To solve the formulated MILP for large-scale scenarios,
we propose an L-step scheme in this section, which has
a low computational complexity compared with GA-B&B
algorithm. Considering the joint optimization of path plan-
ning and resource allocation, V-edge serves hotspots one by
one. Especially, we propose a resource allocation algorithm
to schedule the offloading process between V-edge and the
serving hotspot, including uplink/downlink transmission and
computation. Furthermore, based on a reward model with
the path planning criterion, we propose an L-step recursion
algorithm to determine the next hotspot for serving.

A. The Framework of L-step Scheme

To illustrate the L-step scheme further, we present the
framework in Algorithm 2. In line 2, the L-step scheme

defines H as the set of hotspots demanding for computation
support, and initializes H with K. According to hotspots and
their tasks, the L-step scheme iteratively arranges V-edge for
each hotspot’s task offloading, until all hotspots are scheduled
or system time exceeds total time slots, as shown in line
3. Since the optimization objective is to maximize the total
returned data by V-edge, the achieved returned data of hotspot
selection can be modelled as the reward. Thus, line 4 first
calls the L-step recursion algorithm to select the hotspot k*
with the maximum reward, which is presented in Algorithm 4
in detail. Then, line 5 calls the resource allocation algorithm
to allocate corresponding resources for hotspot k*, which is
described in Algorithm 3. Especially, n* is the system time
slot when V-edge finishes tasks for hotspot k*. {p$};car~ and
{DY. ,,D%. ,, DL, }ienr- are the planned path and resource
allocation dilring the task offloading for hotspot £*. Line 6
removes the finished hotspot £* from 7, while lines 7-9
remove the hotspots with the completion deadline ahead of
the system time. The resource allocation and path planning
schemes are updated in line 10, and returned in line 12.
The computational complexity of the L-step scheme will be
analyzed in Section V-C.

B. Resource Allocation Algorithm

The advantage of the vehicle-mounted edge mechanism
relies on the mobility of V-edge. According to the formula (4),
the channel condition becomes better when V-edge approaches
to the hotpot. Thus, if the hotspot k is selected as the serving
hotspot, V-edge moves straight to hotspot k, and Fig. 4 gives
the illustration of the resource allocation algorithm.

Vehicle-Mounted
Edge

Uplink Downlink

Compute

» Planned Path

Fig. 4. Tllustration of the resource allocation algorithm in L-step scheme. The
uplink transmission, task execution, and downlink transmission are finished
when V-edge approximates the serving hotspot.
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The resource allocation algorithm partitions the time cost
from V-edge’s current position to hotspot k into time slots.
During the move to hotspot %, the maximum achievable
transmission rate at each time slot is available. Thus, the
algorithm first schedules the uplink tasks from hotspot k,
and then arranges the downlink. In the transmission, V-
edge computes the input data simultaneously with resource
constraints satisfied. Besides, the computation may end later
than the uplink due to limited computation resources, and
V-edge returns available computation results first. Compared
with the uplink, the downlink rate is larger due to V-edge’s
proximity to hotspot k, and the downlink results size is smaller
than input data size generally. Accordingly, the downlink time
cost is less than the uplink, as shown in Fig. 4.

Algorithm 3 presents the pseudo-code of the resource al-
location algorithm. For the serving hotspot k, the algorithm
calculates the left time slots for its task in line 3. In line 5,
based on the illustration of Fig. 4, the algorithm schedules
the task in n;" time slots with resource constraints satisfied.
However, the task I, sometimes is too large to be executed
in niff " time slots, then the algorithm reduces the task input
data size I by multiplying a constant S (less than 1),
and reschedules the offloading process, as in lines 6-7. The
algorithm updates the system time n*, planned path {p$ }ic -
in lines 9-10. The returned data from V-edge to hotspot £ is
modelled as the reward r in line 11. Finally, the algorithm
returns the scheduling scheme for hotspot £ in line 12.

Algorithm 3: Resource Allocation Algorithm

1 Input: n,p$, I, k;
2 Initialization: F' = 0;
3t =g/t —n;
4 while ' == 0 do

5 Schedule the offloading process of taks I, with
{Dg,m Dg Dg$i}i€{n+1’n+27“_7,nl+nskch} subject to
(8)~(14), nit™ < nkf;

6 if no feasible solution then

7 | I =1Ii- B;

8 else

9 n*=n+nM N ={n+1,n+2,..,n}

10 V-edge moves straight to hotspot k at v 44,
with {p§};cnr~ obtained;
11 ’I“k:Ik~Ok,F:1;

12 Return: ri,n*, {p§ }ienr-, { D}t ;, Dy, i, Dyt Yienr~

According to the illustration of Fig. 4, the computational
complexity of the resource allocation is O(NN). On the other
hand, the while loop has at most logg ﬁ iterations by
reducing the maximum task input data size to 1. Thus, the
worst case computational complexity of the resource algorithm
is O(N logg ﬁ), which can be implemented in practice.

C. L-step Recursion Algorithm

As mentioned before, L-step recursion algorithm builds a
reward model with the path planning criterion for V-edge, to
determine the serving hotspot in the next step.

Firstly, we introduce the definition of the path planning cri-
terion here. Obviously, the serving hotspot selection is related
to the task input-data size, left time for task execution, and the
distance between the hotspot and V-edge. More specifically,
due to the optimization objective of returned data, intuitively,
V-edge should first serve the hotspot with large task size. On
the other hand, to avoid missing tasks, it is better for V-edge
to first serves the hotspot whose task is going invalid. Besides,
distance plays an important role. Since the short distance
brings the large channel rate, the bandwidth is fully exploited
by selecting the near hotspot for serving. Consequently, the
path planning criterion is characterized as the hotspot selection
priority, which is denoted by pr, and can be expressed as,

I
nleftd’
where I is the task input-data size of the hotspot, n'* is the

left time slots to the completion deadline, and d is the distance
between the hotspot and the current position of V-edge.

pr = (37

1
r =1 + max{riy, 1o}
-
T12
” ~
7’
Y 7
=/ N 21
Vehicle-Mounted Edge
”
T,
~ 722
1, =15 + max{ryy, 22}

Current position Step 1 Step 2

Fig. 5. An example of the L-step recursion algorithm in L-step scheme
(L =2, J=2).

Then, Fig. 5 presents an example of the L-step recursion
algorithm, where L is equal to 2. Based on the path planning
criterion, the L-step recursion algorithm first selects J hotspots
with large selection priority, and the selection is divided into
J branches. In our example, J is equal to 2, and H; and
H, are selected as possible serving hotspots. Motivated by
the lookahead thought, the algorithm calculates the returned
data when V-edge selects H; as the next serving hotspot, and
denotes it as the reward 71, which is also the reward in step 1.
What’s more, the algorithm tries to look further by calculating
rewards of possible serving hotspots after H;. In Fig. 5,
the algorithm calculates rewards 717 and rio, respectively,
and defines the larger one as the reward in step 2. It is
obvious the calculation process is similar to the recursion
thought. As a result, the possible reward of choosing H;
as the next serving hotspot is the sum of rewards in step
1 and step 2. Similarly, the algorithm calculates the reward
of another branch (hotspot Hs and possible hotspots after).
Finally, V-edge selects to serve the hotspot with the maximum
reward (H; in our example). In practice, the L-step lookahead
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operation for reward calculation is achieved by the recursion,
which is invoked twice in this case. Especially, the L-step
recursion algorithm calls itself after calculating r; at H; and
ro at Ho, respectively.

Owing to the benefit of the path planning criterion, the L-
step recursion algorithm is able to find the hotspot with the
highest reward in J branches, while the brute force search
has to calculate rewards for all N hotspots, and selected the
highest one in [V branches. Obviously, the brute force search
needs more recursions as well as computation cost. Thus, the
original N branches are pruned to J (< N) branches in the
L-step recursion algorithm with the path planning criterion.

Algorithm 4: L-step Recursion Algorithm

1 Input: n,p¢, I,1;
2 Initialization: {r;};cx = 0,7 = 0;
3 for each hotspot k£ € K do

¢ | mit = 1/t = din = |lpe = p3;

5 B Pri = ,nl’zﬂTkkm;

6 if [ == L then

7 | while | 7| < J do

3 Find the hotspot k£ € K with the maximum pry;
9 [ri] = Alg3 (n,py,, I, k);

10 I, =0, =JU{k}

11 else

12 while | 7| < J do

13 Find the hotspot k£ € K with the maximum pry;
14 [Tk7n*7{pf}i6./\/*} = Alg3 (nvpfbaIv k)’

15 I, =0, =JU{k}

16 [ro] = Algd (n*,pfb*,I,l—k 1);

17 Tk =Tk + 705

18 Find the hotspot £* € I with the maximum 7 ;
19 Return: k%, rp-.

In Algorithm 4, we give the pseudo-code of the L-step
recursion algorithm. Regarding to the illustration above, the
recursion applies to the algorithm implementation. Line 1
inputs the current time slot n and the current lookahead step [,
while line 2 initializes the reward of each hotspot as zero. In
lines 3-5, the algorithm calculates the selection priority of each
hotspot. When the current step is the final step, the algorithm
finds J branches of possible serving hotspots, and calls the
resource allocation algorithm to get the corresponding reward,
as in lines 6-10. Otherwise, in lines 11-14, the algorithm first
calls the resource allocation algorithm, Algorithm 3, to get
the reward, and obtains the system time slot n* as well as
V-edge position pg . after serving the hotspot. To look further
hotspot rewards after the current step, based on the obtained
results before, the algorithm calls itself with the current step
increased, and obtains the sum reward rg in steps [ + 1 ~ L,
as shown in line 16. The reward for hotspot k in steps [ ~ L
is updated in line 17. Finally, line 18 finds the hotspot with
maximum reward in L steps, which is returned in line 19.
Accordingly, hotspot £* is determined as the next serving
hotspot by V-edge.

10

From the illustration of Fig. 5 and the pseudo-code, Algo-
rithm 4 is traversing a complete J-branch tree with L layers,
where (J! + J2... + JE71) = O(JL1) times recursions
are invoked. Besides, Algorithm 3 is executed at each node
in the tree. Since the tree has (1 + J' + J2.. + JE) =
O(J') nodes and computational complexity of Algorithm 3 is
O(N logg i), computational complexity of Algorithm 4 is
O(JEN log ﬁ) Considering the framework, the compu-
tational complexity of L-step scheme is O(J*N?logz ——).
Generally, J and L are assigned with small values no more
than 5 (as shown in Section VI later), which is enough for good
performance, thus the L-step scheme is feasible in practice.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
vehicle-mounted edge mechanism and the near-optimal GA-
B&B algorithm. Moreover, we compare the proposed L-
step scheme with the near-optimal solution, and analyze its
performance under various system parameters.

A. Evaluation Setup

We simulate a 1000x 1000 m? square area where several
hotspots are uniformly distributed. For generality and con-
venience, the initial position of V-edge locates in the center
of the area. The computation model settings in [22] and the
channel model suggested in [24], [25] are adopted in the sim-
ulation, where the small-scale fading channel power gains are
exponentially distributed with unit mean, i.e., hg , ~ Exp(1),
k € K. Furthermore, the simulation parameters, are summa-
rized in Table I. We perform 50 independent experiments for
the evaluation, and plot the mean of results in figures. The
GA-B&B algorithm is achieved with the optimization tools
YALMIP [31] and Gurobi [32], on a computer with Intel Core
i7-6700K 4 GHz CPU and 32 GB RAM.

TABLE 1
SIMULATION PARAMETERS
Param Value Param Value
W 40 MHz Tr unif(1, 50) MB
o? 2 x 10~ W/Hz Oy, 0.5
0 3 s unif(25, 120) s
P 1w Vi unif(500, 1000) cycles/bit
t 5s Fe 5 GHz
Umax 20 m/s N 10
tup 400 s e 1x1074
AZmin -1000 AYmin -1000
ATmax 1000 AYmax 1000
My 10 My, 10
L 5 J 2
a 10 B 0.9

In this evaluation, we consider two main performance
metrics as follows.

o Completion percentage: Valid returned data of V-edge
divided by the total amount of demanded output data of

1536-1233 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2019.2922316, IEEE

Transactions on Mobile Computing

11

09 T T ! T T 1 T T

g 0GA-B&B e 0GA-B&B o 0GA-B&B
s 087 [Optimal Static| 0% ¢ [@Optimal Static| Iw AR [@Optimal Static|
= | = =
9 07 Sos Y os
5 oot 5 5
o , 0407* [a¥) 0/1

5
g g‘)()’ g 0.6
3 04F g =]
2 205 2 05
Q.03f . o
g 02F gm— g 04
O 01 L L L L L L L UO 3 L L L © 03 L L L L L L

1 3 4 5 6 7 8 9 10 "1 2 4 5 6 7 8 9 10 1 2 4 5 6 7 8 9 10

Hotspot Number Hotspot Number Hotspot Number
(@ (®) (©

Fig. 6. Completion percentage comparison of the mobile edge and static edge mechanisms under different numbers of hotspots. (a) Tg ~unif(25, 60) s,
Iy, ~unif(1, 50) MB. (b) Tg ~unif(25, 60) s, I}, ~unif(1, 20) MB. (c) T]‘j ~unif(25, 120) s, I}, ~unif(1, 50) MB.

tasks at hotspots, which is denoted by CP, and can be
written as,

i M=

ol d
Z Dk,n
1n=1

cp==~ (38)

M=

Iy - Oy

=
Il

1

o Mobility Efficiency: Valid returned data of V-edge di-
vided by its trajectory length (in unit of MB/m), which
is denoted by ME, and can be expressed as,

(39)

In Section VI-B, we compare the mobile and static edge
mechanisms, where the near-optimal performance of the GA-
B&B algorithm (noted as GA-B&B) is compared with the
benchmark schemes:

« Optimal Static: A static edge server is deployed at the
area center, and optimal solutions of problem P3 are
obtained with above optimization tools.

In Section VI-C, we compare the performance of L-step
with the near-optimal solution and other four benchmark
scheme in the mobile edge mechanism:

o Maximum Task First (MTF): According to the opti-
mization objective, V-edge always serves the hotspot with
the maximum task size. Besides, the resource algorithm
in L-step scheme is utilized for computation offloading.
MTF is suitable for the tasks whose importance is deter-
mined by task size.

o Shortest Remaining Time (SRT): Borrowing the idea of
shortest remaining time first in task scheduling [35], V-
edge serves the hotspot in the priority of task remaining
time, and allocate resources with Algorithm 3. SRT is
suitable for the tasks whose importance is determined by
task deadline.

« Shortest Distance First (SDF): To exploit the band-
width, V-edge serves the nearest hotspot with the same
resource allocation process in L-step scheme. SDF is
suitable for the tasks whose importance is determined by

the distance.
o Random: V-edge randomly serves the hotspot without
task deadline considered.

In Section VI-D, the L-step scheme is analyzed under
different system parameters with above benchmark algorithms.
We perform 1000 independent experiments for the evaluation
in this part.

B. Mobile/Static Edge Mechanism Comparison

To analyze the performance of different mechanisms, we
compare the completion percentage of mobile and static edge
mechanisms under different hotspot group sizes in Fig. 6. In
particular, to test the robustness of the proposed GA-B&B
algorithm as well as prove the superiority of the mobile edge
mechanism, we adjust the distribution of the task size and the
completion deadline in subplots of Fig. 6.

In particular, all subplots of Fig. 6 show the declining impact
of increasing hotspot group size to the completion percentage.
A larger hotspot group size results in a larger amount of tasks.
However, due to finite computation resources and the same
expected deadline for tasks, the edge is not able to compute
much more tasks compared with small hotspot group size
case. Even so, our proposed vehicle-mounted edge mechanism
outperforms the static edge mechanism in different system
environments.

Taking Fig. 6(a) as an example, when there are five hotspots
demanding for computation support, the vehicle-mounted edge
mechanism achieves a completion percentage of 33%, which
improves the static edge mechanism performance by 7%. The
expected valid computed data can be estimated by K x E(I) x
CP = 5x25.5x33% = 42.08 MB. As for the same group size
in Fig. 6(c), by extending the expected completion deadline,
the achieved completion percentage significantly increases to
65% and the improved value is 20%. The expected value is
82.875 MB, respectively. From the results, we can obtain the
importance of completion deadline to the system performance.

Moreover, it can be observed that the difference between
two mechanisms is reducing with the increase of hotspot
group. A possible explanation to the phenomenon is that, the
hotspot increase weakens the advantage of flexible position
change of V-edge. Here we consider an extreme case, in which
the hotspot group is large enough to cover the area. Then
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TABLE II
EXECUTION TIME COMPARISON OF ALL SCHEMES UNDER DIFFERENT # HOTSPOTS (IN SECOND)
# Hotspots | 4 # # #4 #5 #6 #7 48 #9 #10
Scheme

GA-B&B 14.8061  29.9471 118.4274  187.5683  188.2830  225.2451  290.2677  400.1509  353.5429  430.5672
Optimal Static 1.4923 3.2954 13.5766 27.0712 14.4897 15.8373 34.5675 32.1401 23.4707 30.3613

L-step 0.0034 0.0038 0.0038 0.0046 0.0032 0.0036 0.0034 0.0035 0.0034 0.0038
MTF 0.0020 0.0025 0.0023 0.0022 0.0018 0.0019 0.0021 0.0021 0.0021 0.0020

SRT 0.0011 0.0016 0.0016 0.0017 0.0018 0.0019 0.0021 0.0022 0.0021 0.0023

SDF 0.0011 0.0015 0.0016 0.0018 0.0018 0.0019 0.0020 0.0020 0.0020 0.0021

Random 0.0015 0.0020 0.0019 0.0019 0.0018 0.0018 0.0019 0.0019 0.0020 0.0019

compared with the fixed edge, V-edge move will not affect
the average distance to hotspots, i.e., the average channel rate
to hotspots. Consequently, the transmission data as well as the
completion percentage of two mechanisms are almost same. It
can be envisioned that two lines in Fig. 6 will coincide when
the hotspot is large enough. But for the practical environment,
the vehicle-mounted edge mechanism always achieve better
performance.

C. Comparison with Near-optimal Scheme

To evaluate the performance of the low-complexity L-step
scheme, we plot the completion percentage comparison of L-
step scheme and the near-optimal solution as well as other
benchmark schemes in Fig. 7. Specifically, performances in
different system environments are shown in subplots.

According to the results, the L-step scheme always achieves
the highest completion percentage compared with other four
benchmark schemes. For example in Fig. 7(b), when the
hotspot group size is ten, the L-step scheme improves the
completion percentage by about 5% compared with the best
bench scheme, which demonstrates the advantages of the path
planning criterion as well as the L-step lookahead techniques.
From the results in Fig. 7(a) and Fig. 7(c), we can observe that
the gap between the L-step scheme and near-optimal solution
is negligible under heavy traffic (large task sizes). In terms of
ten hotspot scenario, the gaps in both figures are no more than
6%.

Furthermore, we show the average execution time of all
schemes under different numbers of hotspots in Table II,
where the simulation parameters are the same as Table 1. As
we can observe, due to the global search, the near-optimal

scheme, GA-B&B scheme takes much longer time than other
schemes. Moreover, the execution time of GA-B&B scheme
increases quickly with the increase of hotspot number. For
instance, the average execution time of GA-B&B scheme for
ten hotspot scenario is about 430 seconds, while the maximum
task completion deadline is 120 seconds, which implies that
GA-B&B scheme is not suitable for online scheduling in the
mobile edge mechanism. On the other hand, the L-step scheme
is able to finish in less than 0.01 seconds, which indicates it
is more computational efficiency. Furthermore, we have also
analyzed the execution time of L-step scheme under large-
scale problems with 50 hotspots, and the time cost is about
0.0054s, which again demonstrates the practical feasibility of
the scheme.

Considering the robust performance in different environ-
ments, the short execution time as well as the negligible
gaps with the near-optimal solution, the L-step scheme is a
promising solution for large-scale problems in the mobile edge
mechanism.

D. Performance Analysis of L-step Scheme

The completion percentage of five schemes under different
task sizes is plotted in Fig. 8. Other simulation parameters
are the same as Table I. We can observe that the completion
percentage of schemes decreases globally with the increase
task size, which agrees with intuitions. However, almost no
change is found in the valid return data by V-edge when the
maximum task size exceeds 40 MB. For example, when the
maximum task size equals 40 MB, the completion percentage
for 10 hotspots is 38%, i.e., the expected valid computed data
is about K XE(I)xCP = 10x20.5x38% = 78 MB. As for the
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Fig. 8. Completion percentage of five schemes under different task sizes.

55 MB case, the completion percentage is about 29%. Thus,
the corresponding expected valid computed data is 81 MB.
This phenomenon is mainly caused by the finite computation
resource at the edge, which yields the close returned data with
all resources utilized. On the other hand, although the L-step
scheme always achieves the best performance, the completion
percentages of L-step scheme, MTF and SDF schemes are
almost the same when the task size exceeds 70 MB. This is
mainly because V-edge can only serve one or two hotspots
with such tasks before the completion deadline, thus the L-
step and other two schemes select the same serving hotspots,
which leads to the same performance.
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Fig. 9. Completion percentage of five schemes under different task deadline.

To investigate the impact of the completion deadline, Fig. 9
exhibits the completion percentage of five schemes under
different completion deadlines. From the results, we can
observe that the completion percentage increases linearly with
the extension of completion deadline. As mentioned before,
the completion deadline determines the serving time of V-
edge. It can be envisioned that V-edge will complete all tasks
if the deadline is late enough. Hence, under the late completion
deadline, the SRT which aims not to miss tasks, can achieve
better performance than MTF and SDF, and close to the L-step
scheme. Furthermore, the decreased gap between SRT and L-
step scheme at the deadline of 300 seconds proves the above
supposition. Based on Fig. 8 and Fig. 9, we can obtain the
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Fig. 10. Completion percentage of five schemes under different edge
computation resource.

robustness of the L-step scheme, especially the effectiveness
of the path planning criterion.

In Fig. 10, we reveal the relationship between the com-
pletion percentage and the computation resources of V-edge.
Actually, with multiple cores equipped, the sum CPU fre-
quency of the MEC servers ranges from 1 GHz to even 100
GHz in existing literature [22], [36]. As for Fig. 10, we
consider the maximum CPU frequency of 30 GHz, which
can be implemented easily in practice. As the results show,
the completion percentage increases with the increase of
computation resources, since more tasks can be computed with
larger CPU frequency. Again, the L-step scheme outperforms
other schemes. However, the increasing trend becomes much
slower when the CPU frequency exceeds 24 GHz. Especially,
as the CPU frequency increases from 5 GHz to 24 GHz,
the completion percentage increases over twofold from 30%
to 65%, while the completion percentage seems unchanged
after 24 GHz. Therefore, the system performance with the
CPU frequency less than 24 GHz is mainly affected by the
computation resources, and the computation resource lack
leads to the low completion percentage. As for the case of
CPU frequency larger than 24 GHz, the gap between different
schemes indicate the gain of the path planning criterion as well
as lookahead thoughts. For instance, compared with SDF, the
L-step scheme increases the completion percentage by 13% at
the CPU frequency of 25 GHz.

Considering the impact of the CPU frequency above, we
depict the completion percentage comparison of five schemes
under different hotspot groups with two CPU frequency
settings in Fig. 11. Especially, the simulated hotspot group
extends to 50, while Fig. 11(a) shows the 5 GHz scenario
and Fig. 11(b) shows the 25 GHz case, respectively. Although
the L-step scheme achieves the highest completion percentage
in both subplots, the gap between the L-scheme and the best
benchmark scheme in Fig. 11(a) is quite small, which is mainly
limited by the finite computation resources. The larger gap
in Fig. 11(b) indicates that the L-step scheme fully exploits
the utilization of computation resources. Accordingly, with
the CPU frequency of 25 GHz, the L-step scheme increases
the completion percentage of MTF by an average of 8%.
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On the other hand, when the hotspot group size exceeds
30, the performance of the L-step scheme is mainly affected
by the transmission bandwidth and completion deadline. For
example, the expected valid computed data for 30 hotspots
is about K x E(I) x CP = 30 x 20.5 x 33% = 202.95
MB, and 227.85 MB for 50 hotspots, respectively. The finite
bandwidth and fixed completion deadline limit uplink data,
and furthermore decrease valid computed data of V-edge.

In order to analyze the effectiveness and feasibility of the
L-step scheme, we compare the mobility efficiency of five
schemes under different hotspot group sizes with two CPU
frequency settings in Fig. 12. The mobility efficiency means
the valid computed data in unit V-edge’s trajectory. Since
the path planning criterion of MTF, SRT and Random is not
related with the distance, the hotspot increase does not change
the average length of the planned path, thus the mobility
efficiency of these three schemes fluctuates little with the
hotspot group size. Moreover, it is worth noting that, MTF
outperforms SRT and Random due to the consideration of task
size priority. On the other hand, the mobility efficiency of the
L-step scheme and SDF shows the positive correlation with the
hotspot group size. Due to the limited computation resources
in Fig. 12(a), MTF even achieves higher mobility efficiency

than the L-step scheme, i.e., V-edge in MTF computes less
valid data than the L-step scheme but with much shorter
trajectory. With enough computation resources in Fig. 12(b),
the L-step scheme achieves the highest mobility efficiency. For
example, the mobility efficiency of the L-step scheme under
30 hotspots with 5 GHz is 0.39, while the value increases to
0.57 with 25 GHz, which again proves the rationality of our
path planning criterion and lookahead thoughts. Taking into
consideration the high CPU frequency in practice, the L-step
scheme is able to achieve high mobility efficiency.

In sum of results above, the proposed vehicle-mounted
edge mechanism outperforms the traditional static edge mech-
anism. Furthermore, our proposed L-step scheme signifi-
cantly improves the system performance compared with other
benchmark schemes, and results under different environments
demonstrate the robustness and effectiveness.

VII. CONCLUSIONS

In this paper, we proposed a novel vehicle-mounted edge
mechanism in MEC, and considered the computation offload-
ing problem in the multiple hotspots scenario. Based on the
piecewise linear approximation and linear relaxation tech-
niques, we presented a GA-B&B algorithm to obtain the near-
optimal solution. Moreover, we designed a low-complexity
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L-step scheme for large-scale scenarios with less time cost.
In L-step scheme, we proposed a reward model with a path
planning criterion to decide V-edge’s trajectory, and proposed
a transmission scheduling algorithm for resource allocation.
Finally, performance evaluations demonstrate that the novel
mobile edge mechanism outperforms the traditional static
edge mechanism. Furthermore, comparison between L—step
scheme and the near-optimal solution demonstrates L-step
scheme achieves close performance in practice.

Considering the diverse system requirement on energy con-
sumption and latency requirement, we will extend the single
mobile edge to multiple mobile edges, and jointly optimize
these demands. Since this paper focuses on hotspots, we will
also work on the general case that mobile users offload tasks
to mobile edges. Besides, we will take the transportation
cost of V-edge into consideration, and evaluate the system
performance from an economic perspective. Furthermore, the
applications of the proposed mobile edge mechanism in ve-
hicular networks are needed to investigate.
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