
1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

1

Mobility-Aware Joint Task Scheduling and Resource
Allocation for Cooperative Mobile Edge Computing

Umber Saleem, Yu Liu, Sobia Jangsher, Member, IEEE, Yong Li, Senior Member, IEEE,
and Tao Jiang, Fellow, IEEE

Abstract—Mobile edge computing (MEC) has emerged as a
new paradigm to assist low latency services by enabling computa-
tion offloading at the network edge. Nevertheless, human mobility
can significantly impact the offloading decision and performance
in MEC networks. In this context, we propose device-to-device
(D2D) cooperation based MEC to expedite the task execution
of mobile user by leveraging proximity-aware task offloading.
However, user mobility in such distributed architecture results in
dynamic offloading decision that instigates mobility-aware task
scheduling in our proposed framework. We jointly formulate
task assignment and power allocation to minimize the total
task execution latency by taking account of user mobility,
distributed resources, tasks properties, and energy constraint
of the user device. We first propose Genetic Algorithm (GA)-
based evolutionary scheme to solve our formulated mixed-integer
non-linear programming (MINLP) problem. Then we propose
a heuristic named mobility-aware task scheduling (MATS) to
obtain effective task assignment with low complexity. The ex-
tensive evaluation under realistic human mobility trajectories
provides useful insights into the performance of our schemes
and demonstrates that, both GA and MATS achieve better latency
than other baseline schemes while satisfying the energy constraint
of mobile device.

Index Terms—Mobile edge computing, device-to-device coop-
eration, human mobility, task scheduling, latency minimization.

I. INTRODUCTION

With the convergence of Internet of Things (IoT), 5G,
and artificial intelligence, resource hungry and mission-critical
smartphone applications are evolving rapidly [1]. However, the
mobile devices are facing the dilemma of limited computing
resources, which makes it challenging for them to embrace

Copyright (c) 2015 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org.

This work was supported in part by The National Key Research and De-
velopment Program of China under grant 2019YFB180003400, the National
Nature Science Foundation of China under U1936217, 61971267, 61972223,
61941117, 61861136003, Beijing Natural Science Foundation under L182038,
Beijing National Research Center for Information Science and Technology
under 20031887521, and research fund of Tsinghua University-Tencent Joint
Laboratory for Internet Innovation Technology.

U. Saleem, Y. Liu, Y. Li are with Beijing National Research
Center for Information Science and Technology (BNRist), Depart-
ment of Electronic Engineering, Tsinghua University, Beijing 100084,
China. (Email: anb17@mails.tsinghua.edu.cn, liuyu2419@126.com and liy-
ong07@tsinghua.edu.cn).

S. Jangsher is with the Department of Electrical Engineering, Insti-
tute of Space Technology (IST), Islamabad 44000, Pakistan (Email: so-
bia.jangsher@ist.edu.pk)

T. Jiang is with the Department of Electronic and Information Engineering,
Huazhong University of Science and Technology, Wuhan 430074, China.
(Email: Tao.Jiang@ieee.org)

such applications. Although cloud computing can cope with
large amounts of data and processing, the Quality-of-Service
(QoS) would be compromised due to the centralized architec-
ture which does not provide location awareness and mobility
support.

In this regard, mobile edge computing (MEC) has emerged
as a promising approach which provides powerful computing
and storage capabilities closer to the end users [2]. Especially,
MEC allows computation offloading that has been proven to
improve the application response time and energy efficiency
[3]. Meanwhile, the device-to-device (D2D) cooperation based
MEC architecture that leverages the nearby idle resources for
task execution has attracted a lot of attention [4]. D2D com-
putation offloading not only tackles the resource contention in
case of stand-alone MEC server, but also benefits from lower
latency and higher data rates of D2D communications [5]. In
this way, the task offloading performance is scaled up without
any additional cost. However, a key design challenge is to
determine the destination for offloading due to the distributed
architecture. Therefore, task scheduling is the fundamental
problem while designing offloading mechanism for users in
cooperative MEC network.

Besides task scheduling and resource management prob-
lems, human mobility can largely impact the computation
offloading experience. With the frequent location changes of
offloading user, the feasible allocation of communication and
computation resources vary over the time. Specifically, time
varying channel gains degrade the QoS between mobile user
and MEC server, and thus it becomes critical to uphold the
task offloading latency. In this context, D2D cooperation can
enable proximity-aware task offloading with reduced delay by
leveraging frequent contacts with nearby devices. However,
human mobility in presence of heterogeneous computing re-
sources and tasks makes the offloading decision e.g., what,
when, and where to offload highly dynamic. Therefore, more
sophisticated task scheduling and resource allocation policies
should be designed by considering mobility-driven uncertainty
to enhance the task offloading experience of a mobile user in
the distributed system.

This motivates us to propose mobility-aware task offloading
framework in the D2D-enabled cooperative MEC system. By
considering the aforementioned challenges, we design task
scheduling schemes to reduce the total latency under the en-
ergy consumption constraint of the mobile user with multiple
tasks along known trajectory [6]. In particular, our proposed
schemes utilize user location information while deciding the
offloading location and time, and meanwhile deal with the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

2

underlying power-delay tradeoff.

A. Contribution and Organization

The main contributions of our work can be summarized as
follows.

1) We consider human mobility and propose mobility-aware
task scheduling in a D2D-enabled cooperative MEC
framework to minimize task offloading latency. Accord-
ingly, we jointly formulate task assignment and power
allocation as a mixed-integer non-linear programming
(MINLP) problem by taking account of user mobility,
distributed computation capacities and task properties in
presence of user energy constraint.

2) To solve the formulated MINLP problem, we propose
two task scheduling approaches. First approach is the Ge-
netic Algorithm (GA)-based evolutionary scheme which
obtains the solution directly. Second approach is a low
complexity heuristic scheme named Mobility-Aware Task
Scheduling (MATS), which yields further insight into
designing effective offloading mechanism by considering
network dynamics.

3) We use real-world dataset of human mobility trajectories
[7] to evaluate the performance of our proposed schemes
under various key parameters. Comparison with other
baselines depicts that, both GA and MATS achieve lower
latency while ensuring the desired energy consumption
of the mobile user.

The rest of the paper is organized as follows. Section II pro-
vides an overview of relevant works. Section III presents the
system model and discuses the mobility, task and computation
offloading models in detail. Section IV discusses the latency
minimization problem formulation, while Section V describes
our proposed approaches to obtain effective task scheduling
strategies. Section VI presents the results and performance
analysis. Section VII finally concludes this work and highlights
future direction.

II. RELATED WORK

Mobile edge computation offloading has been widely con-
sidered to improve task execution latency or energy in various
scenarios [4]. For the simple case of single-user single-server
MEC system, the authors investigated offloading decision
(local/remote execution) together with computation resource
allocation to design effective offloading strategies [8]–[11].
However, several new challenges are raised when multiple
users share the stand-alone MEC server. Keeping in view
the finite radio and computing resources in multi-user single-
server MEC scenario, the authors studied joint communication
and computation resource allocation besides the computation
offloading decision [12]–[15]. Although the preceding works
demonstrated efficacy of MEC, the rapidly increasing users
and wide range of applications demand for ubiquitous com-
puting paradigm.

In this regard, cooperative MEC systems were proposed
consisting of heterogeneous MEC servers. Specially, D2D
collaboration for task offloading has received a lot of attention
[16]–[19]. The underlying motivation is two-fold. First, plenty

of underutilized resources available in the network bring in
diversity without any additional cost. Second, the proximity
gain, low latency, energy efficiency and better coverage of
D2D communication makes it ideal for ubiquitous MEC [5].
However, a fundamental design challenge in cooperative MEC
systems is task scheduling i.e. where to offload, which is
unique due to distributed computing resources and varying
tasks characteristic.

The works in [16]–[19] studied task scheduling while
considering computation offloading problem in D2D-enabled
MEC network specifically. Pu et. al [16] investigated energy
efficient task execution by taking into account the incentive
constraints, while Zhao et. al [17] investigated similar problem
by jointly considering user association and power allocation.
Online task offloading algorithms based on Lyapunov opti-
mization were proposed in both works to minimize the energy
consumption of task execution. In contrast, Feng et. al [18]
jointly formulated task scheduling, subcarrier assignment, and
power allocation as a stochastic optimization problem with
objective to minimize the average expenses of collaborating
devices in terms of wireless communication and computation.
The authors proposed a suboptimal algorithm by decoupling
the optimization variables. To minimize the latency for a single
user multi-task cooperative MEC network, Xing et al. [19]
jointly formulated task assignment and wireless resource allo-
cation as MINLP problem. The authors proposed a suboptimal
solution based on the optimal solution to the relaxed convex
problem.

It is important to note that, task assignment and resource
allocation strategies proposed in the aforementioned studies
were designed while considering static users in distributed
MEC network. However, user mobility-driven uncertainty
makes task scheduling decision more complex in presence of
heterogeneous radio and computing resources [4]. Hence, user
location information needs to be incorporated while designing
task scheduling schemes for mobile users in distributed MEC
scenario.

Considering mobile nature of users, Wang et. al [20] and
Hong et. al [21] modeled user mobility in D2D computation
offloading scenario. Wang et al. [20] maximized the proba-
bility of successful task computing by exploiting statistical
property of contact rates together with the computation capa-
bility while making the offloading decision. In particular, the
authors used convex optimization to determine the amounts
of computation to be offloaded to other devices. However, the
task scheduling strategy proposed in [20] cannot be adopted
for atomic tasks which cannot be partitioned and need to be
executed as a whole either locally or remotely. Moreover, the
task diversity need to be considered together with the resource
diversity while making the task offloading decision for a multi-
task multi-server scenario. On the other hand, the authors in
[21] proposed a probabilistic model for connectivity based on
a continuous-time Markov chain with aim to minimize the
cooperative task execution time in D2D network. A heuristic
algorithm based on linear programming was devised to solve
the connectivity-aware computation assignment. Although the
authors incorporated the connectivity-awareness while mini-
mizing task execution time, under the consideration of user

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

3

mobility, the QoS guarantee is critical [3]. Meanwhile, the
accuracy of intuitive models cannot be guaranteed in diverse
real life scenarios due to which they may yield ineffective task
scheduling strategies.

Unlike the prior works, the authors in [22]–[24] exploited
user mobility prediction motivated by the fact that human
trajectory can be predicted with 90% accuracy using trajectory
data mining [6]. Plachy et. al [22] and Wang et. al [23]
studied load balancing among the heterogeneous MEC servers
using different approaches. In particular, Plachy et. al [22]
proposed VM migration to solve user mobility problem. The
authors considered MDP-based dynamic resource allocation
which jointly performed VM migration and communication
path selection to minimize the task execution delay of users.
On the contrary, the authors in [23] focused on reducing
the delay within the mobile edge network by formulating
task assignment as a constraint satisfaction problem. The
authors proposed a heuristic approach by taking into account
the task properties and resource distribution among MEC
servers. However, both [22] and [23] overlooked the energy
constraint while minimizing the computation offloading delay.
Meanwhile energy availability at the user directly impacts
the transmission latency, and thus degrades the overall task
offloading latency. Keeping in view that mobile users are
resource-poor as compared to static ones, Zhu et al. [24]
exploited user mobility prediction to formulate energy min-
imization problem while considering latency as a constraint.
Nevertheless, while minimizing task execution latency for a
resource-constrained mobile user the underlying power-delay
tradeoff is the fundamental challenge to be addressed.

Although the prior works have studied mobility-aware com-
putation offloading, the problem of task execution latency
minimization subject to energy constraint of mobile user in
cooperative MEC scenario has not been addressed so far. In
our work, we novelly present the joint task assignment and
power allocation schemes to minimize latency while preserv-
ing energy of mobile user in D2D-enabled MEC network.

III. SYSTEM MODEL

We consider a D2D-enabled cooperative MEC network,
where the idle and resource rich devices such as phone,
tablet, laptop and desktop computer can serve as fog/edge
nodes to facilitate computation offloading by establishing
direct D2D links [25] with a resource limited task device
(TD) indexed by 0. We assume that TD is carried by a
walking user moving along a trajectory. Meanwhile, TD has
K independent computation intensive tasks to execute denoted
by the set K = {1, 2, ...,K}. Along the path of TD, M
resource devices (RDs) including cellphones, smart wearable
devices, tablets, and laptops are distributed. The set of RDs
is denoted as M = {1, 2, ...,M}. We consider a network
assisted architecture, where the base station (BS) has global
network information including details about user’s mobility,
computational resources, and tasks. We assume that BS can
discover the updated network topology and location of users
by using bootstrapping program similar to [26].

For task offloading, TD can connect to any of the RDs
by establishing a direct D2D link (using technologies such

Fig. 1: Mobility-aware task offloading in D2D-enabled coop-
erative MEC network.

as WiFi-Direct or Bluetooth) with the assistance of BS. BS
anticipates TD’s mobility in order to schedule its tasks to RDs
such that the computation offloading latency is minimized.
Fig. 1 illustrates the considered scenario where the tasks of
mobile user are scheduled on RDs along user’s trajectory.
The notations that will be used in the rest of this paper are
summarized in Table I.

A. User Mobility Model
As human trajectory can be predicted with 90% accuracy

using trajectory data mining [6], [23], we build our mobility
model based on obtained trajectory of a pedestrian. Particu-
larly, we assume that trajectory of TD is available for time
[0, T], where t = 0 is regarded as the time when task buffer
of TD is full with K tasks. Assuming that the space/region
of cell is partitioned into 2-D space, the location of TD at
time instant t ∈ [0, T] is represented as l(t) = {x(t), y(t)}.
Hence, we have trajectory of TD with initial and final location
as l(t = 0) and l(t = T), respectively.

Similar to the existing works in [27] and [28], we assume
the system to operate in a slotted structure to precisely capture
the user mobility. Hence, we divide the mobility trajectory over
time T in N time slots of equal duration τ such that T = Nτ .
The set of time slots is represented as N = {1, 2, ..., N}.
We choose the value of N such that the location of TD is
approximately unchanged in each slot. Here, we emphasize
that the velocity of walking user is relatively slow and the
distance covered over short time does not vary at large [24].
Now, the horizontal location of TD in slot n ∈ N is denoted as
l̂(n) = l(nτ). Based on the location of TD in slot n ∈ N , the
distance dm(n) between TD and RD m ∈M can be obtained
as

dm(n) =‖ l̂(n)− lm ‖, (1)

where lm denotes the location of RD m ∈ M, and ‖ . ‖ is
the Euclidean norm.

B. Computation Offloading Model

Each computation task can be described as Ik
∆
= (Dk, Ck),

k ∈ K, where Dk and Ck denote the task input data size

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

4

TABLE I: NOTATIONS

Notation Definition Notation Definition
K Set of tasks amk (n) Task assignment
M Set of RDs a Task assignment profile
N Set of slots pm(n) Power allocated to RD m in slot n
m Index of RD p Power allocation profile
n Index of slot pmax Maximum transmit power of TD
τ Slot duration tloc

k Local execution latency of task k
Dk Data size of task k eloc

k Local execution energy of task k
Ck Computation complexity of task k toff

k Transmission latency of task k
fm Computation capacity of RD m eoff

k Transmission energy of task k
f0 Computation capacity of TD 0 texe

k Remote execution latency of task k
dm(n) Distance between TD and RD m in slot n ε0 Expected energy consumption of TD
Rm(n) Data rate of RD m in slot n T tot Total latency of task execution

(in bits) and computation intensity (in CPU cycles per bit),
respectively. Considering that the tasks cannot be partitioned
[4], [18] each task can either be offloaded to one of RDs for
remote execution in a slot n ∈ N , or executed locally on TD.

We introduce the task assignment variable as amk (n) ∈
{0, 1}, where amk (n) = 1 means that a task k ∈ K is
scheduled for remote execution on device m ∈M during slot
n ∈ N . The respective task assignment profile is provided as
a = {amk (n)| k ∈ K, m ∈ M, n ∈ N}. In each slot, an
RD can be assigned at most one task to avoid the server side
queueing delay [29]. However, multiple tasks can be scheduled
in the same slot on different devices. The execution decision
of a task k ∈ K can be determined from the task assignment
variable as

N∑
n=1

M∑
m=1

amk (n) = 0, local execution;

N∑
n=1

M∑
m=1

amk (n) = 1, remote execution;

(2)

It is important to note that we build our model based on
pedestrian’s trajectory, where slot duration can be sufficiently
large to execute a task [9]. Therefore, it is empirically estab-
lished that for each task the required computation is always
completed within the same slot. Hence, it can be inferred that
each task is executed by only one device (either TD or RD
m ∈M) along the path.

Based on the task assignment, the computation offloading
latency of a task is determined by the local execution or
offloading delays, where the latter involves transmission as
well as remote execution time. We discuss the model for each
of these processes in the following sections.

1) Local execution: In case of higher computation offload-
ing cost, local execution is preferred. We assume that TD has
a fixed CPU frequency denoted as f0 (in CPU cycles per
second). Then the time consumed by TD to execute a task
locally is given as

tloc
k =

N∑
n=1

M∑
m=1

(1− amk (n))CkDk

f0
. (3)

The energy consumed by TD for computing task k locally

is given as [4]

eloc
k =

(
1−

N∑
n=1

M∑
m=1

amk (n)

)
κ0CkDkf

02
, (4)

where κ0 denotes the effective capacitance coefficient with
a constant value which depends on the chip architecture of TD
[10]. Keeping in view the limited energy of TD, we assume
that the total energy consumed by TD for local computing and
communication over N slots is limited by the expected energy
consumption ε0 [19].

2) Communication: Tasks which are scheduled for remote
execution need to be transmitted via D2D links. The transmis-
sion delay of D2D communication is affected by the wireless
channel states, and the size of the task input size. Therefore,
offloading decision should take into account the communi-
cation cost as well. We use TDMA scheme to model the
communication between TD and RDs. Hence, TD transmits
each task to its corresponding RD via TDMA by establishing
a D2D link. We assume independent block fading channels for
D2D links, such that channel state remains invariant during a
slot and varies across different slots. We model the channel
between TD and RD m ∈ M during slot n ∈ N by
considering distance dependent path loss, multipath fading and
shadowing. Thus the channel gain gm(n) can be given as [30]

gm(n) = θdm(n)−α‖hm‖2ζ, (5)

where θ and α are the path loss coefficient and exponent,
respectively. dm(n) is the distance between TD and RD m
during slot n, and its value can be obtained using (1). hm is the
Rayleigh fading coefficient, and ζ is the log-normal distributed
shadowing. It is important to note that, we consider pedestrian
mobility which has relatively slow velocity. Meanwhile, the
slot duration τ is chosen such that there is insufficient change
in user’s location over the same slot. Hence, it is practical to
assume that the little variation in distance will not affect the
transmission rate of D2D link during a slot [24].

As TD has time varying channel gain due to mobility,
we assume that it can adopt its transmission power to each
resource in a particular slot. Let pm(n) denote the transmission
power from TD to resource m ∈M in slot n ∈ N . Then the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

5

power allocation profile can be defined as p = {pm(n)| m ∈
M, n ∈ N}. Let B denote the total channel bandwidth in
Hz. Using Shannon formula, the maximum achievable data
rate from TD to RD m in slot n is given as

Rm(n) = Blog2

(
1 +

pm(n)hm(n)

N0

)
, (6)

where N0 denotes the noise power. Based on the task
assignment decision and the corresponding data rate, the time
required to offload task k is given as

toff
k =

N∑
n=1

M∑
m=1

amk (n)Dk

Rm(n)
. (7)

Assuming fixed transmission rate Dk/t
off
k [19], the energy

consumed by TD for offloading a task k can be expressed as

eoff
k =

N∑
n=1

M∑
m=1

amk (n)pm(n)Dk

Rm(n)
. (8)

3) Remote Execution: Once a task is offloaded to RD it is
executed remotely and the output results are downloaded at
TD. Here we assume that computation results are relatively
much smaller in size and the results downloading takes negli-
gible time [10], [31]. The time consumed by resource m ∈M
to compute a task k ∈ K is given as

texe
k =

N∑
n=1

M∑
m=1

amk (n)DkCk
fm

, (9)

where fm denotes the computation capacity of RD m ∈M,
while the above equation holds only if amk (n) = 1. Keeping
in view the diversity among the devices, we assume that the
computation capacity of RDs vary, and thus the selection of
RD effects the remote execution delay.

IV. PROBLEM FORMULATION

In this work, we aim to minimize the total computation
offloading latency of a mobile TD including the local execu-
tion, offloading and remote execution delays. We define our
objective as

T tot =
K∑
k=1

(
tloc
k + toff

k + texe
k

)
. (10)

In order to reduce the offloading delay, we make the task
offloading decision by utilizing the location information at
different time slots along user’s trajectory. We formulate joint
task assignment and resource allocation problem to minimize
the total latency of task execution as follows

P1: min
a,p

T tot (11a)

s.t.
K∑
k=1

M∑
m=1

amk (n)Dk

Rm(n)
+ max

k∈K,
m∈M

(
amk (n)DkCk

fm

)
≤ τ,∀n ∈ N

(11b)
K∑
k=1

(eloc
k + eoff

k) ≤ ε0, (11c)

N∑
n=1

M∑
m=1

amk (n) ≤ 1, ∀k ∈ K (11d)

K∑
k=1

amk (n) ≤ 1, ∀m ∈M,∀n ∈ N (11e)

0 ≤ pm(n) ≤ pmax, ∀m ∈M ∀n ∈ N (11f)
amk (n) ∈ {0, 1}, ∀k ∈ K,∀m ∈M,∀n ∈ N (11g)

Here, (11a) shows our objective function with the task
assignment and power allocation as optimization variables.
Constraint in (11b) bounds the offloading latency of the tasks
assigned within a slot. It shows that the tasks scheduled in each
slot should finish execution within the same slot. Constraint
in (11c) depicts that the total energy consumed by TD for
local computing and transmission over N slots should not
exceed the expected energy consumption ε0. Constraint in
(11d) presents that a task can be assigned to at most one
resource in a particular slot as a task cannot be partitioned. On
the other hand, constraint in (11e) presents that each resource
can be assigned at most one task in a particular slot, which
ensures the fairness among RDs. It is important to note that
constraints in (11d) and (11e) together ensure that each task
would be scheduled in at most one slot; otherwise would be
executed locally. Constraint in (11f) shows that the transmit
power from TD to any resource in a slot is bounded by
maximum power pmax in uplink. Constraint in (11g) shows that
task assignment is a binary decision variable which implies
that a task cannot be partitioned.

The formulated optimization problem has a mixed integer
objective function with binary and continuous variables amk (n)
and pm(n), respectively. In addition, the constraints in (11b)
and (11c) are non-linear due to relationship between task
assignment amk (n) and power allocation pm(n). In terms of
complexity, the formulated problem is NP-hard [32], and thus
the exhaustive search approach is unacceptable.

Theorem 1: The joint task assignment and power allocation
problem in P1 is NP-hard.

Proof: In order to prove the NP-hardness of problem P1,
we first consider special case of task assignment and power
allocation over single slot. As user location does not vary at
large during a slot, we assume that power allocation is fixed
such that the local energy consumption constraint of user is
satisfied for the slot duration. As a consequence, the problem
P1 is transformed to latency minimization by optimal task
assignment. We then reduce the multiple knapsack problem
which is a well-known NP-hard problem [32] to this special
case.

Multiple knapsack problem [33]: Given a set of items and a
set of knapsacks, there is a weight and profit of each item
and a capacity of each knapsack. Then multiple knapsack
problem is to select and assign a disjoint subset of items to a
unique knapsack such that the total profit of selected items is
maximized, while the capacity of knapsack is no less than the
weight of the selected items. In this context, we can regard
the set of K tasks and M RDs as the items and knapsacks,
respectively. The computing resources required by each task
is the weight, while the computation offloading latency is the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

6

profit. The computation resource of RD is the capacity. Then,
filling the items to knapsacks is equivalent to assigning the
tasks to the RDs such that the computation offloading latency
is minimized without exceeding the available resources of
RDs. Since this special case of problem P1 is NP-hard, it can
be inferred that the problem of task assignment and power
allocation over multiple slots is also NP-hard.

V. JOINT TASK ASSIGNMENT AND POWER ALLOCATION

To solve our formulated MINLP latency minimization prob-
lem, we propose two different approaches: 1) GA which is a
metaheuristic belonging to larger class of evolutionary algo-
rithms, 2) MATS which is a low complexity search heuristic.

A. GA-Based Task Scheduling

We adopt GA to obtain a baseline solution motivated by the
fact that GAs have been widely adopted by the researchers
to solve the job-shop scheduling problem (JSSP) [34]. Our
task scheduling problem is similar to JSSP where a set of
jobs has to be processed on a set of machines such that a
specific optimization criterion is satisfied. It is hard to obtain
solution for such problems in polynomial time. In this regard,
unlike heuristic search methods, GA is a meta-heuristic that
operates on a population of solutions rather than a single
solution and has been reported to produce better solutions. In
particular, GA inspires from the process of natural evolution
and survival of the fittest to evolve solution [35]. Starting with
an initial population (set of solutions), GA selects individual
solutions (chromosomes) as parents to produce children for the
next generation using genetic operations such as crossover,
mutation, and fitness evaluation. Over successive iterations,
the population converges toward the near-optimal solution.
We describe the respective terms, and provide work flow of
GA-based scheduling scheme in Algorithm 1 in the following
discussion.

1) Chromosomes and Population: In GA, the term chromo-
some refers to a potential solution of the optimization problem,
and population is a set of candidate solutions/chromosemes.
We provide a chromosome representation as vj = {a1

1(1) , ...,
amk (n),..., aMK (N), p1(1), ..., pm(n), ..., pM (N) } , where j
is the chromosome sequence number. Each variable on the
chromosome is referred as a gene. The chromosomes are
encoded by GA in a way that the constraints in (11f) and
(11g) are always satisfied. Then a population is defined as
P ={ v1, ...,vj , ..., vP } , where P is the population size or
number of chromosomes.

2) Fitness Function: A fitness function is used to check
quality of each solution in the population, while a lower
fitness value means higher quality. In most of the optimization
problems, the fitness function is in accord with the objective
function [36]. In this paper, we aim to minimize the total
task offloading latency and meanwhile satisfy the local energy
consumption requirement and task assignment constraints.
Consequently, we define the fitness function in terms of our
objective and add penalty to punish the chromosome violating

the constraints in (11b)-(11e), similar to the works in [37] and
[38]. The fitness function is given as

f = T tot + γ
(

max{0,
K∑
k=1

M∑
m=1

Dk

amk (n)Rm(n)
− τ}+

max{0,
K∑
k=1

(elock + eoffk)− ε0}+

max{0,
M∑
m=1

amk (n)− 1}+ max{0,
K∑
k=1

amk (n)− 1}
)
,

(12)

where γ is a very large positive number. It is important
to note that, the penalty function in (12) speeds up the
convergence by avoiding the infeasible regions.

3) Selection: In each iteration, i.e. generation, the par-
ents are selected from existing population such that better
offsprings (solutions) are produced in the new generation.
We select the parents using tournament method, which ran-
domly selects Nt chromosomes from the population and runs
tournaments among them. The chromosome with best fitness
is selected as a parent for the crossover and mutation. In
comparison to other selection procedure, this method has lower
computational cost and maintains diversity in solutions.

4) Crossover and Mutation: GA iteratively performs selec-
tion, crossover and mutation to evolve the population from one
generation to the next. Specifically, crossover and mutation are
the two techniques which are adopted to avoid the slow and
premature convergence to suboptimal solutions. The crossover
operation is performed by choosing a crossover point on a pair
of parent chromosomes and then exchanging the genes. On the
other hand, mutation produces new offsprings by randomly
altering the genes on parent chromosomes.

We provide a brief summary of Algorithm 1. As a first step

Algorithm 1 GA-Based Task Scheduling

1: Input: K, M, N , Ik, ∀k ∈ K, fm ∀m ∈ M, f0, ε0,
pmax, τ , G, δ, γ

2: Output: a, p
3: Encode a and p into a chromosome v;
4: Create a random initial population P;
5: Score each chromosome in P by computing fitness values;
6: fmin(t) = minimum fitness value in P;
7: while t ≤ G do
8: fmin(t− 1) = fmin(t);
9: Select parents using stochastic tournament method;

10: Perform crossover with probability ρ;
11: Perform mutation with probability φ;
12: Score each chromosome in P by computing fitness

values using (12);
13: fmin(t) = minimum fitness value in P;
14: if |fmin(t− 1)− fmin(t)| ≤ δ then
15: break;
16: end if
17: t = t+ 1;
18: end while

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

7

of GA, population of size P is chosen randomly from the
search space of encoded solutions in Line 4. In Line 5, fitness
value of each chromosome in P is computed using the fitness
function provided in (12). The solution in current population
with highest fitness/lowest fitness value is stored in Line 6, and
it is updated in each iteration. To produce next generation in
each iteration, first the parents are selected in Line 9, and then
crossover and mutation operations are performed to produce
new solutions in Line 10 and 11, respectively. Our stopping
criteria for GA is based on maximum number of generations
denoted as G or the minimum tolerance δ. Thus, the algorithm
runs until the maximum number of generations is reached or
the relative change in fitness value is less than the tolerance.

Finally, we discuss the complexity of proposed scheme. The
complexity of initializing the population of size P with K
tasks, M resources and N slots is given by O(P (KMN +
MN)) ≈ O(PKMN). The genetic operations of selection,
crossover and mutation are performed iteratively for each
generation. The complexity of these genetic operations for
maximum G generations is given by O(GPNt) + O(GP) +
O(GPKMN) and is dominated by O(GPKMN). The time
complexity of fitness evaluation for G generations each with
population size P is also O(GPKMN). Hence, the overall
time complexity of GA-based scheme can be approximated by
O(GPKMN).

B. Mobility-Aware Task Scheduling Heuristic

Keeping in view that the complexity of GA does not scale
well with the problem size, we devise a low complexity task
scheduling heuristic algorithm. The key idea is that, using
location information select RD that yields minimum delay
for each task. As channel quality and computation capacity
varies across different RDs, first a selection criteria needs to
be defined. Besides, the feasible set of offloading RDs changes
across different slots as respective channel gains vary with
mobility. Therefore, we take into account both time varying
data rates and computation capacities of RDs to define a
weighted sum utility matrix U = [umn]M×N . In particular,
umn corresponds to the utility of RD m ∈M in slot n ∈ N ,
and computed as

umn = wrR̄
m(n) + wf f̄

m, (13)

where wr > 0 and wf > 0 denote the relative weights of data
rate and computation capacity, respectively, such that wr +
wf = 1. The ¯ shows the scaling operation performed on
original values due to different units. The relative value of the
weights reflects the relative importance of the two different
criteria in utility. It implies that, RD with higher data rate
would be preferred when communication capacity becomes
worst than computation capacity, and vice versa.

We summarize our proposed heuristic in Algorithm 2, and
discuss the details here. In order to determine that execution
decision is made for each task, we define a vector AK×1 in our
algorithm and initialize it to 0 in Line. 2. Once the execution
of task k is decided, (to be either local or remote) A(k) is set
to 1. We first compute the location-based utility of each RD in
each slot in terms of data rate and computation capacity using

equation (13) in Line 6. Intuitively, the RD with highest utility
provides lowest communication and computation overhead.

In order to assign the tasks, we sort the RDs in descending
order of utilities in Line 9. Instead of assigning the tasks
sequentially, we first sort them in descending order of required
computation in Line 10. As a consequence, the tasks with
higher computation are scheduled for offloading to RDs with
better computing capacity and channel quality along the TD’s
trajectory. Otherwise, it may happen that some computation
intensive tasks are assigned to RDs with relatively less com-
puting power and lower channel quality, while lightweight
tasks are assigned to better RDs.

The first for loop selects RDs arranged in descending order
of utility, whereas the second for loop determines the feasible
task assignment based on the constraints of our problem. The
constraint in (11d) is always satisfied as the utility matrix has
unique entries, which ensures that a particular RD would not

Algorithm 2 MATS Algorithm

1: Input: K, M, N , Ik, ∀k ∈ K, fm ∀m ∈ M, f0, ε0,
pmax, τ

2: Output: a, p
3: Fix transmission power in p to pmax;
4: for each m ∈M do
5: for each n ∈ N do
6: Assign U(m,n) = umn for RD m in slot n using

equation 13;
7: end for
8: end for
9: Sort RDs in U in descending order of utilities;

10: Generate a vector |Kc| = K with tasks in descending
order of required computation CkDk;

11: for each umn ∈ U do
12: for each task k ∈Kc do
13: if A(k) = 0 then
14: Compute toff

k , t
exe
k , and eoff

k using (7), (9), and (8),
respectively;

15: if eoff
k ≤ erem then

16: Find already assigned tasks in slot n;
17: if latency constraint in (11b) is satisfied then
18: Assign task k to RD m in slot n as amk (n) =

1, and set A(k) = 1;
19: Update erem = erem − eoff

k ;
20: break;
21: else
22: continue;
23: end if
24: else
25: Task k will be executed locally, set A(k) = 1;
26: break;
27: end if
28: else
29: continue;
30: end if
31: end for
32: end for

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

8

be assigned more than one task. Line 13 checks that a task is
either assigned for remote or local execution, and meanwhile
ensures the constraint in (11e). If the task is not already
assigned then algorithm proceeds to check the constraints,
and otherwise proceeds to corresponding else statement in
Line 29 to choose another task. In case of unassigned task,
Line 15 checks that offloading it does not utilize the TD’s
power beyond the expected value in (11c). In case the energy
constraint is satisfied, Line 17 checks that the selected task can
be offloaded and completed with in the same slot according to
(11b). When both the energy and latency constraints are met,
the selected task is assigned to RD in respective slot, and
the value of decision vector for k is set to 1 in Line 18. The
remaining energy of TD is updated in Line 19. After successful
assignment, the inner for loop breaks in Line 20, and the
algorithm then proceeds to find feasible task assignment for
next RD in U .

At first assignment, the corresponding slot is not occupied
by any other task. However, the feasibility of successful task
completion in the same slot decreases with the subsequent
assignments, which eventually results in violation of latency
constraint. In that case, the algorithm continues to the next
iteration of inner loop in Line 22 to find a new task in Kc.
With the successive assignments, fewer resources are left in
the system due to which the offloading energy consumption
bottlenecks the task offloading and offloading is rejected for
remaining tasks in Line 25. It may happen that, both local
and remote execution become infeasible for a task due to
insufficient energy at TD. Therefore, we explicitly determine
and state the operating thresholds of different schemes in
Section VI by evaluating the energy consumption of TD for
varying system load. The algorithms stops when the execution
decision for all the task has been made.

Now we discuss the complexity of MATS that mainly
lies in the nested for loops of utility computation and task
assignment. The complexity of finding the utility of M RDs in
N slots is given by O(MN). For task assignment, the outer for
loop iterates MN times for all the entries of utility matrix U ,
while the inner for loop iterates for all the tasks K. Hence, the
complexity of task assignment phase becomes O(KMN). The
overall complexity of MATS is given as O(MN)+O(KMN)
and can be approximated by O(KMN). It can be observed
that, MATS provide lower complexity as compared to GA
whose complexity increases manyfold as the size of problem
increases.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
scheme for realistic human mobility traces. Particularly, we
use well-known pedestrian mobility datasets used in [7]:
1) Orlando dataset collected by 4 participants who usually
walked and occasionally rode trolleys in Disney world, Or-
lando, Florida, United States. 2) KAIST dataset collected by
20 students within the Korea Advanced Institute of Science
and Technology (KAIST) campus, Daejeon, Korea.

Garmin GPS 60CSx handheld receivers were used for data
collection which can provide position accuracy of better than

TABLE II: SIMULATION PARAMETERS

Parameter Symbol Value
Bandwidth B 1 MHz
Noise power N0 −100 dBm
Maximum transmit power of TD pmax 23 dBm
Number of slots N 5
Slot duration τ 30 sec
Maximum number of generations G 200
Tolerance for GA δ 10−3

Penalty factor for GA γ 106

three meters 95 percent of the time. We extract the {Time
stamp, Longitude, Latitude} information of 150 traces from
KAIST and Orlando datasets, and map the original data to
a square area of 150m × 150m. For each (x, y) coordinate
of the original data, we perform the resize operation as
x̄ = 0 + (x−xmin/xmax−xmin)x150, and similarly ȳ = 0 +
(y−ymin/ymax−ymin)x150 to obtain the resized values x̄ and
ȳ of x and y coordinates respectively. Here, xmax, xmin and
ymax, ymin are the maximum and minimum values of x and
y coordinates, respectively. For each dataset, we first collect
150 consecutive traces. Then we group 5 positions and regard
it as one trajectory, which means that there are 5 slots in one
trajectory with slot duration τ = 30 sec as the position data
was sampled at every 30 seconds by default. In this way, we
obtain 30 trajectories of 150 sec each according to the relation
T = Nτ for each dataset.

We set K = 8 and M = 6, unless otherwise stated. The
parameters specific to TD are set as, fTD = 1 GHz, εTD = 7.4
dB, and κTD = 10−28 [4]. For each task, the data size is
uniformly distributed as Dk ∈ [5, 10] Mb, where CPU cycles
are fixed for each task as Ck = 1500 cycles per bit. The
computing capacity of each RD is selected from the uniform
distribution as fm ∈ [2, 3] GHz. The path loss coefficient and
exponent are set as θ = −40 dB, and α = 4, respectively. The
other simulation parameters are listed in Table II.

We first analyse the convergence of GA as it works in
an iterative fashion by improving the fitness over successive

20 40 60 80 100 120 140 160 180

Iteration (Generation)

40

50

60

70

80

90

100

110

T
o
ta

l
la

te
n
c
y
 (

s
e
c
)

K=8
K=10
K=12

Fig. 2: Convergence of GA for different number of tasks.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

9

4 6 8 10 12 14

Number of tasks

20

40

60

80

100

120

140

160
T

o
ta

l
la

te
n

c
y
 (

s
e

c
)

GA

MATS

SDF

SEF

Local execution

(a) Orlando dataset

4 6 8 10 12 14

Number of tasks

20

40

60

80

100

120

140

160

T
o

ta
l
la

te
n

c
y
 (

s
e

c
)

GA

MATS

SDF

SEF

Local execution

(b) KAIST dataset

Fig. 3: Effect of increase in number of tasks on total latency.

generations. In Fig. 2, we plot the total latency versus number
of iterations for K = 8, K = 10 and K = 12 while
keeping the number of RDs fixed as M = 6. Moreover,
KAIST dataset is used for this plot. For initial generations, the
solutions obtained by the algorithm are infeasible due to which
constraint violation penalty is applied to the fitness function
[39]. Hence, latency values are not plotted in the figure for
infeasible points. It is evident from the figure that, for different
number of tasks, GA converges to the best solution before
reaching the maximum number of generations. On the other
hand, the convergence performance degrades with increase in
number of tasks K. It is obvious, as the search space increases
with increase in K, and thus GA needs more iterations to
converge.

Beside MATS and GA-based schemes, we consider two
other heuristic schemes for performance comparison: 1) ‘short-
est distance first’ (SDF) and 2) ‘shortest execution first’
(SEF). SDF sequentially assigns tasks to the closest RDs with
higher channel gains/lower transmission delays. On the other
hand, SEF sequentially assigns tasks to the RDs with higher
computation capacities/shortest execution time in each slot.
SDF, SEF, and MATS perform fix power allocation such that
pm(n) = pmax.

Practically, the computation and communication load can
vary at large with the increase in number of service requests.
Therefore, we first analyse the scalability of the proposed
scheme for increasing number of tasks while keeping the RDs
fixed as M = 6. In particular, we first analyse the impact
on latency performance in Fig. 3, where Fig. 3(a) and Fig.
3(b) correspond to Orlando and KAIST datsets, respectively.
The figures depict the increasing latency trend for all the
schemes, which is obvious as limited computing and radio
resources cannot uphold increasing service requests within the
fixed time. Nevertheless, other baseline schemes can always
achieve lower latency as compared to local computing due to
collaborative task execution. As compared to other schemes,
MATS provides lowest latency mainly due to two factors: first
is the offloading ordering, and second is joint consideration

of computation and communication cost. Meanwhile, it can
be observed from Figs. 3(a) and 3(b) that GA provides
comparable performance up to K = 10 tasks. Beyond that, the
exponentially increasing complexity of GA with the increasing
number of tasks leads to the delay-energy tradeoff. It is worth
mentioning that, the offloading order significantly impacts the
performance of heuristics. As a matter of fact, both SDF and
SEF fail to benefit from user mobility-driven time varying
performance gain due to sequential task assignment. Eventu-
ally, SDF and SEF have to assign tasks for local execution as
they reach the computation and communication bottlenecks,
respectively. In contrast, MATS reduces the latency by jointly
considering the location based computing and communication
gains along with the computational complexity of tasks.

In real world, the number of executable tasks depends on the
available power of mobile device. Therefore, we next analyse
the total energy consumed by TD for increasing number of
tasks in Fig. 4, and determine the upper bound on number
of successfully executable tasks for different schemes based
on the energy consumption constraint of TD. Specifically,
Fig. 4(a) and Fig. 4(b) show the energy performance in case
of Orlando and KAIST datasets, respectively. The figures
depict increasing trend for all the schemes as more power is
consumed in transmission and local execution with increasing
number of tasks. Local execution performs worst as it does
not utilizes the edge resources. Energy performance of MATS
and GA is better than other baselines, mainly due to the task
assignment strategy in the former scheme and optimal power
allocation in the latter scheme. In contrast to Fig. 4(b), MATS
fails to satisfy the energy constraint for K = 14 tasks in
Fig. 4(a). To know the underlying reason, we analyse our
mobility data which reveals that the trajectories in Orlando
dataset are relatively much concentrated as compared to the
dispersed trajectories in KAIST dataset. Hence, it can be
deduced that the mobility-aware scheduling in MATS looses
its essence when mobility of user is low. Meanwhile, it can
be noticed that GA compromises the latency to achieve lower
energy by controlling the transmission power. On the other

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

10

4 6 8 10 12 14

Number of tasks

-5

0

5

10

15

20

25

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 b

y
 T

D
 (

d
B

) GA

MATS

SDF

SEF

Local execution

14
6.5

7
7.5

8
8.5

0
=7.4 dB

(a) Orlando dataset

4 6 8 10 12 14

Number of tasks

-5

0

5

10

15

20

25

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 b

y
 T

D
 (

d
B

) GA

MATS

SDF

SEF

Local execution

14
6

6.5

7

7.5

0
=7.4 dB

(b) KAIST dataset

Fig. 4: Effect of increase in number of tasks on total energy consumed by TD.

4 6 8 10 12 14

Number of tasks

0

20

40

60

80

E
ff

ic
ie

n
c
y
 (

%
)

GA

MATS

SDF

SEF

(a) Orlando dataset

4 6 8 10 12 14

Number of tasks

0

20

40

60

80

E
ff

ic
ie

n
c
y
 (

%
)

GA

MATS

SDF

SEF

(b) KAIST dataset

Fig. 5: Effect of increase in number of tasks on efficiency.

hand, computation and communication bottlenecks in SDF
and SEF, respectively, lead to local execution which consumes
higher energy than offloading. The worst performance of SEF
indicates that communication resources in the network are
more scarce as compared to computing resources. Therefore,
SEF fails to meet the energy constraint of TD beyond K = 6
tasks. SDF can successfully execute K = 8 tasks.

It can be deduced from Figs. 3 and 4 that, MATS can
achieve best latency performance without exhausting the TD
up to 12 tasks and in some cases up to 14 tasks. On the other
hand, as GA cares more for energy it can always execute up to
14 tasks without violating the energy constraint at the cost of
higher latency. Besides, the complexity of GA is much higher
than MATS. Therefore, we quantify the reduction in latency
by limiting our discussion to K = 12 tasks. MATS reduces
the total latency by approximately 9% and 12% for Orlando
and KAIST datasets, respectively, while satisfying the energy
consumption constraint of TD.

In Fig. 5, we plot efficiency which is measured in terms of

percentage reduction in latency and energy similar to [40] as

Efficiency = β

(
T loc − T tot

T loc

)
+ (1− β)

(
Eloc − Etot

Eloc

)
,

(14)
where T loc and Eloc are the total latency and total energy
consumption of TD, respectively, assuming that all the tasks
are executed locally. Etot denotes the energy consumed by
TD in offloading and local execution, and its value can be

obtained according to (11c) as Etot =
K∑
k=1

(eloc
k +eoff

k). The first

part in (14) represents the fraction reduction in total execution
time by offloading the tasks, while the second part indicates
the energy reduction. Here, β is the weighting factor in the
range [0, 1]. We set β = 0.5 in our simulations, which implies
that both latency and energy criteria have equal importance in
determining the composite efficiency.

Figs. 5(a) and 5(b) show decreasing efficiency with in-
crease in number of tasks for Orlando and KAIST datasets,
respectively. The gradually decreasing trends agree with the
increasing trends of latency and energy in Fig. 3 and Fig. 4,

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

11

5 10 15 20 25 30

Task size (Mb)

0

30

60

90

120

150

180
T

o
ta

l
la

te
n

c
y
 (

s
e

c
)

GA

MATS

SDF

SEF

Local execution

(a) Orlando dataset

5 10 15 20 25 30

Task size (Mb)

0

30

60

90

120

150

180

T
o

ta
l
la

te
n

c
y
 (

s
e

c
)

GA

MATS

SDF

SEF

Local execution

(b) KAIST dataset

Fig. 6: Effect of increase in task data size on total latency.

5 10 15 20 25 30

Task size (Mb)

-10

-5

0

5

10

15

20

25

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 b

y
 T

D
 (

d
B

)

GA

MATS

SDF

SEF

Local execution

0
=7.4 dB

(a) Orlando dataset

5 10 15 20 25 30

Task size (Mb)

-10

-5

0

5

10

15

20

25

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 b

y
 T

D
 (

d
B

)

GA

MATS

SDF

SEF

Local execution

0
=7.4 dB

(b) KAIST dataset

Fig. 7: Effect of increase in task data size on total energy consumption of TD.

respectively. It is evident form both the figures that MATS
can always achieve higher efficiency than other baselines. In
addition, its performance degradation is relatively lower with
the increase in number of tasks as compared to other schemes.
The efficiency of GA is comparable to MATS initially, while
it gradually degrades as the energy constraint becomes hard
to satisfy with the increasing number of tasks and underlying
complexity. For K = 12 tasks, the efficiency of MATS is
around 60% which is approximately 10% higher than GA.

The real world user applications are multipurpose, which
instigates scalability analysis for varying computation loads
in terms of task size. In Fig. 6, we plot latency by increasing
the task size from 5 to 30 Mb, while keeping the number of
tasks and RDs fixed as K = 8, and M = 6, respectively.
It is important to note that the task size at each point is
uniformly distributed. For instance, Dk ∈ [1, 5] Mb for first x-
axis value and likewise for rest of the values. The increasing
trend of latency for all the schemes is clear from Fig. 6(a)
and Fig. 6(b) for Orlando and KAIST datasets, respectively. It
is obvious as a larger task would aggravate transmission and

remote execution latencies for fixed bandwidth and computing
resources. Comparison shows that MATS and GA achieve
lowest latency with almost same performance due to location
based communication and computation aware scheduling for
each task. In contrast, latency provided by SDF and SEF
is higher as they perform sequential assignment and ignore
the complexity of task which increases with the task size.
Specifically, SEF ignores the communication cost which leads
to higher transmission latency, and eventually local execution
as the communication capacity approaches bottleneck.

In order to determine the operating threshold of different
schemes for increasing task size, we plot energy consumption
of TD in Fig. 7. In accordance with the increasing latency
trends in Fig. 6, the energy consumed by TD gradually
increases for all the schemes in Fig. 7(a) and Fig. 7(b) for
Orlando and KAIST datasets, respectively. MATS outperforms
other baselines up to a certain threshold for both datasets.
It is due to the fact that, the complex tasks are assigned
best resources, while the light weight tasks are decided to
be executed locally as the task size increases. Beyond the

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

12

2 4 6 8 10 12

Number of RDs

40

50

60

70

80

90

100

T
o

ta
l
la

te
n

c
y
 (

s
e

c
)

GA

MATS

SDF

SEF

Local execution

(a) Total latency vs RDs

2 4 6 8 10 12

Number of RDs

0

5

10

15

20

E
n

e
rg

y
 c

o
n

s
u

m
e

d
 b

y
 T

D
 (

d
B

) GA

MATS

SDF

SEF

Local execution

0
=7.4 dB

(b) Total energy consumed by TD vs RDs

2 4 6 8 10 12

Number of RDs

0

20

40

60

80

100

E
ff

ic
ie

n
c
y
 (

%
)

GA

MATS

SDF

(c) Efficiency vs RDs

Fig. 8: Effect of increase in number of RDs on (a) total latency, (b) energy consumption of TD, and (c) efficiency.

threshold value, GA provides slightly better energy at the
expense of minor latency performance degradation. Moreover,
GA can uphold the maximum task size while satisfying the
energy constraint of TD. Keeping in view the discrepancy
between Figs. 7(a) and 7(b) due to the varying mobility
patterns, we conclude that MATS can uphold task size of 25
Mb within the expected energy consumption. Meanwhile, SDF
and SEF fail to ensure the energy constraint of TD beyond 15
Mb and 10 Mb, respectively.

From Figs. 6 and 7, it is clear that GA can scale up
to maximum task size with almost same latency as MATS.
However, MATS offer scalability up to 25 Mb with low
computational complexity which makes it more suitable for
practical scenarios.

In Fig. 8, we analyse the performance in terms of latency,
energy consumption of TD, and efficiency by increasing
number of RDs. The number of tasks is fixed as K = 8.
Fig. 8(a) plots latency for different schemes. The performance
of local execution remains invariant as it does not utilize the
RDs. With increase in RDs, latency gradually decreases for
MATS, GA, and SDF, as more feasible offloading options are
available for each of these schemes. MATS and GA show
similar latency trends with low decreasing rate, where MATS
always achieves the lowest latency. The latency for both the
schemes reduces by approximately 9% as the number of
RDs increase from 2 to 12. For SDF, latency decreases at
a higher rate than other schemes as it only selects the RD
with the best channel condition, which is more probable to
happen as the number of RDs increase. However, it cannot
achieve similar performance to MATS and GA even with
12 RDs. It is important to note that, with increase in RDs,
the variation in communication capacity is relatively larger
than computation capacity, due to mobility-driven uncertainty
in channel gains. In this background, we try to explain the
inconsistent latency trend exhibited by SEF. SEF selects RDs
with best computing resources while ignoring the transmission
cost which eventually creates performance bottleneck. It may
happen that the selected RD provide lower communication cost
leading to better total latency. Nevertheless, the uncertainty in
location based data rates may result in higher transmission
cost which aggravates the total latency.

Fig. 8(b) plots the corresponding energy consumption of

TD for different schemes versus the number of RDs. The
energy performance improves for MATS, GA, and SDF, as
the probability to find better RDs for offloading increases
with the increase in total number of RDs. Comparison among
these three baselines shows that, both MATS and GA manage
to satisfy the energy constraint even with 2 RDs, while
SDF fails to meet the expected energy consumption when
number of RDs is less than 6. Once the energy constraint
is satisfied for SDF, the performance does not vary at large
with increase in RDs beyond 6. GA achieves the lowest energy
consumption within the expected value by employing optimal
power allocation. On the other hand, MATS performs slightly
worse than GA when number of RDs is small. However, its
energy performance improves at a higher rate, and eventually
becomes comparable to GA as number of RDs exceed beyond
6. It is due to the fact that, MATS exploits the diversity among
the RDs to assign the complex tasks first which results in
lower communication overhead at the TD. Finally, for SEF
the irregular energy trend is consistent with the latency trend
exhibited in Fig. 8(a), and the underlying reason is already
explained before.

According to the performance on latency and energy con-
sumption of TD, the efficiency of the different schemes is
shown in Fig. 8(c). Both MATS and GA provide comparable
efficiency. When number of RDs is small, GA provides best
efficiency. As the number of RDs exceed beyond 6, the
efficiency of MATS approaches GA and eventually becomes
5% higher.

Finally, we provide a comparison of the computational
complexity of each scheme running on a computer with Intel
Core i5-4200M 2.5 GHz CPU and 16 GB RAM. Table III
provides average running time per iteration of each scheme
for different number of tasks. The number of RDs is fixed as
M = 10, while two different trajectory lengths are considered
with N = 5 and N = 10 respectively. As expected the running
time increases gradually for all the schemes with increase
in number of tasks. Moreover, the computation complexity
increases when trajectory length increases from N = 5
to N = 10 slots since more options need to be explored
along the trajectory. MATS achieves the lowest complexity,
while GA has the highest run time complexity among all the
schemes. Especially, when the number of slots are doubled,

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

13

TABLE III: RUNNING TIME COMPLEXITY COMPARISON (milliseconds)

Schemes N = 5 N = 10
K = 6 K = 10 K = 14 K = 6 K = 10 K = 14

GA (x103) 130 192 210 367 700 803
MATS 0.47 0.48 2.50 0.79 0.86 1.02
SDF 0.85 1.14 4.60 1.08 1.53 2.37
SEF 0.82 0.96 1.47 1.19 1.46 2.14

the running time of GA increases manifold which agrees with
the time complexity O(GPKMN) expressed in Section V-A.
Although GA has much higher computation complexity, it
is still suitable and practical to implement for offline task
scheduling.

We evaluate the performance of different schemes for sev-
eral significant aspects, which demonstrates that MATS and
GA outperform other baselines. Our analysis provides the
operating thresholds for these schemes, for instance, maximum
load in terms of number of tasks and task size, and effec-
tive number of edge resources. Although GA-based scheme
manifests better scalability than MATS for different mobility
scenarios, its computational complexity increases directly with
the size of the problem. On the other hand, MATS cannot
always scale to the maximum loads. However, it provides
comparable scalability with relatively lower complexity, which
makes it preferable for practical scenarios.

A. Impact of Trajectory on Performance

Since our proposed scheme relies on predicted trajectories,
we analyse the impact of mobility prediction error on total
latency in Fig. 9 similar to the work in [41]. For this plot
we use Orlando dataset, and fix the number of tasks and
RDs as K = 8 and M = 6, respectively. We introduce
the position prediction error (∆x,∆y) using two dimensional
normal distribution with mean 0 and standard deviation σ,
where ∆x and ∆y is the prediction error in X-coordinate and
Y-coordinate, respectively. As expected, the latency increases
for all the schemes with increase in σ. For σ = 0 i.e., the

0 10 20 30 40 50
0

100

200

300

400

500

600

700

T
o

ta
l
la

te
n

c
y
 (

s
e

c
)

GA

MATS

SDF

SEF

0 10 20
42

46

50

54

58

Fig. 9: The total latency of four schemes for different values
of prediction error.

original trajectory, it can be observed that both MATS and GA
provide comparable latency. Up to σ = 30, all the schemes
show robustness by upholding almost same performance. As
the prediction error increases beyond 30, the latency of all
the schemes increases exponentially. However, the higher
increasing rate for MATS and GA is obvious as their mobility-
aware scheduling makes them more sensitive to error. In
contrast, SDF and SEF have relatively lower increasing rate.
Specifically, SEF relies the least on user mobility, and thus
shows more robustness to prediction error.

VII. CONCLUSION

In this work, we investigated mobility-aware task scheduling
problem to minimize the latency of an energy-constrained
mobile user in a D2D-enabled MEC network. We formulated
joint task assignment and power allocation as MINLP problem
by assuming predicted trajectory of mobile user. We first
solved our problem using GA-based evolutionary scheme.
Then we proposed MATS scheme to show that how to assign
tasks by taking into account the location based communication
and computation capacity of RDs together with task properties.
We used real life human walk trajectories in our simulations,
which provided some interesting and useful insights relevant
to the performance of our proposed schemes. Based on our
performance analysis, we conclude that both GA and MATS
can perform well in diverse network scenarios. However,
MATS provide lower complexity than GA.

In this work, we considered a single-user multi-task scenario
and exploited user mobility to enhance the offloading perfor-
mance. However, it would be challenging to handle multiple
users with wide range of varying applications striving for
shared resources. In this context, it would be interesting to
consider the social behavior/activities of users together with
mobility behavior. By jointly exploiting these two aspects for
individual users, resource reservation based offloading strate-
gies can be designed to effectively share the communication
and computing resources.

REFERENCES

[1] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645–1660, 2013.

[2] D. Sabella, A. Vaillant, P. Kuure, U. Rauschenbach, and F. Giust,
“Mobile-edge computing architecture: The role of mec in the internet of
things,” IEEE Consum. Electron. Mag., vol. 5, no. 4, pp. 84–91, 2016.

[3] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Commun. Surveys Tuts., vol. 19,
no. 3, pp. 1628–1656, 2017.

[4] Y. Mao, C. You, J. Zhang, K. Huang, and K. B. Letaief, “A survey
on mobile edge computing: The communication perspective,” IEEE
Commun. Surveys Tuts., vol. 19, no. 4, pp. 2322–2358, 2017.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

14

[5] J. Liu, N. Kato, J. Ma, and N. Kadowaki, “Device-to-device commu-
nication in lte-advanced networks: A survey,” IEEE Commun. Surveys
Tuts., vol. 17, no. 4, pp. 1923–1940, 2014.

[6] Z. Feng and Y. Zhu, “A survey on trajectory data mining: Techniques
and applications,” IEEE Access, vol. 4, pp. 2056–2067, 2016.

[7] I. Rhee, M. Shin, S. Hong, K. Lee, S. J. Kim, and S. Chong, “On the
levy-walk nature of human mobility,” IEEE/ACM Trans. Netw., vol. 19,
no. 3, pp. 630–643, 2011.

[8] J. Liu, Y. Mao, J. Zhang, and K. B. Letaief, “Delay-optimal computation
task scheduling for mobile-edge computing systems,” in Proc. IEEE
International Symposium on Information Theory (ISIT), 2016, pp. 1451–
1455.

[9] Y. Mao, J. Zhang, and K. B. Letaief, “Dynamic computation offloading
for mobile-edge computing with energy harvesting devices,” IEEE J.
Sel. Areas Commun., vol. 34, no. 12, pp. 3590–3605, 2016.

[10] Y. Wang, M. Sheng, X. Wang, L. Wang, and J. Li, “Mobile-edge com-
puting: Partial computation offloading using dynamic voltage scaling,”
IEEE Trans. Commun., vol. 64, no. 10, pp. 4268–4282, 2016.

[11] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Trans. Mobile Comput., vol. 16, no. 11, pp. 3056–3069, 2017.

[12] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient resource
allocation for mobile-edge computation offloading,” IEEE Trans. Wire-
less Commun., vol. 16, no. 3, pp. 1397–1411, 2016.

[13] H. Q. Le, H. Al-Shatri, and A. Klein, “Efficient resource allocation in
mobile-edge computation offloading: Completion time minimization,” in
Proc. IEEE ISIT, 2017, pp. 2513–2517.

[14] J. Ren, G. Yu, Y. Cai, Y. He, and F. Qu, “Partial offloading for latency
minimization in mobile-edge computing,” in Proc. IEEE GLOBECOM,
2017, pp. 1–6.

[15] U. Saleem, Y. Liu, S. Jangsher, and Y. Li, “Performance guaranteed
partial offloading for mobile edge computing,” in 2018 IEEE Global
Communications Conference (GLOBECOM). IEEE, 2018, pp. 1–6.

[16] L. Pu, X. Chen, J. Xu, and X. Fu, “D2d fogging: An energy-efficient
and incentive-aware task offloading framework via network-assisted d2d
collaboration,” IEEE J. Sel. Areas Commun, vol. 34, no. 12, pp. 3887–
3901, 2016.

[17] S. Zhao, Y. Yang, X. Yang, W. Zhang, X. Luo, and H. Qian, “Online user
association and computation offloading for fog-enabled d2d network,”
in Fog World Congress (FWC), 2017 IEEE. IEEE, 2017, pp. 1–6.

[18] J. Feng, L. Zhao, J. Du, X. Chu, and F. R. Yu, “Computation offloading
and resource allocation in d2d-enabled mobile edge computing,” in Proc.
IEEE ICC, 2018, pp. 1–6.

[19] H. Xing, L. Liu, J. Xu, and A. Nallanathan, “Joint task assignment and
wireless resource allocation for cooperative mobile-edge computing,” in
Proc. IEEE ICC, 2018, pp. 1–6.

[20] C. Wang, Y. Li, and D. Jin, “Mobility-assisted opportunistic computation
offloading,” IEEE Commun. Lett., vol. 18, no. 10, pp. 1779–1782, 2014.

[21] Z. Hong, Z. Wang, W. Cai, and V. C. Leung, “Connectivity-aware
task outsourcing and scheduling in d2d networks,” in Proc. IEEE 26th
International Conference on Computer Communication and Networks
(ICCCN), 2017, pp. 1–9.

[22] J. Plachy, Z. Becvar, and E. C. Strinati, “Dynamic resource allocation
exploiting mobility prediction in mobile edge computing,” in Proc. IEEE
27th Annual International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), 2016, pp. 1–6.

[23] Z. Wang, Z. Zhao, G. Min, X. Huang, Q. Ni, and R. Wang, “User
mobility aware task assignment for mobile edge computing,” Future
Generation Computer Systems, vol. 85, pp. 1–8, 2018.

[24] T. Zhu, T. Shi, J. Li, Z. Cai, and X. Zhou, “Task scheduling in deadline-
aware mobile edge computing systems,” IEEE Internet Things J., 2018.

[25] P. Bellavista, S. Chessa, L. Foschini, L. Gioia, and M. Girolami,
“Human-enabled edge computing: Exploiting the crowd as a dynamic
extension of mobile edge computing,” IEEE Commun. Mag., vol. 56,
no. 1, pp. 145–155, 2018.

[26] Y. Niu, Y. Liu, Y. Li, X. Chen, Z. Zhong, and Z. Han, “Device-to-
device communications enabled energy efficient multicast scheduling in
mmwave small cells,” IEEE Trans. Commun., vol. 66, no. 3, pp. 1093–
1109, 2017.

[27] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE J.
Sel. Areas Commun., vol. 36, no. 10, pp. 2333–2345, 2018.

[28] H. Zhao, S. Deng, C. Zhang, W. Du, Q. He, and J. Yin, “A mobility-
aware cross-edge computation offloading framework for partitionable
applications,” in Proc. IEEE International Conference on Web Services
(ICWS), 2019, pp. 193–200.

[29] X. Chen and J. Zhang, “When d2d meets cloud: Hybrid mobile task
offloadings in fog computing,” in Proc. IEEE ICC, 2017, pp. 1–6.

[30] Y. Wu, W. Liu, S. Wang, W. Guo, and X. Chu, “Network coding in
device-to-device (d2d) communications underlaying cellular networks,”
in Proc. IEEE ICC, 2015, pp. 2072–2077.

[31] Z. Zhou, P. Liu, J. Feng, Y. Zhang, S. Mumtaz, and J. Rodriguez,
“Computation resource allocation and task assignment optimization in
vehicular fog computing: A contract-matching approach,” IEEE Trans.
Veh. Technol., vol. 68, no. 4, pp. 3113–3125, 2019.

[32] D. Pisinger, “Where are the hard knapsack problems?” Comput. Oper.
Res., vol. 32, no. 9, pp. 2271–2284, 2005.

[33] C. Chekuri and S. Khanna, “A ptas for the multiple knapsack problem,”
Departmental Papers (CIS), p. 146, 2005.

[34] H.-L. Fang, P. Ross, and D. Corne, A promising genetic algorithm
approach to job-shop scheduling, rescheduling, and open-shop schedul-
ing problems. University of Edinburgh, Department of Artificial
Intelligence, 1993.

[35] L. Davis, Handbook of genetic algorithms. CUMINCAD, 1991.
[36] Y. Shi, S. Chen, and X. Xu, “Maga: A mobility-aware computation

offloading decision for distributed mobile cloud computing,” IEEE
Internet Things J., vol. 5, no. 1, pp. 164–174, 2017.

[37] F. Guo, H. Zhang, H. Ji, X. Li, and V. C. Leung, “An efficient
computation offloading management scheme in the densely deployed
small cell networks with mobile edge computing,” IEEE/ACM Trans.
Netw., vol. 26, no. 6, pp. 2651–2664, 2018.

[38] W. Fan, Y. Liu, B. Tang, F. Wu, and H. Zhang, “Exploiting joint
computation offloading and data caching to enhance mobile terminal
performance,” in Proc. IEEE GLOBECOM Workshops, 2016, pp. 1–6.

[39] MathWorks, “Mixed integer ga optimization,”
https://www.mathworks.com/help/gads/mixed-integer-optimization.html.

[40] Y.-D. Lin, E. T.-H. Chu, Y.-C. Lai, and T.-J. Huang, “Time-and-energy-
aware computation offloading in handheld devices to coprocessors and
clouds,” IEEE Syst. J., vol. 9, no. 2, pp. 393–405, 2013.

[41] Y. Liu, X. Chen, Y. Niu, B. Ai, Y. Li, and D. Jin, “Mobility-aware
transmission scheduling scheme for millimeter-wave cells,” IEEE Trans.
Wireless Commun., vol. 17, no. 9, pp. 5991–6004, 2018.

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

1536-1276 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TWC.2020.3024538, IEEE
Transactions on Wireless Communications

15

Umber Saleem received her B.E. degree in in-
formation and communication systems engineering
in 2013 and M.S. degree in electrical engineering
(telecommunications) in 2016 from National Uni-
versity of Sciences and Technology (NUST), Pak-
istan. She is currently pursuing Ph.D. in electronic
engineering from Tsinghua University, China. Her
research focus is resource allocation for mobile edge
mobile edge computing.

Yu Liu received the B.E. degree in electronic en-
gineering from Tsinghua University, Beijing, China,
in 2018. He is currently pursuing the Ph.D. degree
in electronic engineering with Tsinghua University,
Beijing, China. His research interests include wire-
less networks, edge computing, and optimization.

Sobia Jangsher received her B.E. degree in elec-
tronics engineering and M.S. in communication sys-
tem engineering from National University of Sci-
ence and Technology (NUST), Pakistan and PhD
in Wireless Communication from The University of
Hong Kong, Hong Kong. She did her M.S. thesis
on ”Adaptive transmission of video over MIMO
channels” under the supervision of Dr. Syed Ali
Khayam and PhD thesis on ”Resource Allocation in
Moving Small Cell Network” under the supervision
of Prof. Victor O.K Li. She is currently working

as an Assistant Professor in Institute of Space Technology, Islamabad,
Pakistan. Her research mainly focuses on resource allocation in future wireless
communication systems.

Yong Li (M’09-SM’16) is currently a Tenured As-
sociate Professor of the Department of Electronic
Engineering, Tsinghua University. He received the
Ph.D. degree in electronic engineering from Ts-
inghua University in 2012. His research interests
include machine learning and big data mining, par-
ticularly, automatic machine learning and spatial-
temporal data mining for urban computing, rec-
ommender systems, and knowledge graphs. Dr. Li
has served as General Chair, TPC Chair, SPC/TPC
Member for several international workshops and

conferences, and he is on the editorial board of two IEEE journals. He has
published over 100 papers on first-tier international conferences and journals,
including KDD, WWW, UbiComp, SIGIR, AAAI, TKDE, TMC etc, and his
papers have total citations more than 8300. Among them, ten are ESI Highly
Cited Papers in Computer Science, and five receive conference Best Paper
(run-up) Awards. He received IEEE 2016 ComSoc Asia-Pacific Outstanding
Young Researchers, Young Talent Program of China Association for Science
and Technology, and the National Youth Talent Support Program.

Tao Jiang (M06, SM10,F19) is currently a Distin-
guished Professor in the Wuhan National Laboratory
for Optoelectronics and School of Electronics Infor-
mation and Communications, Huazhong University
of Science and Technology, Wuhan, P. R. China.
He received Ph.D. degree in information and com-
munication engineering from Huazhong University
of Science and Technology, Wuhan, P. R. China,
in April 2004. From Aug. 2004 to Dec. 2007,
he worked in some universities, such as Brunel
University and University of Michigan-Dearborn,

respectively. He has authored or co-authored more 300 technical papers in
major journals and conferences and 9 books/chapters in the areas of com-
munications and networks. He served or is serving as symposium technical
program committee membership of some major IEEE conferences, including
INFOCOM, GLOBECOM, and ICC, etc.. He was invited to serve as TPC
Symposium Chair for the IEEE GLOBECOM 2013, IEEEE WCNC 2013
and ICCC 2013. He is served or serving as associate editor of some technical
journals in communications, including in IEEE Network, IEEE Transactions
on Signal Processing, IEEE Communications Surveys and Tutorials, IEEE
Transactions on Vehicular Technology, IEEE Internet of Things Journal, and
he is the associate editor-in-chief of China Communications, etc..

Authorized licensed use limited to: Fondren Library Rice University. Downloaded on October 10,2020 at 09:21:10 UTC from IEEE Xplore. Restrictions apply.

