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STTF: A Spatiotemporal Transformer Framework for
Multi-task Mobile Network Prediction
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Abstract—Accurately predicting mobile traffic and accessed user
amount is of great importance to network resource allocation,
energy saving, etc. However, due to the complicated environmental
contexts and complex interaction between mobile traffic and con-
nected users, mobile network prediction is still challenging. Besides,
the existing works could not be applied to large-scale networks
because of the limited hardware resources and unacceptable time
cost. In this work, we propose the spatiotemporal transformer
framework for the multi-task mobile network prediction. Our
proposed model contains three key parts. First, to capture the
complex interaction between mobile traffic and connected users,
we propose the temporal cross-attention encoder. Then, to identify
and extract the most relevant information from various semantic
relationships, we propose the hierarchical spatial encoder. This
information is then used to create a more comprehensive represen-
tation of the network. Finally, the subgraph sampling method could
significantly reduce the amount of computing power required and
have comparable performance to the methods that input the whole
network, enabling the model for real-world applications. Extensive
experiments demonstrate that our proposed model significantly
outperforms the state-of-the-art models by over 17% in both mobile
traffic prediction and connected user prediction.

Index Terms—Large-scale network, transformer, mobile traffic
prediction.

I. INTRODUCTION

THE explosive growth of smartphones and the Internet of
Things (IoT) has resulted in a doubling of global mobile

network traffic in just two years, reaching a staggering 115 EB
in Q4 of 2022 [1]. This trend poses a significant challenge
for communication operators, who must effectively allocate
network resources and maintain high-quality service to ensure a
satisfactory user experience. In the domain of mobile networks,
the number of users and mobile traffic are critical factors that
impact the performance of a base station [2]. As more users
connect to a base station, the generated volume of mobile traffic
increases proportionally, leading to slower data transfer rates,
increased latency, dropped connections, and, ultimately, network
congestion [3].
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Fig. 1. The correlation coefficient between the mobile traffic and connected
users of different base stations varies greatly.

Mobile network prediction refers to the process of predict-
ing the future number of connected users and the volume of
mobile traffic generated in a mobile cellular network to enable
communication operators to allocate network resources effec-
tively, maintain high-quality service and detect abnormal user
behaviours [4], [5], [6]. Compared to the separate prediction,
the joint prediction could better reflect this interdependent re-
lationship and more accurately predict the future base station
traffic and user count. Besides, joint prediction only requires a
comprehensive model which could reduce the number of models
to lower the maintenance burden on communication operators.
Moreover, the separate prediction may result in inconsistent
trends between the two predictions leading to incorrect network
resource allocation. However, currently, there is a lack of joint
prediction methods for mobile traffic and the number of con-
nected users.

Looking back at existing works and digging into the practical
mobile cellular network, we encounter three major challenges
for the joint prediction of mobile traffic and connected users.

How to capture the complex interaction between mobile traffic
and connected users? Mobile traffic and connected users are
two critical elements of the base station, which are closely
intertwined. However, Fig. 1 highlights the diverse correlations
between mobile traffic and connected users in various base
stations, underlining the importance of analyzing these two
factors together. However, existing studies on mobile cellular

1536-1233 © 2025 IEEE. All rights reserved, including rights for text and data mining, and training of artificial intelligence and similar technologies.
Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Bodleian Libraries of the University of Oxford. Downloaded on August 18,2025 at 19:41:57 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-2399-2829
https://orcid.org/0000-0002-4343-703X
https://orcid.org/0000-0001-7985-6263
https://orcid.org/0000-0002-6150-3846
https://orcid.org/0000-0003-0419-5514
mailto:tongli@mail.penalty -@M tsinghua.edu.cn
mailto:tongli@mail.penalty -@M tsinghua.edu.cn


GONG et al.: STTF: A SPATIOTEMPORAL TRANSFORMER FRAMEWORK FOR MULTI-TASK MOBILE NETWORK PREDICTION 4073

network prediction have mainly focused on modelling mobile
traffic and have overlooked the impact of connected users on
network performance.

How to identify rich semantic relationships between base
stations? The relationships between base stations are diverse and
complex, with many factors influencing their performance and
the mobile traffic they generate such as the distance relationship
and the similar flow relationship. To improve the accuracy of
prediction, it is essential to capture the relationships that exist
between base stations. However, existing works largely focus
on the single spatial relationship, failing to capture further
semantics between base stations [7], [8], [9].

How to build a scalable and powerful model for large-scale
mobile networks? The size of networks presents a significant
challenge to machine computing power. Researchers commonly
use graph neural network (GNN) [10] and graph convolutional
network (GCN) [11] to capture relationships between base sta-
tions, effectively modelling complex dependencies and interac-
tions between nodes [12], [13], [14], [15], [16], [17]. However,
due to the O(mn) and O(n2) computing complexity of GNN
and GCN, their computation becomes increasingly difficult and
requires significant computing power as the graph size increases.
Additionally, GNN and GCN have limited generalization to
new graphs or removed nodes, as they are highly dependent
on specific graph structures.

To overcome the aforementioned challenges, in this study,
we propose a model that is applicable to large-scale networks
for joint prediction of mobile traffic and the number of con-
nected users. To address the first challenge, we propose the
cross-attention mechanism in the temporal encoder. This mech-
anism allows us to exchange features between mobile traffic and
connected users, enabling the model to effectively capture the
complex interactions between these two types of data. To address
the second challenge, we propose a hierarchical spatial atten-
tion mechanism to capture the various spatial features through
different semantic relationships, which allows us to effectively
identify and utilize the most relevant information from different
levels of the network. We then fuse these features to produce a
more comprehensive representation of the network. To address
the third challenge, we design a subgraph sampling strategy.
By limiting each node in the network to interact with only a
specific number of its neighbours in one hop, we can reduce
the computational complexity of the network, making it more
manageable for real-world applications.

The main contributions can be summarized as follows:
� We address the joint prediction problem of mobile traf-

fic and the number of connected users, uncovering their
intricate correlation which provides benefits for joint pre-
diction. Compared to separate predictions, joint prediction
considers interdependence, reduces complexity and pro-
vides a more comprehensive understanding of the mobile
network.

� We propose a spatiotemporal transformer framework
(STMP) for the multi-task mobile network prediction
in large-scale networks. Our framework includes cross-
attention and hierarchical spatial attention mechanisms
to capture complex interactions between these data and
identify semantic relationships between base stations.

Additionally, we design a subgraph sampling strategy to
reduce computing power requirements.

� Our model is evaluated on two real-world datasets, demon-
strating its accuracy and effectiveness. Extensive experi-
ments demonstrate that our proposed model significantly
outperforms the state-of-the-art models by over 17% in
both mobile traffic prediction and connected user predic-
tion. We also analyze how different types of base stations
prioritize semantic relationships and the influence of the
subgraph sampling strategy’s number of neighbours and
hops.

II. PRELIMINARY

A. Semantic Relationships Between Base Stations

To better understand the traffic and user prediction tasks,
we discover four relationships between base stations to capture
their spatial and temporal features [12], [18], [19]. These four
relationships model the relationships between base stations from
different temporal and spatial perspectives.

Proximity Relationship: The proximity relationship between
two base stations is established when their physical locations are
within a certain distance of each other. The formulation can be
formed as,

ai,j =

⎧⎨
⎩
exp

(
−disi,j

σ2

)
, exp

(
−disi,j

σ2

)
≥ ε

0, exp
(
−disi,j

σ2

)
< ε

(1)

where disi,j denotes the distance between base station i and base
station j, and σ and ε are thresholds to control the distribution
and sparsity of the adjacency matrix of proximity relationship,
where we set σ and ε are 37 and 0.5. When two base stations
are closer, there is a higher likelihood of traffic shifting between
them because mobile users are more likely to connect to a nearby
base station if they experience low signal strength or disconnect
from their current base stations. This behaviour of mobile users
can result in traffic shifting between the two base stations, which
can affect the overall traffic patterns and usage of the mobile
network.

Function Similarity: POI(Point of Interest) is the basic func-
tional unit and place in a city, such as schools, hospitals, shop-
ping malls, etc. It is a fine-grained place where people carry out
social production and life in the city. People in POIs with similar
functions will generate traffic with similar patterns. For instance,
during rush hours, people tend to commute to and from work
at similar times, resulting in the generation of large amounts of
traffic simultaneously by base stations located near traffic hubs.
So, if POI distributions of base stations are similar, their traffic
flows are more likely similar. We first calculate the number of
each category of POI in the vicinity of the base station and then
calculate the cosine similarity of each base station to get the
similarity matrix. The formulation can be formed as,

bi,j = cos
(
vPOI
i , vPOI

j

)
, (2)

where bi,j denotes the cosine similarity of POI distribution be-
tween base station i and base station j, and the vPOI

i represents
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the POI distribution vector of base station i. For each base sta-
tion, we select the top 20 base stations with the highest similarity
and consider them to have a function similarity relationship.

Pattern Similarity: After an in-depth analysis, we found that
each base station has a unique and consistent traffic pattern
that reflects its typical usage by mobile users. Although a base
station’s traffic pattern is relatively stable, there is still some
variability in real mobile traffic flow, which fluctuates around the
traffic pattern on a weekly scale. Additionally, a base station’s
location can influence its traffic pattern. To group similar base
stations based on their normalized patterns, we use the hier-
archical clustering method, an unsupervised machine learning
method. If two base stations are in the same cluster and located
within a certain distance, we consider them to have a pattern
similarity relationship, which can be formed as,

ci,j =

{
1 · ai,j , vpi = vpj

0, otherwise.
(3)

where vpi denotes the results of clustering the pattern series of
base station i.

Flow Similarity: Though base stations have a pattern simi-
larity relationship, their traffic flow may still be very different,
such as their absolute value and the changing speed of their traffic
flows. To further explore the temporal features of base stations,
we propose a Similar Series relationship. We use dynamic time
warping methods [20] to calculate the similarity between the
traffic series of base stations and get the similarity matrix D.
The formulation can be formed as,

di,j = DTW
(
vflowi , vflowj

)
, (4)

where di,j denotes the traffic series similarity between base
station i and base station j, and vflowi represents the traffic flow
of base station i. We select the top 20 base stations with the
highest similarity and consider them to have the flow similarity
relationship.

III. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

This study considers a heterogeneous network scenario, as
illustrated in Fig. 2, with a network architecture comprising
three core components: a central controller module, an edge
server module, and base stations. The central controller manages
the operational status of each edge server, oversees resource
allocation, and coordinates key functions to ensure seamless
network performance. Each edge server performs essential tasks
such as perception, data collection, analysis, and storage. It also
controls the base stations within its vicinity, managing their data
uploads and downloads.

The centralized prediction model architecture is built on four
key modules: local data collection, local data upload, global
model training, and prediction result delivery. Each edge server
collects traffic and the connected user data from its associated
base stations preprocesses this data, and uploads it to the central
controller. The central controller aggregates data from all edge
servers to build a unified model generates global predictions, and

Fig. 2. The diagram of mobile traffic prediction.

then distributes these predictions back to each edge server. Based
on these predictions, the edge servers manage the power settings
and operational status—such as sleep or active mode—of their
respective base stations.

Traffic data and the connected user data are critical indicators
of base station load. Mobile traffic represents the total volume
of data transmitted through a base station over a specific period,
encompassing activities such as voice calls, text messages, in-
ternet browsing, video streaming, and other services initiated
by mobile devices. This traffic, typically measured in units like
kilobytes (KB), reflects the intensity of network usage and data
demand within a base station’s coverage area. Higher traffic vol-
umes indicate greater data demand, placing increased pressure
on the base station’s resources.

Similarly, the number of connected users indicates how many
mobile devices or users are actively utilizing the network at
any given time. These users, within a base station’s coverage
area, engage in activities like voice calls, messaging, or data
services, directly impacting the station’s load. The interplay
between user numbers and traffic levels determines the overall
load, influencing network performance, service quality, and
resource allocation efficiency. Effectively managing this load
enables network operators to optimize base station capacity and
maintain consistent service for all users.

Early traffic forecasting approaches often focused solely on
the temporal distribution of traffic at individual base stations,
using statistical methods or simple machine learning models.
However, in urban environments, evaluating the load of each
base station in isolation is insufficient. Users frequently move
between base stations, bringing their data needs with them. This
mobility causes the load to shift dynamically across multiple
base stations as traffic volumes and user density change accord-
ing to movement patterns. Thus, the load on any given base
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station is influenced not only by its local users and traffic but also
by user activities and movements among neighboring stations.
Understanding these spatial interactions is crucial for accurate
load forecasting and effective network management.

In addition to spatial interactions, historical data plays a
vital role in predicting future base station loads. By analyzing
past patterns of user connections and mobile traffic, trends and
recurring behaviors can be identified, offering valuable insights
into future usage patterns.

The centralized forecasting model integrates spatial factors,
enabling a comprehensive analysis that considers both temporal
and spatial dimensions. By leveraging both historical and current
data, this model achieves greater accuracy than traditional single
time-series forecasting methods. It can simultaneously predict
mobile traffic and the number of connected users by capturing
the inherent correlation between these indicators, while also
accounting for the spatiotemporal dependencies between base
stations. This capability allows for more accurate forecasts, im-
proved resource allocation, and optimized network performance
in urban areas.

B. Problem Definition

The joint prediction is a multi-task learning problem where
both tasks are related but distinct. Modeling them together
allows us to improve predictive accuracy by learning a shared
representation for both tasks. Specifically, the number of users
ut affects traffic patterns directly through usage behavior, while
traffic tt reflects the underlying user activity. However, it is not
sufficient to model this relationship within a single base station,
as users and traffic between different base stations can affect
each other at varying times. This inter-base station interaction
introduces a more complex dynamic, where the user count and
traffic load at one station may influence those at neighboring
stations.

To capture this complexity, it is essential to model both
tasks jointly, accounting for the spatial-temporal dependencies
between base stations. Predicting mobile traffic and user count
together helps us capture the nuanced interactions between user
numbers and traffic load across stations.

Mathematically, we refine the joint modeling framework to
capture these interdependencies. The updated joint prediction
problem can be formulated as estimating a mapping function f
that captures the interactions between mobile traffic tt, the num-
ber of users ut, and the spatial-temporal relationships between
base stations:

t̂t+1, ût+1 = fθ (tt,ut, g (tt,ut)) (5)

where θ are the model parameters, g(tt,ut) is a function that
explicitly models the interaction between the number of users
and traffic at time t, incorporating dependencies both within
and between base stations. This function leverages the mobile
traffic prediction task and user count prediction task to improve
the model’s generalization by capturing shared features. The
detailed definition of notations is illustrated in Table I.

TABLE I
SUMMARY OF NOTATIONS

IV. METHOD

We first elaborate on the general framework of the spa-
tiotemporal transformer framework (STMP) as shown in Fig. 3.
We have adopted the encoder-decoder framework of the trans-
former [21] in our model. The mobile traffic and user series
are first encoded separately and then decoded using the same
decoder. To capture the temporal features and complex interac-
tions between these two types of data, we first apply the temporal
cross-attention encoder. After that, we apply the hierarchical
spatial encoder to capture and integrate diverse spatial features.
Then, we apply the same decoder to decode the embeddings of
mobile traffic and connected users.

A. Temporal Cross-Attention Encoder

Patching: To process the input time series in an efficient
manner, we adopt the patch-based approach in our model. The
input series is first divided into patches which can be either
overlapped or non-overlapped. We denote the patch length as
P and non-overlapped, then the patching process will divide
the historical series with length I into Np patches, where Np =
� I
P �+ 1. With the use of patches, the number of input tokens can

reduce from I to approximately I
P , which implies the memory

usage and computational complexity of the attention map are
significantly decreased. Moreover, patches can capture the local
shapes of the time series by being aware of the local context
instead of the point-wise value of the time series. This allows
the model to better capture the local patterns and fluctuations in
the data.

Temporal cross-attention encoder: Then, to make our model
use the sequence, we add the positional embedding [21] to the
input embedding before the encoder. The Positional Embedding
has the same dimension as the embeddings so that the two can
be summed. In this work, we use sine and cosine functions. In
the temporal cross-attention encoder, we apply the multi-head
cross-attention mechanism. The multi-head mechanism could
focus on the different aspects of temporal features, both long
and short terms. The cross-attention mechanism could exchange
the features of the mobile traffic and users, which is a method
used to exchange information between different input sources.
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Fig. 3. The Framework Overview of STMP. The Temporal Encoder applies the Cross-Attention mechanism. The Spatial Encoder applies the Hierarchical Spatial
Attention mechanism.

By implementing the cross-attention mechanism, the model
can learn to exchange relevant features between mobile traf-
fic and connected users, allowing for a more comprehensive
understanding of relationships between two inputs and better
capturing the complex and dynamic nature of mobile networks
and improving the accuracy of prediction, which can be formed
as,

T t = CrossAttention (F t,Fu,Fu)

= MultiHead (F t,Fu,Fu)

= Concat (head1, . . ., headh)W
0 (6)

headi = Attention
(
F tW

Q
i ,FuW

K
i ,FuW

V
i

)
(7)

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V.

(8)

In the cross-attention mechanism, the queries are modified
to the intermediate features of other tasks which introduce
cross-interaction between the mobile traffic and users. These
interactions are further exploited to obtain the temporal traffic
featuresT t and user featuresTu ∈ RNp×d, where d denotes the
embedding dimension.

B. Hierarchical Spatial Encoder

Subgraph Sampling: To efficiently apply our model to large-
scale mobile networks, we utilize subgraph sampling. This
approach breaks down the entire network into smaller, more
manageable subgraphs, which are processed independently. For

each semantic relationship, we constrain each node to interact
with a limited number Nn of its nearest neighbours within
one hop. In other words, when processing a subgraph, each
node only considers its closest neighbours. This method greatly
reduces computational complexity, enhances scalability, and
facilitates parallel processing, making the model more efficient
and manageable for large networks.

Hierarchical spatial encoder: To create an efficient hierar-
chical spatial encoder, we introduce a novel hierarchical spatial
attention mechanism that integrates diverse spatial features.
Our proposed encoder is composed of two distinct Transformer
blocks, each serving a specific purpose in feature extraction. The
first block leverages a Transformer encoder to capture correla-
tions between the central node and its neighboring nodes for
each semantic relationship. The second block, a fusion encoder,
is designed to select and combine the most relevant features from
various relationships. This hierarchical approach enables more
comprehensive spatial feature learning and can be formulated as
follows:

St = SelfAttention(Tt) (9)

Sc = Split(St) (10)

Ft = SelfAttention(Sc) (11)

where the split means to extract the embedding of the central
nodes. This approach enables the integration of a wide range
of environmental features, resulting in a robust and flexible
architecture adaptable to various applications. By employing this
method, we create an encoder capable of effectively combining
diverse environmental features, providing a comprehensive and
nuanced understanding of the surrounding space.
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To elaborate, the first block of the encoder is designed to
perform attention between the central node and its neighboring
nodes for each semantic relationship. This attention mechanism
extracts the most relevant spatial features for the central node.
The resulting embeddings for each central node are then passed
into the second block of the spatial encoder, known as the fuse
encoder. This block performs attention across embeddings from
different semantic relationships, fusing them to produce a unified
and refined representation.

C. Prediction and Training

The input of the decoder consists of two parts: the latter part
of the historical series with length I −O to provide the recent
information, and placeholders with length O filled with zero.
Then, the patching module and position embedding module are
applied to be aware of the local context. Besides, The encoded
embedding is obtained by concatenating the output of the mobile
traffic and connected users that have passed through the hierar-
chical spatial encoder. Based on the input and the embedding, the
decoder could combine the spatial and temporal dependencies
and generate the prediction of mobile traffic and connected users.
After the decoder, we utilize two Multi-layer Perceptron (MLP)
as the predictor to predict the future mobile traffic ât+1 and
connected users b̂t+1 respectively.

The computational complexity of the model is primarily
driven by three key components: patch embeddings, temporal
encoders, and the hierarchical spatial encoder. The patch em-
bedding process, which converts input sequences into patches,
has a complexity of O(NP × d), where NP is the number of
patches, and d is the embedding size. The temporal encoder and
the hierarchical spatial encoder, which leverages Transformer
layers to capture temporal and spatial dependencies, contribute
a complexity of O(N2

P × d) each. Since these components
function sequentially, their complexities are additive, leading
to an overall model complexity of O(N2

P × d).
Algorithm 1 outlines the spatiotemporal transformer frame-

work (STMP) training procedure. STMP is designed to jointly
predict mobile traffic t̂t+1 and the number of connected users
ût+1 at base stations by effectively leveraging both temporal
and spatial relationships. Initially, the mobile traffic and user
data are divided into patches and transformed into patch em-
beddings P t,Pu. These embeddings are processed through
temporal encoders to capture time-dependent features and en-
able feature exchange between traffic T t and user Tu. The
hierarchical spatial encoder captures correlations between the
central node and its neighboring nodes, accounting for vari-
ous semantic relationships. Finally, the decoder combines both
spatial and temporal dependencies to predict future mobile
traffic and the number of connected users. STMP is trained
in mini-batches to minimize the difference between predicted
values t̂t+1, ût+1 and their corresponding true values tt+1, ut+1.
We use the Mean Squared Error (MSE) loss function to op-
timize the model’s parameters, which can be expressed as
follows,

L =
∥∥ât+1 − at+1

∥∥
2
+
∥∥∥b̂t+1 − bt+1

∥∥∥
2
. (12)

Algorithm 1: Spatiotemporal Transformer Framework
(STMP).

Input: The input of Encoder Et,Eu ∈ RNg×(Nn+1)×I ,
The input of Decoder Dt,Du ∈ RI , the patch length P

Output: Mobile traffic and connected users prediction for
the next time step t̂t+1, ût+1

1 P t,Pu = Patch Embedding (Et,Eu)
P t,Pu ∈ Ng × (Nn + 1)× I

P × d, Segment the
input and transform each patch into
embedding space.

2 T t,Tu = Temporal Encoder (P t,Pu) Capture
temporal dependencies and
interactions, according to (7).

3 St,Su = Spatial Encoder (T t,Tu) Capture
spatial correlations among different
regions and their neighbors.

4 F t,Fu = Fuse Encoder (St,Su)
F t,Fu ∈ RNg× I

P ×d, Combine the spatially-
and temporally-aware representations
of traffic and user data.

5 M t = Mean(F t), Mu = Mean(Fu)
6 F en = Concat(F t,Fu), F de = Concat(Dt,Du);
7 P de = Patch Embedding (F de);
8 Hde = Decoder (P de,F en) Hde ∈ R2 I

P ×d

9 t̂t+1, ût+1 = Predictor (Hde) Predict the future
traffic and connected users.

V. EXPERIMENT AND RESULTS

A. Experimental Settings

1) Datasets.: Shanghai Dataset: The Shanghai Datasets are
anonymous base station mobile traffic collected from August
1st to August 31st, 2014 in Shanghai [22]. The datasets contain
4505 base stations and more than 150,000 users. Each dataset
entry includes the anonymous ID of the device, the start and
the end time, the anonymous ID of the base station the device
is connected to, and the amount of data transmitted in the
connection. We contribute 1.96 billion tuples of entries to 4505
base stations every 30 minutes, according to the tracing logs.

Nanjing Dataset: The Nanjing Datasets are also anonymous
base station mobile traffic collected from February 2nd to March
31st, 2021 [23]. The datasets contain 14724 base stations in
Nanjing, 3.2 times larger than Shanghai Datasets, and more than
1,250,000 users. Each time step is 30 minutes.

Table II shows the statistics of the Shanghai dataset and
Nanjing dataset. The large-scale and fine-grained datasets can
ensure the validity of mobile traffic reality and the model test.

2) Metrics:: To handle the large absolute value of mobile
traffic and focus on the magnitude, we apply log-normalization
to mobile traffic. In evaluating the performance of mobile traffic
prediction, we carefully select three metrics: Root Mean Squared
Error (RMSE), Mean Absolute Error (MAE), and Coefficient of
Determination (R2).

Each of these metrics provides unique insights into the re-
gression model’s performance. Respectively, MAE and RMSE
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TABLE II
STATISTICS OF THE DATASETS USED IN OUR EXPERIMENTS

measure accuracy and variability, while R2 assesses how well
the model fits the data. By considering all three metrics, we
can gain a more comprehensive understanding of the model’s
performance and its potential limitations.

3) Baselines:: We elaborately select the following ten rep-
resentatives to be compared with our proposed model, which
covers representative classical machine learning models [24],
[25], state-of-the-art spatial-temporal models [8], [12], [13],
[26], [27], [28], multi-task prediction methods [29], [30] and
representative Transformer-based models [31], [32], [33].

Support Vector Regression (SVR) [24]: SVR is an extension
of SVM for regression tasks that predicts continuous output
based on input features. It captures complex and non-linear
relationships in the data.

Auto-Regression Integrated Moving Average (ARIMA) [25]:
ARIMA is a statistical model for analyzing and predicting time
series data that uses three parameters to represent auto-regressive
terms, moving average terms, and differences or orders.

Graph Attention Network (GAT) [27]: GAT is a dynamic
graph neural network that learns node weights, capturing varying
connection importance. It handles changing graphs or contextual
variables. We use mask graph attention with GAT.

Graph Sample and Aggregate (GraphSAGE) [28]: Graph-
SAGE is a graph representation learning method that enhances
the scalability and performance of GNN. It maximizes the ratio
of sampling the current neighbour node to sampling the entire
graph.

Deep Traffic Predictor [8]: DeepTP is an end-to-end deep
learning model that predicts spatial-temporally dependent cellu-
lar traffic over a lengthy period. It handles complex and dynamic
traffic patterns influenced by spatial and temporal factors, using
a sequential module and a broad feature extractor.

Spatial-Temporal Graph Convolutional Network
(STGCN) [12]: STGCN combines GCN and gated CNN
architectures to capture spatial-temporal patterns in
graph-structured data. It uses GCN to mine the graph’s
topology and gated CNN to explore dynamic mobile traffic
features. The model predicts future mobile traffic and its code
is publicly available.

Temporal-Graph Convolutional Networks(T-GCN) [13]: T-
GCN combines GCN and GRU to model time series and capture
the dynamic mobile traffic change of node attribution.

MC-STGCN [29]: MC-STGCN contains a cross-scale GCN
for learning the multi-scale spatial features a cross-scale tempo-
ral network for capturing intra- and inter-scale temporal correla-
tions and a feature correlation learning component for capturing
the feature correlations.

GinAR [30]: GinAR introduces interpolation attention and
adaptive graph convolution to effectively model spatial-temporal
dependencies and recover missing variables in limited datasets,
replacing the fully connected layers of traditional recursive units
for accurate multivariate time series forecasting.

Graph Multi-Attention Network (GMAN) [26]: To describe
the effect of spatial-temporal variables on traffic conditions,
GMAN employs an encoder-decoder architecture with spatial-
temporal attention blocks. Input traffic characteristics are en-
coded by the encoder, and the decoder forecasts the output time
step sequence.

Autoformer [31]: Autoformer is a deep learning architec-
ture that handles complex time series data using the Auto-
Correlation mechanism to progressively decompose temporal
patterns. Based on time series data periodicity, it captures sub-
series dependencies to capture complex temporal relationships.

PatchTST [32]: PatchTST utilizes two key components, seg-
mentation of time series into subseries-level patches which
are served as input tokens to Transformer, and channel-
independence where each channel contains a single univariate
time series that shares the same embedding and Transformer
weights.

FR-Net [33]. FR-Net explores dynamic period features by
decomposing time series into period and trend components
using frequency domain rotations, employing a period fre-
quency rotation module for predicting the period component
and a patch frequency rotation module for predicting the trend
component.

4) Parameter Settings:: Our deep learning model is imple-
mented using the Adam optimizer [35]. We utilize the Mean
Squared Error (MSE) loss function and set the learning rate to
0.0005. The length of the historical traffic series I is set to 12,
while the patch length p is set to 3 for predicting the next O = 1
step, which provides both higher accuracy and faster speed. To
capture the semantic relationships in the data, we choose Ng =
4 relationships and Nn = 20 neighbours for each relationship.
The dimension of the embedding vector in both the encoder and
decoder d is set to 64 and the number of layers is set to 2. To
evaluate the performance of our model, we divide the datasets
into three parts: training, validation, and testing with a ratio of
0.7:0.15:0.15. We train it on a Linux server with eight GPUs
(NVIDIA RTX 2080 Ti * 8). The code and data are available at
https://github.com/tsinghua-fib-lab/STTF.

B. Overall Performance

In Table III, we display the overall performance of our model,
temporal models (SVR, ARIMA), spatial models (GAT, Graph-
SAGE), spatial-temporal models (DeepTP, STGCN, T-GCN,
GMAN), the multi-task prediction methods (MC-STGCN, Gi-
nAR), and Transformer-based models (Autoformer, PatchTST)
to predict the next time stamp of Shanghai and Nanjing. From
the results, we have the following findings:
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TABLE III
OVERALL PREDICTION PERFORMANCE OF OUR MODEL IN COMPARISON WITH COMPARED ALGORITHMS ON SHANGHAI AND NANJING DATASETS

Our framework steadily achieves the best performance: Our
model achieves superior results on both datasets and outper-
forms other compared baselines. TheR2 improvement of STMP
compared with the second-best performance model (GMAN), is
around 3.7% to 5.6% in mobile traffic prediction. In connected
user prediction, the R2 improvement is about 1.4% to 3.3%, and
the RMSE reduction is around 23% to 45%.

Spatial models perform poorly in the mobile traffic prediction
task: Spatial models are commonly used to analyze spatial data
such as geographic patterns and location-based information.
However, these models may not have the necessary modules to
model time series data or capture temporal features. As a result,
their performance may be inferior to models that incorporate
temporal information. By incorporating temporal components
into spatial models, we can achieve more accurate predictions
and better performance in real-world applications.

It is essential to model both spatial information and tempo-
ral information: The spatial-temporal models could not only
capture the spatial features but also capture the environment
information, which has enhancements for spatial models and
temporal models. Besides, the Transformer-based models also
lack the module to capture the spatial information resulting in
the poor performance of mobile traffic prediction. Meanwhile,
compared with STGCN and T-GCN, we can conclude that our
spatial encoder, consisting of four semantic relationships, can
capture more spatial and temporal features than only the distance
relationship and improve about 6.8% to 9.8%.

Cross-attention mechanism enables better feature exchange:
Compared with MC-STGCN and GinAR, we could find that the
cross-attention mechanism enables more effective exchange of
features between mobile traffic and the number of connected
users, leading to better integration of information from both
sources. This mechanism allows the model to focus on relevant
aspects of each feature set, improving the ability to capture
complex relationships between them. In contrast, multi-task
prediction methods typically rely on parameter sharing to model

multiple variables simultaneously. While this approach can be
efficient, it often struggles to capture the unique characteristics
of each variable fully.

C. Ablation Study

To gain a better understanding of the performance of our
proposed model, we conducted an ablation study that evaluated
the effectiveness of four different variants of the model. Specif-
ically, we predicted the traffic and connected users separately,
removed the decoder, the temporal encoder, the spatial encoder,
and the patch-based approach, and changed the cross-attention
mechanism to the self-attention mechanism separately.

The results of the ablation study are presented in Table IV,
which clearly shows that our model outperforms the six variants.
The joint prediction could uncover the intricate correlation and
improve the model performance. The temporal encoder in our
model is a critical component of our model as it enables the
capture of the complex interactions between mobile traffic and
connected users, as well as the mining of the temporal character-
istics of the data. Without the temporal encoder, the model would
not be able to effectively capture these temporal dependencies,
around 7%. Similarly, the spatial encoder is essential for extract-
ing various environmental information related to base stations.
Without the spatial encoder, the model would not be able to
effectively obtain this information through its neighbours. The
decoder component of our model plays a critical role in decoding
the encoded embeddings and predicting future values accurately,
which is essential for mobile traffic prediction. The patch-based
approach can aid the model in learning patterns and long-term
dependencies more effectively, while also reducing memory
requirements, as shown in Fig. 6(a). With the use of patches,
the model could capture the local shapes of the time series by
being aware of the local context instead of the point-wise value
of the time series, which allows the model to better capture the
local patterns and long-term fluctuations.
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TABLE IV
PREDICTION RESULTS OF DIFFERENT VARIANTS

Fig. 4. Semantic Relationship Prioritization in Different Types of Base
Stations.

D. Case Study

• Semantic Relationship Prioritization: To assess how differ-
ent types of base stations prioritize various semantic relation-
ships, we carried out a series of experiments. According to the
distribution of POI around the base stations, we categorized the
base stations into four distinct types, each of which demonstrated
its own unique mobile traffic and user connection patterns. The
model outputs the attention map of the fuse encoder. Besides,
we also test the

Fig. 4 displays the resulting attention maps, revealing how
each type of base station prioritizes different semantic relation-
ships. Our findings indicate that traffic patterns are more heavily
influenced by the proximity relationship, while user patterns are
more strongly affected by the pattern similarity relationship. The
findings of this experiment can help researchers develop new
network mapping techniques that take into account the unique
characteristics and behaviours of different types of base stations.
By understanding how different types of base stations prioritize
semantic relationships, researchers can create more accurate and
detailed maps of mobile networks.

Fig. 5. Influence of the number of neighbours and the hops in a subgraph.

• Influence of the number of neighbours and hops: We conduct
a series of experiments to investigate the impact of varying
the number of neighbours and neighbour hops in the subgraph.
Specifically, we randomly selected different numbers of neigh-
bours from the neighbours of different hops and evaluated
the performance of our proposed model on the Shanghai and
Nanjing datasets.

The results of these experiments are presented in Fig. 5,
where we report the R2 results. We observed that when the
same number of neighbours were used, the performance of one-
hop neighbours was better than that of two-hop and three-hop
neighbours. This suggests that the immediate neighbours of a
base station contain more valuable information for prediction
tasks than those further away. Furthermore, as the number
of neighbours increased, the model was able to obtain more
environmental information and achieved better performance.
These results highlight the importance of carefully selecting the
number of neighbours and neighbour hops when constructing
subgraphs for our model. While including more neighbours can
provide additional information, balancing this with the increased
computational cost is essential.
•Effectiveness of the spatial encoder: In order to demonstrate

the effectiveness of the spatial encoder in our proposed model
and the benefits of sampling subgraphs, we compared the per-
formance of our proposed model using subgraphs as input to the
spatial encoder with the performance of GCN and RGCN using
the entire base station network as input.

The results of these experiments are presented in Table V.
We observe that GCN could only input one type of base station
network and was not able to effectively incorporate various envi-
ronmental information, resulting in poor performance compared
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TABLE V
PREDICTION RESULTS OF DIFFERENT SPATIAL MODELS

Fig. 6. GPU Usage.

to our proposed model. On the other hand, RGCN could take the
entire base station network as input, but this approach required
significant computing power. Despite their capability to capture
global features, these methods encounter significant scalability
challenges when applied to large-scale cellular networks. In
contrast, our approach of sampling subgraphs and inputting them
into the spatial encoder achieved comparable performance to
RGCN, while significantly reducing the amount of computing
power required. These results demonstrate the effectiveness of
our proposed approach for incorporating environmental infor-
mation into our model using subgraphs.

Additionally, we conducted a comparison of GPU memory
usage between our method and baselines. As illustrated in
Fig. 6(b), the results reveal that the GPU memory requirement for
baselines escalates with the increasing number of nodes, while
the GPU memory usage of our method remains consistently sta-
ble. Our method employs a subgraph strategy that significantly
reduces computational complexity. As the graph size increases,
our method maintains a stable computational complexity, while
other approaches experience a substantial rise in complexity.
This rapid increase in other methods demonstrates the superior
scalability and practicality of our approach.
• Influence of the input length: In order to investigate the

influence of the input length, we conducted experiments by
changing the input length of the historical series. And compare
the performance with GMAN.

The outcomes of this experiment are depicted in Fig. 7. It
is observed that with the increase in input length, there is a
slight improvement in the performance across all models. This
trend underscores the efficacy of the multi-head cross-attention
mechanism in capturing long-term dependencies. However, it
is also noted that a longer input length significantly escalates
the demand for computing power. Therefore, to strike a balance

Fig. 7. Influence of the input length.

between model performance and computational efficiency, we
have chosen to set the input length at 12.
• Performance of Semantic Relationships between Base Sta-

tions: In order to demonstrate the effectiveness of different
semantic relations between base stations, we conducted exper-
iments by selecting one relationship at a time. The result of
this experiment is presented in Table VI. Our findings indicate
that incorporating all four semantic relationships simultaneously
leads to better performance than using a single relationship,
This suggests that each relation captures different aspects of
the relationships between base stations, and utilizing all of them
leads to a more comprehensive understanding of the behaviour
of base stations in the urban environment. Of the four individual
relationships, the proximity relationship performs best in traffic
prediction, while the pattern similarity relationship performs
best in the connected user prediction, consistent with the result
of the attention map in Fig. 4.

•Transfer experiment: To test the transferability of our model,
we conduct the transfer experiment, where the model trained
on the Nanjing dataset was tested on the Shanghai dataset,
indicating Shanghai-T, and similarly indicating Nanjing-T. The
Table VII shows the results of the transfer experiment. Accord-
ing to the results, we can find that transferring between cities
does not have a significant impact on the performance of our
model, which proves the transferability and robustness of our
model.

VI. RELATED WORKS

A. Mobile Traffic Prediction

Mobile traffic Prediction is considered a general time series
prediction task, and considerable efforts and models have been
devoted to improving its performance. Hong et al. [36] employ
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TABLE VI
PREDICTION RESULTS OF DIFFERENT SEMANTIC RELATIONSHIPS BETWEEN BASE STATIONS

TABLE VII
PREDICTION RESULTS OF TRANSFER EXPERIMENT

the support vector regression (SVR), and Shu et al. [37] em-
ploy the seasonal auto-regression integrated moving average
(SARIMA) into mobile traffic prediction to model the short-
period mobile traffic series. However, since SARIMA and SVR
rely on the average volume of past traffic series to anticipate,
they fail to capture the fast change in traffic flow and they
could not model the long-term and non-linear relationship. Li et
al. [38] propose a software-defined cellular radio access network
(SDCRAN) architecture, and Xu et al. [39] propose a Gaussian
Process (GP) method. These two methods concentrate on the
single base station in cellular networks to predict short-term
mobile traffic. However, due to the computing complexity of
these methods being O(n2), these models could not be applied
to a large-scale cellular network mobile traffic prediction task.

Owing to the flourishment of deep learning, various neural
network models have been proposed for cellular traffic predic-
tion recently. Fu et al. [40] employ Long-Short Term Mem-
ory (LSTM) [34] and Gated Regression Unit (GRU) [41] for
mobile traffic prediction. However, the aforementioned models
disregard geographical information in favour of solely taking
into account temporal data. Besides, researchers employ the
convolutional neural network (CNN) in their model to charac-
terize spatial dependence. Zhang et al. [42] propose the STN
model for precise network-wide mobile traffic prediction. Fur-
thermore, several works also apply graph convolutional network
(GCN) [11] for mobile network prediction. Fang et al. [43]
use GCN to model geographic dependency, where the edges
represent the spatial relationships between nodes. Feng et al. [8]
propose an end-to-end model for acquiring spatially dependent
and long-term cellular traffic, which utilizes a sequential module
to model complex temporal changes and a broad feature ex-
tractor to model spatial relationships and encode external data.
Wang et al. [7] propose an LSTM unit and a unique autoencoder-
based deep model for spatial modelling, as well as spatial-
temporal modelling and prediction, which were implemented in

cellular networks. Wang et al. [9] present a unique breakdown
of in-cell and inter-cell data flow, and apply a graph-based deep
learning technique for large-scale cellular traffic prediction. Hu
et al. [44] propose a spatial-temporal down-sampling neural
network, which is adept at dynamically and simultaneously
capturing the temporal, local, and global spatial dependencies
in mobile traffic.

Overall, mobile traffic prediction has transformed from a
general time series prediction task to a spatial-temporal series
prediction task, and many efforts and models have been devoted
to improving its performance. Recent works have focused on
deep learning models, including LSTM, GRU, GNN, and GCN,
which aim to capture both the temporal and spatial dependencies
of mobile traffic and have been applied in various scenarios in
cellular networks. However, some of these models have high
computational complexity, limiting their applicability to large-
scale mobile traffic prediction tasks. Besides, Mobile traffic and
connected users are two critical elements of the base station,
which are closely intertwined. The existing works lack the mod-
elling of connected users in mobile cellular network prediction.

B. Road Traffic Prediction

Since road traffic prediction shares the same mathematical
formulation as mobile traffic prediction, here we review related
works. For example, Yu et al. [12] propose STGCN, merging
GCN and gated CNN to model dynamic mobile traffic char-
acteristics and capture the topological structure of the graph
using the distance-based adjacency matrix. Zhao et al. [13]
introduce T-GCN, a model that combines GCN and GRU to
capture the topology similarity of the graph using the distance-
based adjacency matrix and to model dynamic mobile traffic
changes of node attribution. Guo et al. [14] propose a new
attention-based spatial-temporal graph convolutional network
(ASTGCN) model, which contains three independent compo-
nents to model three temporal properties of mobile traffic, and
the three temporal patterns are weighted fused to be the final
output. Wu et al. [45] propose GraphWaveNet to model the
spatial-temporal dependency, which develops a novel and learn-
able adaptive dependency matrix through node embedding and
a stacked dilated convolution is applied to expand the receptive
field. In order to predict traffic conditions for time steps in
the future at various locations, Zheng et al. [26] propose a
graph multi-attention network that adapts an encoder-decoder
architecture, where both the encoder and the decoder consist
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of multiple spatial-temporal attention blocks to model the im-
pact of the spatial-temporal factors. Diao et al. [46] propose
DGCNN to track dynamic spatial dependencies by a dynamic
Laplacian matrix estimator which could capture the stable global
long-term spatial-temporal traffic relationships and the local
traffic functions. Feng et al. [47] propose DeepSTN+, a deep
learning-based convolutional model, which employs the con-
volution structure to model the long-range spatial dependence
and a temporal attention-based fusion mechanism to capture the
temporal features.

However, road traffic prediction is more similar to predicting
the connected users in the mobile network since both involve
a simple addition or subtraction relationship. However, the
amount of traffic carried by each user is different, leading to a
more complex relationship between mobile traffic and connected
users.

C. Transformer-Based Time Series Prediction Models

The success of the Transformer also motivates the develop-
ment of time series prediction, and various Transformer-based
models have been proposed in recent years. While the vanilla
Transformer model is a popular choice for time-series predic-
tion, it has some limitations due to its quadratic time and memory
complexity caused by the self-attention mechanism.

LogTrans [48] utilizes convolutional self-attention layers with
Log-Sparse design to collect the local information and lessen the
space complexity. Although the LogSparse avoids the point-wise
dot product of the key and query, its result is still dependent
on a single time step, ignoring the time series’ local structure.
Informer [49] uses the ProbSparse self-attention with distillation
approaches to effectively extract the most crucial keys. Auto-
former [31] utilizes the concepts of decomposition and auto-
correlation from conventional time series analysis techniques.
The auto-correlation may link at the patch level, but because it
was handmade, it does not take into account all of the semantic
data included in a patch. FEDformer [50] employs a Fourier-
enhanced structure to attain linear complexity, and mixture-of-
experts techniques are used to combine the trend components
obtained by moving average kernels of varying kernel sizes.
Pyraformer [51] employs the pyramidal attention module with
connections between and across scales, as well as a linear
complexity. PatchTST [32], which uses channel-independence
and divides time series into subseries-level patches, with each
channel containing a single univariate time series that uses the
same Transformer weights and embeddings as the other series.
FR-Net [33] explores dynamic period features by decomposing
time series into period and trend components using frequency
domain rotations, employing a period frequency rotation module
for predicting the period component and a patch frequency
rotation module for predicting the trend component.

The above Transformer-base models are designed to excel
in long-term time series prediction tasks with their ability to
capture complex temporal patterns and dependencies. However,
they may not be as effective in short-term prediction tasks, which
require models to capture rapid changes and fluctuations in the
data. Besides, these models do not fully incorporate spatial

TABLE VIII
COMPARISON OF RELATED WORK WITH OUR MODEL

information, which is crucial in accurately predicting mobile
traffic. Meanwhile, due to the above reasons, there is a lack
of work using the Transformer framework in spatial-temporal
sequence prediction tasks.

D. Multi-Task Prediction

Compared with single-task prediction, multi-task prediction
shares a common feature representation or parts of the model.
This allows the model to learn a more generalizable and robust
representation of the data, potentially improving performance
across all tasks, and reducing the computational resources.

Li et al. [52] propose a multi-task graph Synchronous neu-
ral network (MTSGNN) to synchronously predict the spatial-
temporal data at the regions and transitions between regions.
Wang et al. [53] propose a multi-task adversarial spatial-
temporal network model to predict the crowd flow and flow OD
simultaneously. Wang et al. [29] propose feature correlation-
aware spatiotemporal graph convolutional networks to predict
the traffic flow and traffic speed. Yu et al. [30] propose GinAR
which introduces interpolation attention and adaptive graph con-
volution to effectively model spatial-temporal dependencies and
recover missing variables in limited datasets, replacing the fully
connected layers of traditional recursive units for accurate mul-
tivariate time series forecasting. Currently, there are few works
on multi-task prediction of mobile networks, and we are the first
to jointly predict traffic and the number of connected users.

E. Summary and Discussion

Table VIII provides a summary of the advantages and disad-
vantages of the related works. Most mobile and other traffic
prediction methods, such as DeepTP [8], STGCN [12], and
TGCN [13], primarily focus on the proximity relationships
between nodes, neglecting other semantic relationships and
the use of subgraph techniques, which increases computational
complexity. Transformer-based time series prediction methods,
such as Autoformer [31], FR-Net [33], while effective for tem-
poral patterns, fail to capture spatial features, resulting in sub-
optimal performance for mobile traffic prediction. Additionally,
current multi-task prediction methods, such as MTSGNN [52],
MCSGCN [29], and GinAR [30] do not account for the
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interdependencies between base stations, making them difficult
to adapt for mobile traffic prediction scenarios.

VII. CONCLUSION

Our study aimed to investigate the relationship between
mobile traffic and the Number of Connected Users within
a base station network and develop a predictive model
for large-scale prediction. We introduced the spatiotemporal
transformer framework, a novel model that leverages Cross-
Attention and hierarchical spatial attention mechanisms to
capture the complex interactions between the two variables.
The Cross-Attention mechanism captures the interdependence
between mobile traffic and connected users, while the hier-
archical spatial attention mechanism identifies and uses the
most relevant information from various semantic relation-
ships. Our subgraph-picking method enables us to apply our
model to real-world applications without excessive comput-
ing power. This approach has significant implications for
the practical implementation of our model, allowing us to
scale up to larger networks while maintaining high prediction
accuracy.

In our future work, we plan to extend our proposed approach
to evaluate its effectiveness in diverse settings by applying
it to other cities and regions. This will help us assess the
generalizability of our model and identify any limitations or
challenges in applying it to various mobile network environ-
ments. Moreover, we aim to investigate the transferability of
our model to different types of mobile networks, such as 5G
networks, which have unique characteristics and requirements.
We will explore how our model can be adapted to these net-
works and applied in network optimization and management.
Finally, we will continue collaborating with industry partners
to integrate our model into existing mobile network man-
agement systems and improve network performance and user
experience.
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